

Gu, F., Zhang, H., & the ELLIPSE consortium (2017). Inherited variation in circadian rhythm genes and risks of prostate cancer and three other cancer sites in combined cancer consortia. *International Journal of Cancer*, *141*(9), 1794-1802. https://doi.org/10.1002/ijc.30883

Peer reviewed version

Link to published version (if available): 10.1002/ijc.30883

Link to publication record in Explore Bristol Research PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via Wiley at http://onlinelibrary.wiley.com/doi/10.1002/ijc.30883/abstract. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms

Authors in the ELLIPSE consortium (Alphabetic order)

Ali Amin Al Olama¹, Demetrius Albanes², Sara Benlloch³, Federico Canzian⁴, Stephen J Chanock², Constance Turman⁵, Jenny L Denovan⁶, Doug Easton³, Ros Eeles⁷, Graham G Giles⁸, Edward L Giovannucci^{5,9}, Henrik Grönberg¹⁰, Christopher A Haiman¹¹, Freddie C Hamdy¹², Robert N Hoover¹, David J Hunter⁴, Tim J Key¹³, Laurence N Kolonel¹⁴, Zsofia Kote-Jarai⁶, Loic Le Marchand¹⁴, Sara Lindstrom⁵, Jing Ma⁵, Mitchell Machiela², David E Neal¹⁵, Elio Riboli¹⁶, Fredrick R Schumacher¹⁷, Afshan Siddiq¹⁸, Meir J Stampfer⁹, Victoria Stevens¹⁹, Ruth C Travis¹³, Fredrik Wiklund¹⁰, Jianfeng Xu²⁰⁻²¹

¹Centre of Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK

²Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA

³School of Clinical Medicine, University of Cambridge, Cambridge, UK

⁴Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany

⁵Department of Epidemiology, Harvard School of Public Health, Boston MA, USA

⁶University of Bristol, Bristol, UK

⁷American Cancer Society, Inc., Atlanta, GA, USA

⁸Cancer Epidemiology Centre, Cancer Council Victoria Inc., Victoria, Australia

⁹Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA

¹⁰Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden

¹¹Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA

¹²Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK

¹³Nuffield Department of Population Health, University of Oxford, Oxford, UK

¹⁴Epidemiology Program, Cancer Research Center, University of Hawaii Cancer Center, Honolulu, HI, USA

¹⁵Cambridge Clinical Trial Center & Oncology, University of Cambridge, Cambridge, UK

¹⁶Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, Ul

¹⁷Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA

¹⁸Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, Ul

¹⁹Institute of Cancer Research, London, UK

²⁰Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China

²¹Program for Personalized Cancer Care, NorthShore University Health System, Evanston, IL, USA

Additional Acknowledgement

GECCO: The authors would like to thank all those at the GECCO Coordinating Center for helping bring together the data and people that made this project possible. The authors acknowledge Dave Duggan and team members at TGEN (Translational Genomics Research Institute), the Broad Institute, and the Génome Québec Innovation Center for genotyping DNA samples of cases and controls, and for scientific input for GECCO.

ASTERISK: We are very grateful to Dr. Bruno Buecher without whom this project would not have existed. We also thank all those who agreed to participate in this study, including the patients and the healthy control persons, as well as all the physicians, technicians and students. **DACHS**: We thank all participants and cooperating clinicians, and Ute Handte-Daub, Utz Benscheid, Muhabbet Celik and Ursula Eilber for excellent technical assistance.

HPFS, **NHS** and **PHS**: We would like to acknowledge Patrice Soule and Hardeep Ranu of the Dana Farber Harvard Cancer Center High-Throughput Polymorphism Core who assisted in the genotyping for NHS, HPFS, and PHS under the supervision of Dr. Immaculata Devivo and Dr. David Hunter, Qin (Carolyn) Guo and Lixue Zhu who assisted in programming for NHS and HPFS, and Haiyan Zhang who assisted in programming for the PHS. We would like to thank the participants and staff of the Nurses' Health Study and the Health Professionals Follow-Up Study, for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The authors assume full responsibility for analyses and interpretation of these data.

PLCO: The authors thank Drs. Christine Berg and Philip Prorok, Division of Cancer Prevention, National Cancer Institute, the Screening Center investigators and staff or the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial, Mr. Tom Riley and staff, Information Management Services, Inc., Ms. Barbara O'Brien and staff, Westat, Inc., and Drs. Bill Kopp and staff, SAIC-Frederick. Most importantly, we acknowledge the study participants for their contributions to making this study possible. The statements contained herein are solely those of the authors and do not represent or imply concurrence or endorsement by NCI.

PMH: The authors would like to thank the study participants and staff of the Hormones and Colon Cancer study.

WHI: The authors thank the WHI investigators and staff for their dedication, and the study participants for making the program possible. A full listing of WHI investigators can be found at: http://www.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator %20Short%20List.pdf

Cancer	Study	Locations	Design	
Initial analytical dat	a in GAME-ON			
Colon & Rectum	MECC	US	Cohort	
(CORECT)	CFR	US	Cohort	
	Kentucky	US	Pop. CC	
	CPS-II/ACS	US	Cohort	
	Melbourne	Australia	Cohort	
	Newfoundland	Canada	Pop. CC	
Lung	MDACC	US	Hospital CC	
(TRICL)	ICR	UK	Hospital CC	
	Toronto	Canada	Clinic CC	
	IARC	Europe	Hospital CC	
	GLC	German	Pop. CC	
	NCI	US	Pop. CC and nested CC	
Ovary	UKGWAS	UK	CC	
(FOCI)	USGWAS	US, Canada, Poland	CC	
	U19	US	CC	
Prostate	BPC3	US	CC, nested CC	
(ELLIPSE)	CRUK1	UK	CC	
	CRUK2	UK	CC	
	CAPS1	Sweden	CC	
	CAPS2	Sweden	CC	
Replication data Prostate (PLCO)	PLCO	US	Nested CC	
riostate (rice)	1100	05	Nested CC	

Supplementary Table 1. Population and design of each contributed study

Colon & Rectum

(GECCO)	ASTERISK	France	Hospital CC
· ·	COLO23	US	Pop. CC
	DACHS1	Germany	Pop. CC
	DACHS2	Germany	Pop. CC
	DALS1	US	Pop. CC
	DALS2	US	Pop. CC
	HPFS1	US	Nested CC
	HPFS2		
		US	Nested CC
	HPFSad	US	Nested CC
	MEC	US	Nested CC
	NHS1	US	Nested CC
	NHS2	US	Nested CC
	NHSad	US	Nested CC
	OFCCR	Canada	Pop.CC
	PHS1P2	US	Nested CC
	PLCO1	US	Nested CC
	PLCO2	US	Nested CC
	PMH	US	Pop. CC
	VITAL	US	Nested CC
	WHI1	US	Nested CC
	WHI2	US	Nested CC

CC: case-control

		Combined results		Aggressiv	1	
		(14818 cases, 14227		(up to 4446 cases, 12724		
		cont	trols)	contr	ols)	
Gene	Chr	N.SNPs	P-value	N.SNPs	P-value	
Circadian rh	ythm path	hway				
ARNTL	11	80	0.29	80	0.54	
CK1E	22	48	0.30	48	0.58	
CLOCK	4	24	0.021	24	0.093	
CRYI	12	35	0.55	35	0.87	
CRY2	11	20	0.043	20	0.57	
NPAS2	2	167	0.0062	167	0.18	
PER1	17	30	0.063	30	0.70	
PER2	2	50	0.060	50	0.23	
PER3	1	67	0.24	67	0.030	
Pathway-lev	vel	521	0.0016*	521	0.29	
Melanotin p	athway					
AANAT	17	38	0.00078*	38	0.47	
DDC	7	84	0.050	84	0.49	
MTNR1A	4	35	0.35	35	0.22	
MTNR1B	11	23	0.96	23	0.32	
TPH1	11	18	0.15	18	0.96	
TPH2	12	65	0.21	65	0.35	
Pathway-lev	vel	263	0.0060*	263	0.66	

Supplementary table 2. Gene- and pathway-based p-values for overall and aggressive prostate cancer

*Statistically significant after Bonferroni correction (p < 0.05/8 = 0.00625 at pathway level; p < 0.05/60 = 0.00083 at gene level)

P<0.05 in bold

		All	lele		Overa	11		Aggressiv	e
Gene	\mathbf{SNP}^*	Ref ^{**}	Eff^{**}	log(OR)	SE	P-value	log(OR)	SE	P-value
Circadian rh	ythm pathway								
CLOCK	rs62309758	Т	С	-0.09	0.03	1.45E-03	-0.09	0.04	7.57E-03
CRY2	rs7108730	Т	С	0.08	0.03	3.66E-03	0.06	0.04	1.05E-01
NPAS2	rs2305160	А	G	0.08	0.02	3.47E-05	0.06	0.03	3.00E-02
Melatonin p	oathway								
AANAT	rs150316415	G	А	0.28	0.07	3.41E-05	0.16	0.08	6.49E-02
DDC	rs12718611	G	А	-0.11	0.04	1.72E-03	-0.07	0.05	1.12E-01

Supplementary Table 3. Comparison of SNP-based results between overall and aggressive prostate cancer*

*SNPs with the smallest p-value in the genes with $P_{gene} \leq 0.05$, based on association with overall prostate cancer.

**reference and effect alleles

		Game-ON (CC (5100 cases, 44	,	GECCO (10738 cases	, 13328 controls)	Combined result (15838 cases, 18	
Gene	Chr	N.SNPs	P-value	N.SNPs	P-value	N.SNPs	P-value
Circadian rhyth	m pathv	way					
ARNTL	11	114	0.0044	113	0.78	140	0.028
CK1E	22	38	0.14	55	0.18	68	0.24
CLOCK	4	47	0.18	35	0.34	53	0.11
CRYI	12	56	0.81	47	0.83	73	0.95
CRY2	11	35	0.64	32	0.85	41	0.91
NPAS2	2	202	0.011	212	0.82	245	0.51
PER1	17	47	0.60	38	0.44	53	0.55
PER2	2	54	0.63	54	0.40	68	0.59
PER3	1	60	0.68	84	0.15	101	0.047
Pathway-level		653	0.021	670	0.76	842	0.17
Melatonin pathy	vay						
AANAT	17	53	0.59	52	0.85	61	0.91
DDC	7	119	0.89	115	0.58	147	0.74
MTNR1A	4	60	0.18	61	0.86	72	0.30
MTNR1B	11	33	0.92	34	0.87	45	0.96
TPH1	11	20	0.029	22	0.27	27	0.068
TPH2	12	67	0.77	92	0.0064	107	0.013
Pathway-level		352	0.24	376	0.066	459	0.091

Supplementary table 4. Gene- and pathway-based p-values for colorectal cancer in GAME-ON and replication samples

P<0.05 in bold. None of gene based or pathway based p values reached Bonferroni corrected significance

		Lung cancer (12537 cases, 17285 controls)		Ovarian cancer (4369 cases, 9123 controls)		
Gene	Chr	N.SNP*	P-value	N.SNP*	P-value	
Circadian rhyt	hm pathwa	ay				
ARNTL	11	78	0.18	80	0.58	
CK1E	22	47	0.35	48	0.024	
CLOCK	4	24	0.19	24	0.20	
CRYI	12	33	0.40	35	0.29	
CRY2	11	18	0.52	20	0.13	
NPAS2	2	165	0.56	167	0.046	
PER1	17	29	0.35	30	0.87	
PER2	2	50	0.87	50	0.54	
PER3	1	66	0.90	67	0.68	
Pathway-level		510	0.71	521	0.14	
Melatonin path	iway					
AANAT	17	30	0.63	38	0.14	
DDC	7	82	0.089	84	0.10	
MTNR1A	4	35	0.93	35	0.20	
MTNR1B	11	21	0.85	23	0.64	
TPH1	11	17	0.23	18	0.21	
TPH2	12	58	0.048	65	0.75	
Pathway-level		243	0.22	263	0.26	

Supplementary table 5. Gene- and pathway-based p-values for lung and ovarian cancers in GAME-ON

*SNP numbers after the LD pruning, using r²>0.95

P<0.05 in bold. None of gene- or pathway-level p-values reached the Bonferroni correction threshold of significance.