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Abstract 

Neuroscience and Neurobiology have historically been neuron biased, yet up to 40% of the 

cells in the brain are astrocytes. These cells are heterogeneous and regionally diverse but 

universally essential for brain homeostasis. Astrocytes regulate synaptic transmission as part 

of the tripartite synapse, provide metabolic and neurotrophic support, recycle 

neurotransmitters, modulate blood flow and brain blood barrier permeability and are 

implicated in the mechanisms of neurodegeneration. Using pluripotent stem cells (PSC), it is 

now possible to study regionalised human astrocytes in a dish and to model their contribution 

to neurodevelopmental and neurodegenerative disorders. The evidence challenging the 

traditional neuron-centric view of degeneration within the CNS is reviewed here, with focus 

on recent findings and disease phenotypes from human PSC-derived astrocytes. In addition 

we compare current protocols for the generation of regionalised astrocytes and how these can 

be further refined by our growing knowledge of neurodevelopment. We conclude by 

proposing a functional and phenotypical characterisation of PSC-derived astrocytic cultures 

that is critical for reproducible and robust disease modelling. 
 
 
 
 

INTRODUCTION 
 

Astrocytes are the most important neural cell type in the management 

of homeostatic conditions in the brain (19). They are a type of glia in 

the central nervous system (CNS), together with oligodendrocytes 

and microglia. In the adult brain each astrocyte can contact up to a 

million individual synapses (68). Dendritic spines and presynaptic 

terminals are intimately wrapped by perisynaptic astrocytic processes 

forming the tripartite synapse; allowing astrocytes to respond to syn- 

aptic activity and in turn regulate synaptic transmission (6, 130). 

Recent studies have shown that the cellular composition of the 

human brain is different to what has been taught for over half a cen- 

tury [for review see (15)]. Historically, the human brain was believed 

to contain roughly one trillion glial cells and 100 billion neurons 

yielding a glia to neuron ratio of 10:1. The neurons were thought to 

be the “talented tenth” due to their ability to communicate via electri- 

cal activity and hence perform long distance communication. This 

exceptional property, not attributable to glia, may in part explain our 

fascination with neurons and the many in depth studies carried out on 

neurons in relation to their degeneration. More recently Herculano- 

Houzel and colleagues have developed and validated an isotropic 

fractionator method which demonstrated a 1:1 ratio of glia to neurons 

and hence a glial cell total of 100 billion (74); much lower than previ- 

ously thought. Whilst astrocytes are known to comprise of up to 40% 

of all cells within the brain (73), there are regional differences in their 

numbers;  for  example,  neurons  outnumber  astrocytes  in  the 

cerebellum while the opposite is true in the cortex (73). Such regional 

differences highlight an important consideration of their potential 

role in disease pathogenesis. 

Astrocytes are a heterogeneous population of cells that have dif- 

ferent morphological and physiological characteristics. Tradition- 

ally, they are classified into two main subtypes depending on their 

location within the CNS; protoplasmic astrocytes are mainly found 

in grey matter and fibrous astrocytes in the white matter (117). 

However, more recent evidence suggests that this classification 

is oversimplified and that astrocyte heterogeneity may be an 

underappreciated topic in neurobiology [for review see (176)], a 

view supported by a growing number of genomic studies (76, 

174). Despite their heterogeneity, it is well established that 

astrocytes play pan-neural roles in cell to cell communication, 

metabolic support and also in neurotransmitter recycling (134, 

144). In addition to their supportive roles, astrocytes have also 

been shown to control the formation, function and removal of 

synapses (53, 131), they also are important in the control of blood 

flow and critical for the maintenance of the blood brain barrier 

(BBB) (13, 80, 87, 103). 
 

 
WHY  STUDY ASTROCYTES? 
 

There is an accumulating body of evidence that astrocytes medi- 

ate many homeostatic processes which allows us to challenge the 

traditional neuron-centric view of degeneration within the CNS. 



 

 

 
 

The concept of reactive astrogliosis and its molecular and cellu- 

lar definition are still incomplete and we are only really starting 

to understand the multifaceted roles of astrocytes in disease [for 

review see (18, 133)]. Nevertheless, it is becoming increasingly 

clear that astrocytic function contributes to the initiation and/or 

progression of neuronal loss. As reviewed below, multiples stud- 

ies offer compelling evidence of non-cell autonomous astrocyte 

dependent mechanisms both in neurodegenerative and neurode- 

velopmental disorders. 

 
Alzheimer’s disease 

 

Alzheimer’s disease (AD) —the most common cause of demen- 

tia—is characterized by three pathological features: neurofibrillary 

tangles consisting of intracellular inclusions of hyperphosphory- 

lated tau, extracellular deposits of amyloid beta (Ab) also known 

as amyloid plaques, and vascular amyloidosis. The exact mecha- 

nisms of action are still a topic of debate, however, accumulation of 

the Ab  peptide is believed to result in neuronal dysfunction and 

eventually cell death (148). Mutations in the amyloid precursor pro- 

tein gene (APP), APP triplications—as seen in Down Syndrome— 

or mutations in the APP processing machinery (PSEN-1 & PSEN- 

2) cause early onset AD [EOAD for review see (54)]. These find- 

ings led to the amyloid hypothesis and to a neuronal focus in AD 

research. 

The first evidence that astrocytes play an active role in the patho- 

genesis was provided by Wyss-Corey and colleagues in 2003. 

These authors utilized mouse astrocytes to show that they could 

both take up and degrade Ab (172). This followed on from work 

that had shown the presence of Ab within astrocytes in the human 

brain (59, 163) and reactive astrocytosis surrounding amyloid pla- 

ques (123). We now know that astrocytes can release a full arsenal 

of amyloid cleaving enzymes including neprelysin, endothelin con- 

verting enzyme-2 and angiotensin-converting enzyme-1 (135). A 

recent study by Liao et al demonstrated at single cell level that 

human induced pluripotent stem cells (hiPSC) derived astrocytes 

can secrete relatively high levels of Ab (101). Astrocytes and not 

just neurons are also affected by Ab. For example, Ab treatment 

leads to an increase in intracellular Ca21  in rat astrocytes but not 

neurons. This causes glutathione depletion and astrocytic death fol- 

lowed only indirectly by neuronal loss (2). Ab also causes the 

release of inflammatory cytokines (IFN-g, IL-1b and IL-6) and 

astrocyte activation (61). Moreover, astroglyosis can occur in the 

absence of Ab-plaques (153) and in rat mixed cultures Tau- 

hyperphosporylation requires the presence of astrocytes (61), indi- 

cating that the astrocyte involvement in AD goes beyond amyloid. 

Disease phenotypes have also been confirmed in human astrocytes 

from familial and sporadic cases. Jones et al found aberrant mor- 

phology and pronounced pathological phenotypes in AD-astrocytes 

(82), while Kondo et al reported increased endoplasmic reticulum 

and oxidative stress associated with intracellular Ab in hiPSC 

derived astrocytes and neurons (89). 

Nevertheless, EOAD represents a very small proportion of AD 

cases and interestingly the genes implicated in Late Onset AD 

(LOAD) are not specifically neuronal. A GWAS by Harold et al 

identified three loci associated with AD: ApoE, Clusterin and PIC- 

ALM (70). PICALM is mainly expressed in endothelial cells from 

blood vessels in the brain, whereas Clusterin and ApoE (Xu et al, 

2006)  are  typically  astrocytic genes.  ApoE  is  a  lipid  binding 

protein, highly expressed in the CNS and the best studied risk fac- 

tor for LOAD. ApoE is expressed predominantly in astrocytes but 

also in neurons that have undergone injury or stress (23, 50, 110). 

The human ApoE gene is polymorphic, encoding one of 3 isoforms 

E2, E3 or E4, which differ by just 2 amino acids, producing sub- 

stantial isoform-specific properties (111). Unlike genetic mutations 

that cause autosomal dominant forms of AD, the role of ApoE is 

more complex (157). Different ApoE alleles modify the risk of 

developing AD. ApoE3—the most common allele is considered the 

normal version of ApoE. ApoE4 is associated with an increased 

risk of AD—5 times for heterozygous and 14 times for homozy- 

gous compared to carriers of E3 (43). Interestingly over 65% of 

AD patients carry a copy of ApoE4. The relationship between 

ApoE and AD has been attributed to the ability of ApoE to bind 

Ab  for clearance, and its role in transporting lipids for neuronal 

homeostasis and synaptogenesis (110). The role of ApoE in Ab 

clearance is attributed in part to the physiology of astrocytes, which 

internalize and degrade Ab (23). Indeed, astrocytes are associated 

with Ab plaque degradation and their ability to localize to the pla- 

ques requires ApoE (23, 86). Astrocytes from ApoE knockout mice 

lack this ability while upregulation of ApoE in an Ab over express- 

ing mouse model reversed their AD-like phenotype (23, 88). This 

suggests that enhancement of astrocyte mediated clearance of Ab 

is a promising therapeutic target for the treatment of AD, and from 

work in animal models it is clear that ApoE is fundamental to this 

process (9, 45, 88). 

It is possible that the first alterations leading to AD do not take 

place in neurons but elsewhere. Indeed, early vasculature changes 

in endothelial permeability are thought to precede any neurological 

symptom (30). Interestingly, we know that BBB-function is regu- 

lated by the cross-talk between astrocytes and endothelial cells [for 

review see (1)] and that astrocyte secreted ApoE the biggest genetic 

risk factor for LOAD is essential to maintain BBB permeability 

(16). Thus, suggesting that to understand the pathological mecha- 

nisms in AD we must look beyond the dying neurons and possibly 

even beyond astrocytes. 

 
Parkinson’s disease 
 

Parkinson’s disease (PD) is the second most common neurodege- 

nerative disease and is characterized by bradykinesia, tremor, rigid- 

ity and postural instability. The etiology of this disease is largely 

unknown, but it involves a complex interaction between various 

genetic and environmental factors. To date 17 distinctive chromo- 

somal locations or PARK genes (PARK (1–18)) have been identi- 

fied in familial PD cases. Although only 10% of PD cases are 

familial, recent GWAS studies have also detected a role for genetic 

variants in sporadic PD [for review see (58, 96)]. Neuropathologi- 

cally, there is loss of dopaminergic neurons in the substantia nigra 

and also Lewy bodies within surviving neurons which are com- 

posed of a-synuclein (156). However, the reduced glutathione lev- 

els, mitochondrial damage and accumulation of extracellular toxins 

seen in PD (81) also indicate astrocyte dysfunction. 

Mutations and multiplications of the SNCA gene are associated 

with familial PD and cause early disease onset. Furthermore, the 

spread of a-synuclein pathology can be used to stage the disease 

progression (24) and some studies have suggested a prion-like 

propagation of a-synuclein [for review see (35)]. This occurs not 

just from neuron to neuron but also from neuron to astrocytes (97), 



 

 

 
 

with the toll like receptor 4 (TLR4) pathway implicated in the 

uptake of a-synuclein in astrocytes (57, 138). Indeed, there are a 

plethora of animal based studies that have implicated astrocytes in 

PD pathogenesis. The gene that has been most extensively studied 

is DJ-1, which is encoded by Park-7. DJ-1 knockdown in astro- 

cytes results in decreased protection of neurons; for example, 

impaired protection against the neurotoxins rotenone (121) and 6- 

OHDA (98). In addition, its mutation alters the expression of proin- 

flammatory  mediators,  TNF-a   and  prostaglandin  E2  (PGE2), 

which may provide decreased neuroprotection to surrounding neu- 

rons (7) Interestingly, Neumann and colleagues demonstrated that 

the DJ-1 protein was up-regulated in reactive astrocytes in the 

human post-mortem Parkinsonian brain with little expression in 

intra neuronal a-synuclein inclusions (127), suggesting that astro- 

cytes may be involved in neurodegeneration associated with this 

mutation. 

LRRK2 mutations are the most common cause of familial PD 

(41) and polymorphisms in the LRRK2 locus have been associated 

with an increased risk of PD (175). Indeed the function of this pro- 

tein has been intensely studied (42, 49, 64, 115, 169). Pathogenic 

mutations produce enlarged lysosomes with reduced degradative 

capacity (72) and are linked to the accumulation of a-synuclein 

(102). 

PINK-1 and Parking have been widely implicated in mitophagy 

(91). Mutations in these genes lead to autosomal recessive PD. 

Relating to their role in astrocyte biology PINK1 expression has 

been shown to increase during stem cell differentiation and brain 

development and also to affect the development of GFAP positive 

astrocytes (38). In addition, a deficiency in PINK1 impedes astro- 

cyte proliferation through mitochondrial dysfunction and EGFR 

downregulation (39). Similarly, glial dysfunction has also been 

reported in Parkin null mice and midbrain cultures from Parkin 

mutant mice are resistant to oxidative stress (154, 155). 

 
Amyotrophic lateral sclerosis 

 

Amytrophic lateral sclerosis (ALS) is a devastating and rapidly pro- 

gressing neurodegenerative condition caused by the degeneration 

of neurons in the motor cortex, brain stem and spinal cord resulting 

in muscle paralysis and ultimately motor neuron death (85, 145). 

Most of ALS cases are sporadic, with around 10% of familial cases 

[for review see (161)]. ALS is perhaps the neurodegenerative dis- 

ease where the non-cell autonomous contribution of astrocytes to 

disease mechanisms has been best established. Early studies showed 

selective loss of the astrocyte glutamate transporter GLT-1 (143) and 

markedly reduced glutamate uptake in post-mortem ALS tissue (81). 

Accordingly, knockout of astrocytic GLT-1 leads to excitotoxicity 

and neurodegeneration in mice (141). Astrocyte pathology, 

preceding motor neuron degeneration has also been reported in 

animal models of SOD1-ALS (48). Multiple in vitro studies have 

confirmed the importance of astrocytes in ALS. For example, 

human HB9 positive motorneurons degenerate when co- 

cultured on  primary cortical astrocytes carrying the  SOD1G93A
 

mutation. This effect was specific to SOD1G93A  astrocytes as over- 

expression of wild-type SOD1 or co-culture with SOD1G93A  mouse 

embryonic fibroblasts had no effect on motorneuron cell numbers. 

Non-cell autonomous toxicity occurred even in the absence of glial 

SOD1 inclusions and was partly mediated by increased release of 

the  pro-inflammatory  cytokine  PGD2  (48).  Using  a  similar 

approach Marchetto et al reported nearly 50% motorneuron loss in 

co-cultures with primary astrocytes overexpressing mutant 

SOD1G73R.  Interestingly, the effect was motorneuron specific as 

other neuronal cell types in the dish—such as GABA1   neurons 

were not affected (113). More recent studies have extended the 

involvement of astrocytes beyond SOD1-ALS. Almad et al found 

increased Connexin 43 expression, astrocyte coupling and intracel- 

lular calcium not only in SOD1G93A  astrocytes but also in C9ORF72 

expansion carriers and sporadic cases of ALS (4); a tan- talizing 

finding that would make Connexin 43 and astrocytes a cen- tral node 

in the pathophysiological mechanisms for multiple ALS subtypes. 

From the TDP43-ALS side we know that mutations in the 

TARDBP gene—which encodes TDP-43—affect the survival of 

hiPSC-derived neurons and astrocytes (11), with increased cyto- 

plasmic levels of TDP-43 leading to over twofold increase in the 

risk of cell death in TARDBPM337V astrocytes (149). This confirms 

that the nuclear-cytoplasmic ratio of TDP-43 must be finely tuned 

not just in neurons but also in astrocytes. Interestingly, 

TARDBPM337V astrocytes had no direct effect on the survival of 

wild-type motorneurons (149), which would suggest that—unlike 

the case of SOD1—the ALS mechanisms mediated by TDP-43 

appear to be largely cell autonomous. Furthermore, mutations in 

the MAPT locus associated with Fronto-Temporal Dementia lead to 

astrocyte pathology in vitro—with hypertrophy, increased 4R-Tau 

expression and exacerbated sensitivity to oxidative damage in 

human MAPTN279K astrocytes (69). This is important because ALS 

and FTD are considered part of the same disease continuum and 

together, these data implicate astrocytes all the way from pure 

SOD1-ALS to the MAPT associated FTD spectrum. 

 
Huntington’s disease 
 

Huntington disease (HD) is caused by a trinucleotide expansion in 

the Huntingtin gene located in chromosome 4. Huntingtin (HTT) is 

ubiquitously expressed and mutant HTT has been shown to accu- 

mulate both in human neurons and astrocytes (55). Multiple mecha- 

nisms have been proposed to explain the preferential loss of striatal 

medium spiny neurons (MSN) in HD. These include glutamate 

excitotoxicity, oxidative stress, mitochondrial dysfunction and loss 

of neurotrophic factor support—for review see (63). That astrocytes 

are an integral part of these, is becoming increasingly clear. For 

example, transgenic mice, expressing mutant HTT under the GFAP 

promoter show age-dependent behavioral phenotypes, reduced 

EAAT1 expression and reduced striatal glutamate uptake—albeit 

no MSN loss (25). In the R6/2 mouse model of HD, striatal astro- 

cytes have lower K1  conductance and reduced Kir4.1 potassium 

channel expression and of these 20% display mHTT nuclear inclu- 

sions. Lower K1 conductance in astrocytes leads to higher extracel- 

lular K1  concentration and increased depolarization and excitability 

of MSN (164). This occurs before any evident signs of gliosis. 

Remarkably, restoring astrocytic Kir4.1 levels by viral delivery 

attenuated the disease phenotypes in R6/2 mice—improv- ing motor 

phenotypes and prolonging life-span (164). From another angle, loss 

of BDNF expression and neurotrophic support has also been linked 

to HD (179). BDNF is produced by both neurons and astrocytes and, 

at least in mice, expression of mHTT has been shown to impair 

astrocytic BDNF secretion (77). Furthermore, expression of mHTT 

in mouse astrocytes causes loss of wild-type 



 

 

 

 
neurons in co-cultures in vitro (152). Whether these findings hold 

true for human astrocytes and neurons remains to be investigated. 

To our knowledge only one study has explored disease phenotypes 

in human astrocytes derived from HD hiPSC lines. Juopperi et al, 

reported increased vacuolization in the cytoplasm of astrocytes 

expressing  109CAG-mHTT—compared to  control  28CAG-HTT 

cells (83). However, the significance of this finding or how this 

affects astrocytic function in HD is unclear. 

 

 
Down’s syndrome 

 

Down Syndrome (DS) is a neurodevelopmental disorder caused by 

trisomy of chromosome 21. Besides being the most common cause 

of intellectual disability, DS is also associated with a much higher 

risk of developing early onset AD. The APP locus is located in the 

chromosome 21 (21q21.3). Therefore, trisomy causes continuous 

overproduction of amyloid, leading to development of neurofibril- 

lary tangles and amyloid plaque pathology by the age of 40. By the 

age of 60, more than 60% of DS sufferers will develop dementia 

(171). 

In addition to the traditional difficulty of studying developing 

human neural cells, modeling full chromosome 21 trisomy is not 

possible in mice, which has hindered DS research. This makes 

hiPSC-technology particularly attractive for the study of DS. More- 

over, as there is a small degree of mosaicism in DS fibroblasts, it is 

possible to generate euploid and aneuploid hiPSCs clones from the 

same affected individual (168). It is also possible to generate 

euploid subclones from otherwise karyotypically stable trisomic 

hiPSC lines (109). This means that obtaining isogenic control 

lines—critical for a multilocus disorder such as DS—is relatively 

straightforward. Despite early studies implicating glial pathology— 

including reactive astrogliosis and upregulation of S100b and IL-1 

(65) research in DS has focused on neuronal dysfunction. Shi et al 

found intracellular aggregation of Ab42 and tau hyperphosphoryla- 

tion associated with increased cell death in cortical neurons derived 

from 21-trisomic hiPSCs (151), while Weick et al reported 

increased oxidative stress vulnerability and reduced ability to form 

functional synapses in these neurons (168). A study by Briggs et al 

confirmed the sensitivity of these neurons to oxidative stress but 

interestingly also found a two-fold bias in neural differentiation 

towards glial lineages—given by the number of GFAP1  cells—as 

well as increased expression of other astroglial genes including 

EAAT1, S100b and NF1A (27). Of note, the S100b genomic locus 

21q22 is also triplicated in DS and it is known that S100b overex- 

pression can cause gliosis (119) and stimulate iNOS expression 

(78). In an elegant study, Chen et al confirmed a higher expression 

of S100b and iNOS in hiPSC-derived DS-astrocytes compared to 

isogenic disomic controls. These astrocytes showed faster prolifera- 

tion rates, increased production of reactive oxygen species and NO, 

together with reduced ApoE, BDNF, Nrf2, Tsp-1 and Tsp-2 expres- 

sion, suggesting a shift from a neuroprotective/neurotrophic profile 

towards a more pro-inflammatory/neurotoxic phenotype. Accord- 

ingly, S100b knockdown or pharmacological treatment with the 

anti-inflammatory and anti-oxidant antibiotic minocycline were 

able to partially revert these phenotypes. Together, these data indi- 

cate that early glial alterations could underlie the developmental 

effects seeing in DS. 

Other neurodevelopmental disorders 
 

Rett syndrome is a rare neurodevelopmental disorder caused by 

mutations in the methyl-CpG-binding protein 2 (MeCP2) gene 

located in the X-chromosome. A DNA binding protein, MeCP2 

has been involved in transcriptional activation, transcriptional 

repression, retrotransposon silencing  and  chromatin remodeling 

[for review see (107)]. hiPSC are particularly well suited for Rett- 

syndrome modeling: X-chromosome reactivation during hiPSCs 

reprogramming followed by random inactivation during somatic 

cell differentiation means that it is possible to generate quasi- 

isogenic lines from heterozygous female carriers. Furthermore, 

because MeCP2 functions are not restricted to neurons, it is impor- 

tant to profile MeCP2 mutations in all neural cell types. Indeed, 

non-cell autonomous effects of MeCP2 mutations on dendritic mor- 

phology have been reported in mouse astrocytes (10). Similarly, 

human neurons co-cultured with hiPSC-derived astrocytes carrying 

MeCP2  mutations  are  morphologically  abnormal—showing 

reduced somas, neurite length and branching (170). Altered microtu- 

bule dynamics, increased non-directional movement of lysosomal 

vesicles has also been reported in hiPSC-derived MeCP2R294X 

astrocytes (47). These phenotypes could be recovered with Epothi- 

lone D, a microtubule stabilizing drug (47), highlighting the poten- 

tial of hiPSC-astrocyte modeling to uncover novel pharmacological 

targets for this condition. 

Alexander’s disease is an extremely rare neurodevelopmental 

condition, with only around 500 cases described to date. Symptoms 

typically appear before the age of two and include megalencephaly, 

seizures, stiffness and intellectual disability. Histopathologically, 

the disease is characterized by the presence of Rosenthal fibers in 

astrocytes—intracellular aggregates of  GFAP, HSP-27 and ab- 

crystallin [for review see (147)]. Astrocytes have been the focus of 

Alexander’s disease research since the discovery of causative domi- 

nant mutations in the GFAP gene (26), which made this condition 

the prototypical astrocytic genetic disorder. Clearly, modeling 

Alexander’s Disease in hiPSC derived astrocytes has great poten- 

tial. Especially since human astrocytes seem to show strong disease 

phenotypes, including Rosenthal-like GFAP aggregates, altered 

gene expression profile an increased production of IL-5, IL-6 and 

TNF-a (90). 
 

 
THE POWER OF HUMAN IPS CELLS TO 

MODEL NEURODEGENERATIVE 

DISEASE AND 

NEURODEVELOPMENTAL DISORDERS 
 

To date, there have been many approaches to studying CNS dis- 

eases, which include classical cell lines such as HEK293, SHY5Y 

cells and primary cultures from rodents. Another avenue of research 

has utilised whole animal models, in particular rodents 

overexpressing proteins that play key roles in the disease. This 

research has been undeniably informative but has intrinsic flaws. 

Most often the protein in question is present at much higher levels 

than would normally exist in the human brain. Furthermore, any 

non-human model of human disease is fundamentally limited; 

rodents do not develop AD, PD or DS, and this highlights crucial 

inter species differences. For these reasons it has been difficult to 

translate findings into the clinic. Most strikingly various drugs that 



 

 

 
 

showed promise in animal models have failed human trials (32). 

Therefore, there is a requirement for a model where proteins 

involved in neurodegenerative and neurodevelopmental disorders 

are studied at native levels and in human cells, thus more closely 

recreating the environment of the human brain. iPS cell technology 

can generate “vulnerable” neural subtypes from patients with the 

disease offering an unprecedented insight into cell type specific 

pathology, something that cell lines and primary cultures cannot. In 

addition, as discussed above, neuropathological mechanisms 

involve interactions between neurons and glia which cannot be 

modelled by generating neurons alone. Furthermore, there is a long 

list of interspecies differences between rodent and human astrocytes 

which underlies the need for authentic human astrocytes for appro- 

priate disease modeling [for review see (34)]: (i) Human astrocytes 

are more complex than their rodent counterparts (128). (ii) Human 

astrocytes display twice as many processes as their rodent counter- 

parts (176). (iii) Two main astrocytes—proteoplasmic and fibrous- 

types are found in the mouse brain while two additional subtypes 

have been identified in primates (40). (iv) This structural complex- 

ity is also reflected in functional properties: human astrocytes prop- 

agate calcium waves more rapidly than rodent counterparts and 

have a greater response to glutamate (158, 177). (v) There are strik- 

ing differences in their transcriptomic profiles, with over 600 genes 

expressed in human astrocytes that are not active in rodent astro- 

cytes (176). The potential of iPSC-derived astrocytes for disease 

modeling is illustrated in Table 2, which summarizes pathological 

mechanisms and disease phenotypes uncovered in these cells. 
 

 
ASTROCYTE DIFFERENTIATION— 

TAKING CUES FROM THE EMBRYO 
 

Due to the significance of astrocytes in the CNS, their efficient gen- 

eration from human pluripotent stem cells (hPSCs), is essential for 

disease modelling. To achieve the differentiation of hPSCs into the 

vast array of cell types of the CNS, researchers have looked to 

embryonic development to inform us of the cues required (105). In 

the embryo, the processes of cellular differentiation and regional 

patterning are tightly regulated and their correct specification is key 

to generate a correctly functioning CNS. These must be recapitu- 

lated in vitro with hPSCs to accurately generate the specific func- 

tional cell populations. There are certain crucial requirements of 

hPSC differentiation protocols: (i) Acquisition of neural progenitor 

fate and loss of pluripotency; (ii) Regional patterning of the progen- 

itors, relating to the positional identity of the resulting mature cell 

population in the CNS; (iii) Successful generation the type of cell 

required; (iv) Characterization of the resulting cells to confirm true 

identity and function. Here we will discuss how these principles are 

being met in relation to the generation of astrocytes from hPSCs. 

 
The acquisition of neural identity 

 

The first event of cellular specialization in the embryo is differ- 

entiation of the three embryonic germ layers, mesoderm, endo- 

derm and ectoderm (106). The ectoderm gives rise to the 

neuroepithelium, which is composed of the neural progenitors 

that give rise to all specialized cells of the CNS. These early 

developmental events are recapitulated when differentiating 

hPSCs (114, 166). Many neural differentiation protocols utilize 

an Embryoid Body (EB) stage in the protocol—the EB is the 

established method to recapitulate and model early embryonic 

development using mouse or human Embryonic Stem Cells 

(ESCs) (114, 166). Using mechanical or enzymatic dissociation 

ESCs are seeded in 3D culture and form non-adherent spheres. 

Removing  the  factors required for  maintaining pluripotency, 

LIF for mouse and FGF signaling for human, results in sponta- 

neous differentiation of the three embryonic germ layers and 

subsequently their more specialized derivatives (166). Differen- 

tiation of hPSCs can also be achieved as a monolayer of adher- 

ent cells, and there has been somewhat of a division in the field 

between  EB-based  vs.  monolayer  differentiation  (Table  1). 

Some would argue that differentiation of hPSCs as a monolayer 

may be easier to “program” as by its nature EB based differen- 

tiation recapitulates many of the endogenous signaling pathways 

of the early embryo. For directed differentiation of a single 

desired cell type these signaling pathways may yield undesirable 

effects generating unwanted cell types. However, EB based dif- 

ferentiation is still used very successfully by many labs as a 

basis for hPSC differentiation (Table 1). The field has also seen 

the advent of chemically defined media where every component 

is known and characterized, essentially providing a ‘blank can- 

vas’  for  unbiased  cell  differentiation  that  can  be  directed 

towards a desired fate (165). 

In the early embryo BMP and Nodal signaling inhibit neural dif- 

ferentiation (106). Nodal and BMP signal transduction occurs via 

SMAD proteins, and inhibition of SMADs has been adopted by the 

stem cell field to enable differentiation of hPSCs into neural line- 

ages (166, 167). Chambers and colleagues first published what they 

termed “dual SMAD inhibition,” using the small molecule inhibitor 

SB431542 to block Nodal signaling, and a recombinant form of the 

embryonically expressed protein Noggin to inhibit BMP signaling, 

generating neural progenitors from hPSCs with high efficiency (33). 

More recent protocols replace Noggin by small molecule inhibitors 

of BMP signaling, most commonly dorsomorphin or LDN193189 

(94, 146, 178). In fact small molecules have been uni- versally 

adopted for the directed differentiation of hPSCs as they 

demonstrate potent efficacy and are more cost effective compared 

to recombinant proteins (130). Dual SMAD inhibition is now the 

“gold standard” for the generation of neural progenitors from hPSCs 

and has been used to produce a diverse range of both neu- rons and 

astrocytes (105). 

Once neural progenitors are specified, it is advantageous that 

these are expandable in culture. In vivo, embryonic neural progen- 

itors are required to be highly proliferative to enable generation of 

the large numbers of neural cells within the adult CNS. Similarly 

in vitro this means that only a small starting number of hPSCs are 

required to generate large numbers of mature cells. In the devel- 

oping embryonic CNS progenitor populations proliferate in 

response to first FGF and later to EGF signaling (29, 60). There- 

fore, the addition of these mitogens to hPSC derived neural pro- 

genitors to drive expansion has become commonplace (46, 90, 

93, 105). However, some hPSC differentiation protocols do not 

require the addition of mitogens for proliferation of the neural 

progenitors, and it is presumed that in these systems the progeni- 

tors produce autocrine signals to induce proliferation (33, 94). 

However, addition of exogenous mitogens can enable hPSC 

derived neural progenitors to proliferate in vitro culture for longer 

periods (46, 90, 93, 105) (Table 1). 



 

 

Table 1.  Astrocyte differentiation from human  induced  pluripotent stem cells. 
 

Brain region Patterning 

factors 

Astrogliogenic 

factors 

Initial 

differentiation 

Method of 

differentiation 

Timings required 

from hPSC/yield 

Markers 

determined 

References 

Various FGF8A, None EB EB are plated  onto  culture  sur- 180d S100b/GFAP/ Krencik et al, 2011 

 RA   face  & neural  rosettes >90% GFAP, S100b Aldh1L1  
 SHH   undergo physical  selection &    
    expanded as nonadherent    
    spheres    
N/A None BMP2 EB EB cultured  in chemically 67d S100b/GFAP/ Gupta  et al, 2011  (67) 

  BMP4  defined  media.  At day 8 neu- >95% GFAP AQP4/EAAT1  
  LIF  ral progenitors then  plated    
    onto  culture  surface and    
    expanded (1EGF1FGF21    
    Heparin).    
Ventral spinal RA LIF Monolayer Dual SMAD inhibition on mono- >56d Vimentin/ Serio et al, 2013  (149) 

cord Purmorphamine CNTF  layer hPSCs.  Neural progeni- >90% S100b, GFAP S100b/GFAP  
    tors  expanded as  nonadherent    
    neurospheres (1EGF1LIF fol-    
    lowed  by 1EGF1FGF).    
Ventral spinal RA CNTF Monolayer Dual SMAD inhibition on mono- 80–100d S100b/GFAP Roybon  et al, 2013  (146) 

cord SHH FBS  layer hPSCs.  Neural progeni- 

tors  expanded in commercial 

rv100%  S100b CX43/Aldolase-C/ 

EAAT2 
 

    media    
N/A None BMP2 Monolayer Neural progenitors differentiated 52d GFAP/S100b/ Majumder et al, 2013  (112) 

  LIF  from hPSCs  as an adherent Majority GFAP (not quantified) EAAT1/ALDH1L1  
  Trichostatin  A  monolayer.    
  Aza-cytidine      
N/A None BMP4 EB!Monolayer EB are plated  onto  culture  sur- 

face  & neural  rosettes 

42d 

60%  S100b 

GFAP. Vimentin, S100b Chen  et al, 2014  (36) 

    undergo physical  selection &    
    expanded as nonadherent    
    spheres    
N/A CHIR99021 

SHH 

LIF 

FBS 

EB!Monolayer Dual SMAD inhibition during EB 

formation. Neural rosettes  iso- 

80d 

100% 

Vimentin/S100b/ 

GFAP/AQP4/EAAT2 

Palm et al, 2015  (129) 

    lated  as  neurospheres then    
    plated  onto  culture  surface    
    and expanded    
    (1EGF1FGF21LIF)    
N/A None None EB!Monolayer Dual SMAD inhibition during EB 

formation. Neural progenitors 

then  plated  onto  culture  sur- 

180d 

rv90%  GFAP, S100b 

GFAP/S100b Kondo et al, 2016  (90) 

face  and expanded 

(1EGF1FGF21Heparin) 
 

Abbreviations: d 5 days;  RA 5 retinoic  acid. 



 

 

 
 

 
 

Figure 1.  Differentiation and  patterning in the  developing CNS.  The 

CNS  develops  from   the   neural   tube   which   is  made  up  of  neural 

progenitor  cells.   In  the   early   embryo  neural   progenitors  can   only 

generate neurons and  only later  become capable of differentiating into 

glial  cells,   including  astrocytes. This  temporal  fate   switch  is 

recapitulated  in  vitro  in  both  ex  vivo  neural  progenitor cultures and 

also  in  the   differentiation  of  hPSCs.   Cells  within  the   CNS  acquire 

regional   identity   according  to   gradients  of  morphogens expressed 

across the  neural  tube.  The  rostrocaudal axis  is set  up  by a gradient 

of  retinoic  acid  (RA), which  is  highest where the  future   spinal  cord 

will form.  The  dorsoventral axis  is  set   up  by  opposing  gradients  of 

ventral  SHH signaling  and  dorsal  BMP  signaling.  These axes  facilitate 

the  correct spatial  patterning of the  developing CNS. 

 
Astrogliogenesis 

 

Astrogliogenesis refers to the generation of glial cells, in particular 

astrocytes, either in vivo or in vitro. In the embryonic brain neurons 

and astrocytes differentiate from the same neural progenitor pool. 

However, there is a distinct temporal shift from neuronal to glial 

fate acquisition (120) (Figure 1); initially neural progenitors are 

monopotent, generating neurons and only later become bipotent, 

differentiating into both neurons and glial cells, including astro- 

cytes (Figure 1). This temporal control is also recapitulated in vitro, 

in neural progenitor cultures ex vivo and in hPSC differentiation 

(93, 105), suggesting that fundamental intrinsic mechanisms con- 

trol the switch. The identification of a single specific cue that indu- 

ces the neuron-to-glial fate switch remains elusive, but research has 

uncovered a number of essential signaling pathways (120). In rela- 

tion to hPSC differentiation, astrocytes will differentiate from hPSC 

derived neural progenitors by ‘default’ after elongated peri- ods in 

culture (90, 93, 105). For a cell population highly enriched for 

astrocyte culture periods of over 180 days are required (90, 93). 

Therefore, factors to promote the glial fate switch and astrocyte dif- 

ferentiation are frequently added to protocols to reduce culture 

times and increase the yield of astrocytes. A classic approach for 

generating astrocytes from ex vivo neural progenitors was to add 

animal serum to the culture media (137). This approach has also 

been used successfully with hPSC derived neural progenitors (100, 

129, 146). However, an undefined component like animal serum 

could lead to lack of reproducibility and other unwanted effects on 

the neural cells, particularly when using hPSC derived neural cells 

for disease modelling. Therefore, researchers have looked to astro- 

gliogenesis in the embryo for candidate molecules and signaling 

pathways that could be utilized to promote the generation of astro- 

cytes (105). 

In particular the Interleukin-6 (IL-6) family of cytokines including 

Ciliary Neurotrophic Factor (CNTF), Leukemia Inhibitory Factor 

(LIF) and Cardiotrophin (CT-1) promote the generation of astrocytes 

via induction of downstream JAK-STAT signaling (21, 71). Acti- 

vated JAK (Janus Kinases) tyrosine kinases in turn activate Signal 

Transducers and Activators of Transcription (STAT) proteins which 

function as transcriptional activators at astrocyte specific loci, such 

as GFAP and S100b (21, 71). LIF and CNTF are frequently used in 

the generation of astrocytes from hPSCs (149) (Table 1). One study 

by Serio and colleagues generated astrocytes from hiPSCs as part of 

an in vitro model of CNS proteinopathy. They achieved over 91% 

GFAP positive cells from multiple hiPSC lines using an approach of 

extended expansion of hiPSC derived neural progenitors in the pres- 

ence of EGF and LIF, followed by terminal astrocytic differentiation 

with CNTF. The period of expansion required was much reduced 

compared to na€ıve generation (93, 149). 

Clearly the IL-6 family of cytokines and subsequent JAK-STAT 

signaling is crucial to initiation of astro gliogenesis. However high 

levels of JAK-STAT signaling alone cannot override the program 

for the initial generation of only neurons (21, 71, 75), indicating 

that the neuron to astrocyte switch is controlled by multiple mecha- 

nisms. BMP and NOTCH signaling also synergistically promote 

astrocyte differentiation, but only in the presence of active IL6/ 

JAK-STATs (62, 75, 84, 124, 125). BMP signaling is context spe- 

cific; in early CNS development it promotes the generation of neu- 

rons and only in the later gliogenic period do BMPs promote the 

differentiation of astrocytes (99, 108, 159). BMP downstream sig- 

nal  transducers, the  SMAD  proteins  interact  with  the  CREB- 



 

 

 
 

Table 2.  Disease Phenotypes in hiPSC-derived  astrocytes. 
 

Disease Gene  Findings  References 
 

Alexander’s 

Disease 

 
GFAP GFAP aggregates (Rosenthal like fibers) 

Compromised cell adhesion 

 
"Il-5 "Il-

6 "TNF-

/ 

"mTOR  signaling 

 
Kondo et al, 2016  (90) 

ALS  TARDBP
M337V      

"Cell toxicity 

#Astrocyte survival 

TARDBP
M337V     

"Cytoplasmic TDP43 levels 

# Astrocyte survival 

Barmada et al, 2014  (11) 

Cell autonomous effect  Serio et al, 2013  (149) 

SOD1 

C90RF72 

Sporadic 

"CRX43 expression 

"Astrocyte Coupling? 

Almad et al, 2016  (4) 

Alzheimer’s APP 
V717I 

Single-Cell secretion profiling Significant  astrocytic Ab secretion   Liao et al, 2016  (101) 

Disease PSEN
M146L 

ApoE4
1/1

 

Aberrant  morphology 

Astrocytic  atrophy 

#S100b #EEAT1 #GS 

Conditioned medium 

"CCL5, "MIP-1b 

#IL-8 #MCP-1 

Jones et al, 2017  (82) 

Down’s Syndrome   21 Trisomy  " S100b astroglia  differentiation 

"Proliferation 

#Nrf2 #BDNF #ApoE 

" iNOS "ROS 

 
FTD  MAPT

N279K  
Enlarged  astrocytes 

"Oxidative damage sensitivity 

"Protein degradation 

Conditioned medium 

#Neurogenesis 

#Neurite  outgrowth 

#Neuron  maturation 

#Synapse formation 

"S100b 

"ANXA2 

"NPY 

"MAOB 

Chen  et al, 2014  (36) 

 
 
 

 
Hallman et al, 2017  (69) 

HD  HTT Astrocyte Vacuolization  Juopperi et al, 2012  (83) 

Rett Syndrome  MeCP2
R294

* " Microtubule growth 

" Microtubule transport 

" Non-directional  lysosomal movement 

#Acetylated /-tubulin Dele'pine et al, 2016  (47) 

MeCP2
V247

* 

MeCP2
R294

* 

MeCP2
R306C 

Co-culture 

#Neurite  length 

#Neurite  number 

#EPSCs 

Conditioned medium 

#Neurite  length 

#Neurite  number 

#EPSCs 

Williams et al, 2014  (170) 

SMA SMN1  "Catalase 

#ROS levels 

SMN1  "GFAP 

#Astrocytic  processes 

"Resting Ca
21  

levels 

"# Respiration 

"#MnSOD, Nrf2 

#GDNF 

#ATP-induced  Ca
21  

response 

Patitucci  et al, 2016  (132) 

McGivern  et al, 2013  (116) 

X-linked ALD  ABCD1 "Il-6 Baarine  et al, 2015(8) 
 

Abbreviations: ALS 5 amyotrophic lateral sclerosis; FTD 5 frontotemporal dementia; SMA 5 spinal muscle atrophy;  ALD 5 adrenoleukodystrophy. 

 
 

binding protein (CBP)/p300 transcriptional activator complex, acti- 

vating genes containing a CBP binding site in their promoter region. 

Nakashima et al, demonstrated that CBP/p300 further com- plexes 

with the STAT protein STAT3, downstream of the IL-6 cytokine 

pathway, resulting in direct activation of astrocyte genes including 

GFAP (124). Accordingly the pro-astrocytic properties of animal 

sera are attributed to BMP2 and BMP4 (79). In terms of hPSC 

differentiation, BMPs are often used together with the IL-6 family 

cytokines to synergistically enhance astrocyte generation as they do 

in the developing CNS (67). Gupta and colleagues demon- strated 



 

 

that co-application of BMP4 and LIF significantly increased the 

generation of functional astrocytes from human ESCs (67). In this 

study, a combination of BMP4 and LIF generated over 95% GFAP 

positive cells in 67 days. Similar approaches have now been applied 

to hiPSCs for the highly efficient generation of astrocytes for 

disease modeling (16). 

Notch signaling is another context specific regulator of astroglio- 

genesis; during neurogenesis Notch signaling acts to maintain the 

neural progenitor pool. Like BMP signaling, Notch is only able 

to induce astrogliogenesis if JAK-STAT signaling is active (62, 

84). Notch signaling leads to transcription of the Hairy Enhancer 

of Split (Hes) gene and the Hes protein then binds to active JAK 

and STAT proteins and forms complexes which also act as tran- 

scriptional activators (62, 84). Notch activation increases expres- 

sion of GFAP as the GFAP promoter contains Notch responsive 

elements (62). 

From our knowledge of the role of Notch signaling in astro glio- 

genesis it is logical that the Notch pathway could be exploited for 

astrocyte generation from hPSCs (37, 126). Accordingly the inhibi- 

tion of Notch signaling is commonly used to increase the efficiency 

of neuronal differentiation from hPSCs via use of the g-secretase 

inhibitor N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenyl-glycine 



 

 

 
 

t-butyl ester (DAPT) (20, 22, 94). However, the multiple roles of 

Notch signaling in the development of the CNS make this a diffi- 

cult pathway to target. One study by Emdad et al, attempted to dif- 

ferentiate astrocytes from hPSCs by stimulating Notch signaling in 

combination with CNTF but saw no pro-astrocytic effect on gene 

expression (51). However, this is a single study and this result is in 

direct disagreement with work on ex vivo rat embryonic neural pre- 

cursors, where Notch activation in the presence of CNTF increased 

generation of astrocytes compared to CNTF alone (122). This may 

be down to the different methods of Notch activation used in the 

two studies, species differences, or other differences in culture con- 

ditions, but the targeting of Notch signaling for the generation of 

human astrocytes does warrant more investigation. 

As with all cellular differentiation, the generation of astrocytes is 

under the restraint of epigenetic remodelling. The temporal fate 

shift of neural progenitors results from changes at neuronal vs glial 

gene loci, causing downregulation of pro-neuronal genes and 

upregulation of astrocyte genes (21, 56, 71, 75). This is ultimately 

achieved by epigenetic changes in parallel and in conjunction with 

the discussed signaling pathways. DNA methylation blocks the 

binding of STAT proteins and the activation of astrocytic genes 

during early CNS development; conversely global inhibition of 

DNA methylation enables premature astrocyte differentiation via 

JAK-STAT signaling activating the demethylated and therefore 

permissive astrocytic gene loci (21, 56, 71, 75). Notch signaling 

also acts directly on the epigenetic status of multiple astrocytic gene 

promoters; Namihira and colleagues demonstrated that active Notch 

signaling induces demethylation of the promoter via binding of the 

NFIA transcription factor (126). NFIA acts by protecting the 

promoter from  methylation  by  DNA  Methyltransferase 1 

(DNMT1) and the resulting demethylation enables transcriptional 

activators, such as the STATs, to bind to these promoters and 

induce gene expression (126). For this reason activation of Notch 

signaling is also a prerequisite for the ability of JAK-STAT pro- 

teins to induce astrocytic gene expression, but it cannot promote 

astrocyte differentiation without JAK-STAT signaling (37, 126). 

An alternative approach to generate astrocytes would be to 

directly modulate the epigenetic status of hPSC or the hPSC derived 

neural progenitors. Inducing a “glial-permissive” epigenetic 

landscape could prematurely induce astrogliogenesis, and further 

reduce required culture time. One study by Majumber et al used 

the DNA methyltransferase inhibitor Aza cytidine, and the histone 

deacetylase inhibitor Trichostatin-A, in combination with BMP2 

and LIF on hPSC derived neural progenitors (112). They reported 

reduced methylation and increased acetylation of astrocytic gene 

promoters, including that of GFAP and S100b compared to 

untreated controls, and correspondingly the premature appearance 

of astrocytes (112). In support of this pharmacological epigenetic 

modification has shown comparable effects on rodent neural pro- 

genitors in vivo and in vitro (150, 160). Off target effects prevent 

these approaches from being adopted more widely. Indeed, such 

treatments lead to widespread cell death (112) and may have an 

impact on any disease phenotype. 

It is clear that as in the developing brain astrocytes differentiate 

in vitro from hPSC derived neural progenitors following a default 

developmental timeline. Studies that have achieved high astrocyte 

yields without the addition of extrinsic factors tend to require much 

longer time periods in culture (90, 93) (Table 1). In vivo there is a 

requirement for the presence of differentiating neurons to induce 

astrocyte differentiation, as neurons are the source of Notch ligands 

(37, 126) and CT-1—a member of the IL-6 family—which induces 

JAK-STAT activation (12). This may explain in part why neuro- 

genesis and astrogliogenesis happen in a sequential manner. There- 

fore most popular strategies to decrease differentiation time in vitro 

and increase efficiency of astrocyte differentiation are to target 

these pathways required in the embryo, to an extent substituting for 

the required presence of neurons (Table 1 and references within). 

 
Regional identity and astrocyte function 
 

Another requirement for cellular specialization within the CNS is 

acquisition of regional identity. In the embryo, the neuroepithelium 

starts as a plate-like structure which then folds and fuses to forming 

the neural tube. The neural tube develops both rostrocaudal and dor- 

soventral axes, which provide the outline for the spatial patterning 

required to generate the different regions of the mature CNS (Figure 

1). The axes are set up by gradients of specific morphogens. The 

rostrocaudal axis is set up by a gradient of retinoid signaling via 

Retinoic Acid (RA), highest in the caudal extreme where the future 

spinal cord will form (162) (Figure 1). The dorsoventral axis is 

regulated by Sonic Hedgehog (SHH), expressed ventrally along the 

length of the neural tube, and BMP signaling, highest at the dorsal 

side of the neural tube (162) (Figure 1). Both neurons and astrocytes 

possess regional specific identity and consequently express region 

specific markers (31, 93). Regional identity is key to function, phe- 

notype and even the morphology of neural cells. The importance of 

regional identity to neuronal function is historically well docu- 

mented, but only more recently it has been recognized that the 

regionalization of astrocytes is similarly integral to their function 

(31, 44, 93). This relates to their effective support of the specific 

neuronal populations within that region (13, 31, 44, 92, 93, 95, 136, 

176). For example, astrocytes in the cortex cannot provide the 

trophic support required by midbrain neurons (44). Therefore, when 

generating astrocytes from hPSCs for in vitro study or transplanta- 

tion, we must accurately assign this regional identity. Researchers 

are now able to generate a vast array of regionally patterned neuro- 

nal cell types, for example, cortical glutamatergic, ventral forebrain 

cholinergic, ventral midbrain dopaminergic and cholinergic motor 

neurons (48, 93, 94, 105, 151). The same principles are now being 

combined with our knowledge of astrocyte development, to gener- 

ate regionally patterned astrocytes (see Table 2). 

This is achieved by treatment with developmental molecules, in 

particular the aforementioned, RA, BMPs and SHH, thus recapitu- 

lating signaling in the developing CNS (105) (Table 1). A seminal 

study by Krencik et al, demonstrated that regionalized astrocytes 

and neurons could be generated from the same pool of hPSC 

derived neural progenitors. Krencik and colleagues demonstrated a 

universal protocol that could be ‘fine-tuned’ by the addition of such 

morphogens to the hPSC derived neural progenitor pool (93). The 

progenitors retained this patterning even after the 180 day expan- 

sion period required for the appearance of astrocytes (93). These 

astrocytes correctly recapitulated regional identities spanning the 

rostrocaudal and dorsoventral axes of the CNS (93). For example, 

addition of SHH resulted in expression of the ventral forebrain tran- 

scription factor NKX2.1 in S100b1  astrocytes, whereas addition of 

RA resulted in expression of caudal transcription factor HOXB4 

(93). Roybon et al used a similar approach to successfully generate 

ventral spinal cord astrocytes by combined addition of SHH and 



 

 

 
 

RA (146). These findings agree with the regional astrocytic pheno- 

types seen in vivo and highlight how crucial generating regional- 

specific astrocytes is for accurate disease modeling (31, 44, 176). 

 
STANDARDIZATION AND FUNCTIONAL 

CHARACTERIZATION 
 

A major issue when generating any cell type from hPSCs is suitable 

phenotypic and functional characterization. It is absolutely crucial 

that the stem cell field adopts a standardized and multifaceted strat- 

egy to characterize hPSC derived cells, because this will enable 

direct comparison of derivation methods and the resulting cells. 

One cannot model a disease without the bona fide cell type that 

the specific disease affects in vivo, and clearly these cells must be 

functional if we are to determine how function is affected in dis- 

ease. In terms of neural differentiation, we are starting to see a set 

of standard characterization methods emerge. Here we will discuss 

those required for characterization of hPSC derived astrocytes, and 

how this may impact the field. 

As discussed astrocytes are a very heterogeneous cell type and 

this diversity extends to their morphology and expression of what 

are classed as “typical” astrocyte proteins such as GFAP or S100b 

(176). If we just compare the morphology of the two crude astro- 

cytic subclasses, they are remarkably different. When we think of 

the classical “star-like” astrocytes these are in fact fibrous astro- 

cytes. In comparison protoplasmic astrocytes have a more irregular, 

‘bushy’ appearance, extending long sheet-like processes (117, 118, 

128). The morphology of astrocytes also changes depending on 

their proliferative or reactive status (14, 128). Furthermore, astro- 

cytes differentially express GFAP, which is traditionally considered 

and still used by many as the first line astrocytic marker. Protoplas- 

mic astrocytes generally express GFAP at much lower levels than 

fibrous astrocytes and high levels of GFAP are also a feature of 

reactive astrocytes (118, 128). This heterogeneity therefore makes 

the identification of astrocytes both in vivo and in vitro very diffi- 

cult and this also translates identifying astrocytes generated from 

hPSCs. What is the best strategy to confirm and evaluate the gener- 

ation of astrocytes form hPSCs? 

A seminal study by Cahoy et al has contributed a range of novel 

astrocyte specific markers. Transcriptome analysis compared astro- 

cytes, neurons and oligodendrocytes from early vs. late postnatal 

mouse forebrain (28). Two markers in particular, ALDH1L1 and 

Aldolase-C were shown to be astrocyte specific (28). Antibodies for 

detection of these markers are commercially available and have been 

used for the identification of astrocytes, including hPSC derived 

astrocytes (28, 52, 118) (Table 1). In addition the same study con- 

firmed astrocyte specific expression of Aquaporin-4 (AQP4), EAAT1 

(SLC1A3 or GLAST) and GFAP, along with S100b, which was used 

to identify astrocytes and oligodendrocytes (28). Therefore, we now 

have a library of confirmed astrocytic markers that can be used in 

combination with cell morphology to better identify true astrocytes 

and distinguish them from other glial cell types. In addition these 

astrocytic markers can be used in combination with classical regional 

CNS markers to establish their regional identity (93). 

However, confirmation of marker expression alone provides no 

information about astrocyte function. Particularly for disease mod- 

eling, derivation of astrocytes from hPSCs requires functional vali- 

dation. This is somewhat difficult because we are still learning so 

much about astrocytes in vivo and their many functions in the brain 

(176). One of the main roles of astrocytes in vivo is to respond 

appropriately to neuronal signals including neurotransmitters such 

as glutamate or ATP, calcium ions and electrical signals (13). 

Astrocytic response can be measured by patch clamping individual 

astrocytes. However, more commonly hPSC-derived astrocytes are 

assessed by calcium imaging. These stimuli result in changes in 

intracellular calcium stores, fluorescent calcium dyes can be visual- 

ized and quantified in many cells simultaneously (92). This high 

throughout approach is advantageous when evaluating a large pop- 

ulation of astrocytes derived from hPSCs, and yields a more repre- 

sentative population picture. 

Glutamate uptake is another critical function of astrocytes, to 

reduce excitotoxicity from neuronal glutamate (92). As discussed 

reduced glutamate uptake is a feature of disease of the CNS, where 

it results in neuronal dysfunction and death (25, 63). In vitro gluta- 

mate uptake is typically measured by analysis of glutamate levels 

in cell media, which is now an easily accessible technique using 

commercially available kits. 

Another characteristic of astrocytes is their trophic role in the 

CNS. Astrocytes secrete neurotrophic factors such as GDNF (104) 

and Clusterin (44), which promote neuronal survival. Release of 

such molecules can be detected by multiple methods, and has been 

demonstrated in hPSC-derived astrocytes (173). Alternatively, neu- 

rotrophic function can be evaluated in co-culture with neurons, or 

with ‘astrocyte conditioned media’ by examining their affect on 

neurons (44, 92, 173). These methods enable in vitro dissection of 

the supportive role of astrocytes and how this may be altered in the 

disease state. 

One final aspect of astrocyte function is their response to injury, 

disease and signals from the immune system, which can all result 

in a reactive phenotype. Reactive astrocytes are key to disease in 

the CNS and have been shown to have both beneficial effects or to 

exacerbate the disease state. Therefore, we must be able to induce a 

reactive phenotype in vitro from hPSC derived astrocytes. This can 

influence all the aspects of astrocyte function we have discussed, 

but also has a key set of specific indicators. Induction can be 

achieved by many methods, including the addition of inflammatory 

cytokines (146) or introduction of toxins such as bacterial Lipo- 

polysaccharides (66). First, we must be able to identify reactive 

astrocytes and, one feature is upregulation of GFAP as well as 

changes in astrocyte morphology. In addition reactive astrocytes 

demonstrate expression of specific markers such as intercellular 

adhesion molecule-1 (ICAM-1) (3, 5) or LCN2 (174), and the 

secretion of inflammatory cytokines such as IL-6 (146). Roybon 

and colleagues successfully induced and identified reactive astro- 

cytes from hPSC derived cultures by exposing astrocytes to inflam- 

matory  cytokines,  which  induced  markers  of  reactivity,  and 

resulted in astrocytic secretion of IL-6 (146). 

It is crucial that detailed identification and characterization crite- 

ria are applied to hPSC derived astrocytes. Together with the stand- 

ardization of protocols this will to allow proper comparison across 

disease modeling studies, and provide a framework for the possible 

therapeutic application of these cells. 
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150.  Shakèd M, Weissm€uller K, Svoboda H, Hortschansky P, Nishino N, 

Wo€lfl S, Tucker KL (2008) Histone deacetylases control neurogenesis 

in embryonic brain by inhibition of BMP2/4 signaling. PLoS One 3: 

e2668. 

151.  Shi Y, Kirwan P, Smith J, MacLean G, Orkin SH, Livesey FJ (2012) 

A human stem cell model of early alzheimer’s disease pathology in 

down syndrome. Sci Transl Med 4:124ra29–124ra29. 

152.  Shin J-Y, Fang Z-H, Yu Z-X, Wang C-E, Li S-H, Li X-J (2005) 

Expression of mutant huntingtin in glial cells contributes to neuronal 

excitotoxicity. J Cell Biol 171:1001–1012. 

153.  Simpson JE, Ince PG, Haynes LJ, Theaker R, Gelsthorpe C, Baxter L 

et al (2010) Population variation in oxidative stress and astrocyte 

DNA damage in relation to Alzheimer-type pathology in the ageing 

brain. Neuropathol Appl Neurobiol 36:25–40. 

154.  Solano RM, Casarejos MJ, Men'endez-Cuervo J, Rodriguez-Navarro 

JA, Garc'ıa de Y'ebenes J, Mena MA (2008) Glial dysfunction in 

parkin null mice: effects of aging. J Neurosci 28:598–611. 

155.  Solano RM, Men'endez J, Casarejos MJ, Rodriguez-Navarro JA, 

Garcia de Yebenes J, Mena MA (2006) Midbrain neuronal cultures 

from parkin mutant mice are resistant to nitric oxide-induced toxicity. 

Neuropharmacology 51:327–340. 

156.  Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, 

Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839– 

840. 

157.  Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, 

Enghild J, Salvesen GS, Roses AD (1993) Apolipoprotein E: high- 

avidity binding to beta-amyloid and increased frequency of type 4 

allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci 90: 

1977–1981. 

158.  Sun W, McConnell E, Pare JF, Xu Q, Chen M, Peng W et al (2013) 

Glutamate-dependent neuroglial calcium signaling differs between 

young and adult brain. Science 339:197–200. 

159.  Sun Y, Nadal-Vicens M, Misono S, Lin MZ, Zubiaga A, Hua X et al 

(2001) Neurogenin promotes neurogenesis and inhibits glial 

differentiation by independent mechanisms. Cell 104:365–376. 

160.  Takizawa T, Nakashima K, Namihira M, Ochiai W, Uemura A, 

Yanagisawa M et al (2001) DNA methylation is a critical cell- 

intrinsic determinant of astrocyte differentiation in the fetal brain. Dev 

Cell 1:749–758. 



 

 

 
 

161.  Taylor JP, Brown RH, Cleveland DW (2016) Decoding ALS: from 

genes to mechanism. Nature 539:197–206. 

162.  Temple S (2001) The development of neural stem cells. Nature 414: 

112–117. 

163.  Thal DR, Schultz C, Dehghani F, Yamaguchi H, Braak H, Braak E 

(2000) Amyloid beta-protein (Abeta)-containing astrocytes are 

located preferentially near N-terminal-truncated Abeta deposits in the 

human entorhinal cortex. Acta Neuropathol 100:608–617. 

164.  Tong X, Ao Y, Faas GC, Nwaobi SE, Xu J, Haustein MD et al 

(2014) Astrocyte Kir4.1 ion channel deficits contribute to neuronal 

dysfunction in Huntington’s disease model mice. Nat Neurosci 17: 

694–703. 

165.  Vallier L, Pedersen R (2007) Current Protocols in Stem Cell Biology, 

Vol. 448, pp. 191–1D.4.7. Hoboken, NJ, USA: Wiley. 

166.  Vallier L, Pedersen RA (2005) Human embryonic stem cells: an in 

vitro model to study mechanisms controlling pluripotency in early 

mammalian development. Stem Cells Rev 1:119–130. 

167.  Vallier L, Touboul T, Chng Z, Brimpari M, Hannan N, Millan E et al 

(2009) Early cell fate decisions of human embryonic stem cells and 

mouse epiblast stem cells are controlled by the same signalling 

pathways. PLoS One 4:e6082. 

168.  Weick JP, Held DL, Bonadurer GF, Doers ME, Liu Y, Maguire C 

et al (2013) Deficits in human trisomy 21 iPSCs and neurons. Proc 

Natl Acad Sci USA 110:9962–9967. 

169.  West AB, Moore DJ, Biskup S, Bugayenko A, Smith WW, Ross CA 

et al (2005) From the cover: Parkinson’s disease-associated mutations 

in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl 

Acad Sci USA 102:16842–16847. 

170.  Williams EC, Zhong X, Mohamed A, Li R, Liu Y, Dong Q et al 

(2014) Mutant astrocytes differentiated from Rett syndrome patients- 

specific iPSCs have adverse effects on wild-type neurons. Hum Mol 

Genet 23:2968–2980. 

171.  Wiseman FK, Al-Janabi T, Hardy J, Karmiloff-Smith A, Nizetic D, 

Tybulewicz VLJ et al (2015) A genetic cause of Alzheimer disease: 

mechanistic insights from Down syndrome. Nat Rev Neurosci 16: 

564–574. 

172.  Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F et al 

(2003) Adult mouse astrocytes degrade amyloid-[beta] in vitro and in 

situ. Nat Med 9:453–457. 

173.  Yamamizu K, Iwasaki M, Takakubo H, Sakamoto T, Ikuno T, 

Miyoshi M et al (2017) In vitro modeling of blood-brain barrier with 

human iPSC-derived endothelial cells, pericytes, neurons, and 

astrocytes via notch signaling. Stem Cell Rep 8:634–647. 

174.  Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres 

BA (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32: 

6391–6410. 

175.  Zhang P, Wang Q, Jiao F, Yan J, Chen L, He F et al (2016) 

Association of LRRK2 R1628P variant with Parkinson’s disease in 

Ethnic Han-Chinese and subgroup population. Sci Rep 6:35171. 

176.  Zhang Y, Barres BA (2010) Astrocyte heterogeneity: an 

underappreciated topic in neurobiology. Curr Opin Neurobiol 20: 

588–594. 

177.  Zhang Y, Sloan SA, Clarke LE, Caneda C, Plaza CA, Blumenthal PD 

et al (2016) Purification and characterization of progenitor and mature 

human astrocytes reveals transcriptional and functional differences 

with mouse. Neuron 89:37–53. 

178.  Zhou J, Su P, Li D, Tsang S, Duan E, Wang F (2010) High-efficiency 

induction of neural conversion in human ESCs and human induced 

pluripotent stem cells with a single chemical inhibitor of transforming 

growth factor beta superfamily receptors. Stem Cells 28:1741–1750. 

179.  Zuccato C, Ciammola A, Rigamonti D, Leavitt BR, Goffredo D, 

Conti L et al (2001) Loss of huntingtin-mediated BDNF gene 

transcription in Huntington’s disease. Science 293:493–498. 


