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Global Optimization of Multimodal Aerodynamic

Optimization Benchmark Case

D.J. Poole ∗, C.B. Allen †, T.C.S. Rendall‡

Department of Aerospace Engineering, University of Bristol, Bristol, BS8 1TR, U.K.

An investigation into a multimodal aerodynamic optimization benchmark case using
an approximate global optimization approach is presented. A new benchmark case of
the AIAA Aerodynamic Design Optimization Discussion Group that involves the drag
minimization of a rectangular NACA0012 wing subject to lift and root bending moment,
as well as other geometric constraints, that is currently believed to be multimodal has
been suggested. In this paper, optimization of that case using a constrained population-
based global optimization framework is presented, with three independent runs of the
optimizer (each with different starting locations) having been performed. The runs are
all coarsely-converged to give approximately converged solutions such that rapid run-times
can be achieved and used to demonstrate any pitfalls that may be encountered when using
a gradient-based optimizer. All three of the runs converged onto drag values close to the
theoretical optimum, however with substantially different final shapes. This likely indicates
the presence of a flat optimum region within the design space, where a substantial number
of wing shapes are able to obtain the theoretical optimum span loading.

I. Introduction and Background

Aerodynamic shape optimization (ASO) is the process used to optimize a given aerodynamic shape within
a computational environment to improve on a design requirement. The aerodynamic model (normally a
computational fluid dynamics (CFD) flow solver) is used to evaluate some metric against which to optimize
called the objective, which in the case of ASO is an aerodynamic quantity, such as drag [1] or range [2],
subject to a set of constraints which are usually aerodynamic or geometric. Along with the fluid flow
model, the ASO framework requires a surface parameterization scheme which mathematically describes the
aerodynamic shape being optimized by a series of design variables; changes in the design variables, which
are made by a numerical optimization algorithm, result in changes in the aerodynamic surface. Numerous
advanced optimizations using compressible computational fluid dynamics (CFD) as the aerodynamic model
have previously been performed [3–7]. The authors have also presented work in this area, having developed
a modularised, generic optimization tool, that is flow solver and mesh type independent, and applicable to
any aerodynamic problem [8, 9].

A substantial amount of research has been published for a number of decades in the field of ASO; review-
like works have been presented in parameterization [10], and optimizer performance [11, 12]. One primary
issue on the development of the research field has been a lack of consistent benchmarking of individual ASO
frameworks on unified test cases. As such, the AIAA Aerodynamic Design Optimization Discussion Group
(ADODG)a was formed. As part of this, a number of inviscid and viscous aerofoil and wing optimization
cases were suggested, with a number of research groups presenting results; see [13–20] for example.

Recently, a new benchmark case has been suggested. The case involves the drag reduction of a rectangular
NACA0012 wing subject to a substantial number of aerodynamic and geometric constraints [21]. The
primary reason for introducing this new problem is to investigate a benchmark case that appears to exhibit
multimodality, which is defined as a problem that has more than one local minimum, knowledge of which
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is extrememly important as the degree of multimodality has a substantial implication on the choice of
optimization algorithm. The most common type of optimization algorithm employed when solving ASO
problems is a gradient-based approach, where the local sensitivities of the objective and constraints with
respect to the design variables are used as a basis to construct a search direction. In the case of a unimodal
problem (where there is a single optimum solution), a gradient-based method will terminate at the single
optimum. On the other hand, in the presence of a multimodal problem, the gradient-based algorithm will
terminate at the nearest local optimum along which the initial search direction drives it. Hence, the major
problem is that termination of a gradient-based method is guaranteed to find a minimum, but there is no
knowledge of whether this is the global minimum or a local minimum. If a global optimum is known to be
needed, then a global optimization approach can be used. Global optimization methods are typically either
evolutionary algorithms (EAs), such as genetic algorithms (GA)[22] or differential evolution (DE)[23, 24], or
swarm intelligence algorithms (SIAs), such as particle swarm optimization (PSO)[25], ant colony optimisation
[26] or gravitational search algorithm [27]. Typically these use a population of individuals who evolve or
cooperate together in pursuit of the global optimum, which, while being ideal for global optimization, comes
at the cost of a substantial increase in the number of CFD flow solutions required [28].

The degree of multimodality in the field of aerodynamic shape optimisation is, somewhat, an unknown
question, and very problem dependent. Often the test of local or global minima is by comparing the final
results of a gradient-based optimisation against global optimisation for the same case, and that if the results
are different, then the logical explanation is that multiple local minima exist. This conclusion is, by nature,
predicated on the fact that the local optimiser has successfully converged and has not just exited due to errors
(often associated with either the inability to accurately compute gradients, or difficulties in convergence of
the flow solver). If local optimisation results have successfully converged, then in the event of differing results
for comparison between gradient-based and global search optimisers, the modality must be due to either the
parameterisation or the flow solution. For aerofoil optimization, it has been suggested that ASO problems
exist that are unimodal [11] and multimodal[29, 30], while the same is true of wings exhibiting unimodality
[6] and multimodality [11]. Furthermore, recently, aerodynamic topology optimization results have suggested
multimodality for a number of supersonic flow problems [31].

Due to the substantial cost of using a global optimization approach for an ASO problem, and the apparent
lack on multimodality in a number of ASO problems, global optimizers have had only a small use in ASO,
see[32–36] for example. However, to tackle the ADODG multimodal benchmark problem, ideally a global
optimizer should be employed. As such, in this work, the benchmark problem is tackled using a state-of-the-
art constrained global optimization framework [37]. The framework, which uses uses a parallel decomposition
of the search agent population for efficient computation, has previously been used for drag minimization of
aerofoils [1] and is used here for the wing optimization. An approximate approach to global optimization is
performed using coarse-convergence to investigate the practicalities of this problem without the higher cost
associated with fully converging a global optimizer.

The remainder of the paper is organised as follows: in sections II and III, the optimization problem and
ASO framework are outlined, respectively; results are presented in section IV; finally, conclusions are given
in section V.

II. Problem Definition

In this section, the overall problem is described. First, a generic form of a constrained optimization
problem is given, followed by the aerodynamic optimization problem considered,

II.A. Constrained Optimization Problem Definition

A generic single-objective optimization problem optimizes an objective function, J , which is a function of
a vector of D design variables, α, subject to a set of inequality, g, and equality, h, constraints. Bound
constraints are also included for completion, which state that the design variables must lie within the D-
orthotope bounded region in <D, called the design space, S. Bound constraints can also be written as
L ≤ α ≤ U where L and U are D-long vectors and give the lower and upper bounds of the design space,
outside of which, J(α) has an unknown solution. Commonly this type of problem is known as a constrained
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numerical optimization problem (CNOP), which formally, is written as:

minimise
α∈<D

J(α)

subject to g(α) ≤ 0

h(α) = 0

α ∈ S

(1)

The solution to a CNOP is the global optimum solution, α∗, that minimises the objective function:

J(α∗) ≤ J(α) , ∀α ∈ F

where F is the feasible region, which is the region in S where all the constraints are satisfied.

II.B. Aerodynamic Problem Definition

The aerodynamic optimization problem requires the drag minimization of a rectangular NACA0012 wing of
full aspect ratio 6 (without wing-cap). The wing is composed of a rectangular NACA0012 section of span 3.0
and a rounded wing-cap of width 0.06, resulting in the overall semi-span of 3.06. The wing is in compressible,
inviscid flow at M∞ = 0.5 and is trimmed to a target CL = 0.2625.

The objective is drag minimization subject to aerodynamic constraints on lift CL, and root bending
moment, CMx

, and geometric constraints on wing area, S, internal volume, V , twist, γ, local chord, c(y),
local thickness, t(y), sweep (local x deformation at the quarter-chord), ∆xqc(y), semi-span, s, dihedral (local
z deformation at the quarter chord), ∆zqc(y), and angle of attack, θ. The problem is given by:

minimise
α∈<D

CD

subject to CL = 0.2625

CMx
≤ 0.1069

S = S(initial)

V ≥ V (initial)

−3.12◦ ≤ γ ≤ 3.12◦

0.45 ≤ c(y) ≤ 1.55 ∀y ∈ [0, s]

0.06 ≤ t(y) ≤ 0.18 ∀y ∈ [0, s]

−1 ≤ ∆xqc(y) ≤ 1 ∀y ∈ [0, s]

2.46 ≤ s ≤ 3.67

−0.45 ≤ ∆zqc(y) ≤ 0.45 ∀y ∈ [0, s]

−3.0◦ ≤ θ ≤ 6.0◦

(2)

III. Optimization Framework

In this section, the overall optimization framework used for performing the aerodynamic optimizations
outlined later is described. A global optimization approach (as opposed to a gradient-based approach) with
a reduced set of design parameters is considered. The flow solver and mesh, geometry and mesh control
scheme, and optimizer are described individually below.

III.A. Flow Solver and Mesh

The flow-solver used is a structured multiblock, finite-volume, unsteady, cell-centred scheme solving the
compressible Euler equations in cartesian and rotating coordinate system. The convective terms are evaluated
using the Jameson-Schmidt-Turkel (JST) scheme [38], chosen such that numerical drag is minimised. Multi-
stage Runge-Kutta with local timestepping is used for time integration, and convergence acceleration is
achieved through V- and W-cycle multigrid [39].
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A 666,000 cell, eight-block structured C-mesh was generated [40]; 129× 41 surface mesh, 33 points on
either side of the wake, and 41 points between the inner and outer boundary. Figure 1 shows domain and
boundaries, farfield mesh, and two views of the surface mesh and chordwise planes.

Figure 1: Eight-block wing mesh

III.B. Shape Control

The geometry and mesh control scheme must be flexible enough to allow sufficient design space investigation
and efficient enough to maximise design space coverage with a minimum number of design parameters.
The consideration of a global optimization approach necessitates the requirement for a minimum number of
design variables to reduce computational burden as much as possible. The design variables used are primarily
planform changes, which are from a mix of global planform deformation and local, sectional planform changes.
Before describing the design variables, it is first necessary to describe the unified surface control and mesh
deformation scheme.

For suitable surface control and mesh deformation, an efficient domain element shape parameterization
method has been developed by the authors and presented previously for CFD-based shape optimization
[8, 41]. The parameterization technique, surface control and volume mesh deformation all use radial basis
functions (RBFs), wherein global interpolation is used to provide direct control of the design surface and
the CFD mesh, which is deformed in a high-quality fashion [42, 43].

Setting up an RBF interpolation, s(x), through a set of n data points, X , where xi ∈ X ∀i ∈ [1, . . . , n]
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where the function to be modelled, f(x), is known, which at the i-th data point has a scalar value, fi, where
x is a vector of inputs in a d-dimensional space, x = {x(1), . . . , x(d)}. For a chosen basis function, φ, which
is a function of the Euclidean distance, ‖ · ‖, between two vectors, the interpolation takes the form:

s(x) =

n∑
i=1

βiφ(‖x− xi‖) (3)

where the coefficients, β, are found by solving a linear system, f = Mβ, constructed using the known data
points to provide exact recovery of the data at the sites; hence M is a matrix of basis functions evaluated
between the known sites.

When using RBF interpolation for unified shape control and mesh deformation, the known data sites
are a small set of nc control points, where the i-th control point has a location in Cartesian space given by
xci = [xci , yci , zci ] which are commonly placed either close to or on the aerodynamic surface to give detailed
control. Deformation of the control points leads to deformation of the mesh according to the RBF system,
hence combinations of control point deformations act as design variables. Furthermore, the basis function in
question is the radially-decaying Wendland C2 [44] function, where the influence of the function is controlled
by the support radius, outside of which the influence is zero.

For this work, to ensure smooth spanwise deformations, a hierarchical approach to constructing the
design variables is achieved [45]. The overall set-up of control points and design variables is given in figure
2. A number of global deformations are combined with local deformations at a small number of spanwise
locations, with a blending function used to blend intermediate deformations between the spanwise locations.
There are therefore two levels of control points; driver (which controls the deformation) and passenger (which
acts to create smooth spanwise deformations). For this work, 24 driver control points at five equally spaced
spanwise stations are employed for the higher level, while 24 passenger control points at four equally spaced
spanwise stations between each of the higher level sections are used for the lower level. This leads to a total
of 21 spanwise stations, each with 24 control points, all arranged in a lattice structure.

Figure 2: Hierarchical control points

The design variables are constructed to maintain maximum flexibility, while restricting the dimensionality
which otherwise causes a global optimizer to have convergence issues. One global geometric design variable
is used, which is linear twist. Local sectional geometric design variables for the driver control points are
thickness, vertical deformation (to create dihedral), chordwise deformation (to create sweep) and chord.
Span is allowed to vary, however this is not directly controlled by the optimizer, and instead it is calculated
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to ensure the wing area constraint is maintained. Angle of attack is also allowed to vary within the limits
set by the constraint. This leads to a total of 22 design variables.

Deformations of the passenger control points are determined using the driver control points either side of
a passenger’s spanwise station. The passenger deformation is therefore a partition of unity blending between
the deformations at the preceding and succeeding driver spanwise station. Using a partition of unity blending
has the advantage of first, being able to recover global deformations (such as a global thickness change) from
local deformations, and second, providing smooth spanwise blending between a small set of driver control
points. Figure 3 shows an example of an increase in the local chord on the second driver spanwise station
with no other changes versus adding a decrease in the local chord on the third spanwise station, clearly
showing the positive blending that is occurring to ensure a smooth chord distribution.

(a) Positive (b) Positive and negative

Figure 3: Chord change design variables

III.C. Optimizer

A global optimization approach is considered here, as opposed to a gradient-based approach. While global
optimization can often be more expensive than performing gradient-based optimization, it is more likely
to locate a globally optimal solution in a multimodal design space. Due to performing three-dimensional
optimization, the run-time of the objective function evaluation, which is a CFD flow solve, is considerably
higher than two-dimensional optimization (which the authors have previously performed [1]). To this end,
approximate global optimization is performed to give trends in the design space, where the population-based
algorithm used here is coarsely-converged. This involves running for a smaller number of iterations than
would be required for full convergence, allowing a more rapid run-time while still giving indicative results.

The global optimization algorithm used is an agent-based method, where a population of agents are used
to traverse the design space in search of a solution. The location of the n-th agent (which is an individual

within a population of N agents) within the search space of D design variables is αn = [α
(1)
n , α

(2)
n , . . . , α

(D)
n ]T ,

and in an agent-based optimization algorithm moves to a new location, in the d-th dimension, at the next
iteration of the search by:

α(d)
n = α(d)

n + v(d)n (4)

where vn is the vector of location deformations, which is more commonly termed a particle’s velocity, the
determination of which separates various agent-based method.

A hybrid of the particle swarm optimization (PSO) [25], and the gravitational search algorithm (GSA)
[27] has been developed and used here such that the memory qualities of PSO complement the global transfer
of data that occurs in GSA to obtain a highly efficient global search algorithm. Furthermore, the design space
exploration capabilities of PSO are combines with the optima exploitation capabilities of GSA to provide an
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algorithm that can both explore the design space and exploit the global optimum within it. The velocity of
particles is calculated as:

v(d)n = rnv
(d)
n + a(d)n (5)

where rn is a uniformly distributed random number on the interval [0, 1], and an is the particle’s ‘acceleration’,
which is a blend of PSO and GSA components:

a(d)n = Wa(d)n (pso) + (1−W )a(d)n (gsa) (6)

where an(pso) and an(gsa) are the PSO and GSA constituents of the acceleration respectively, and W is a
blending constant used to balance the qualities of PSO and GSA. Setting W = 1 means the search is driven
by only PSO, while setting W = 0 means the search is driven by only GSA. To obtain a good balance, 0.5
is used in this work. The acceleration due to PSO is:

a(d)n (pso) = c1r1n(p(d)n − α(d)
n ) + c2r2n(s(d) − α(d)

n ) (7)

where c1 is the cognitive constant, c2 is the social constant, r1n and r2n are independent uniformly distributed
random numbers on the interval [0, 1], pn is the individual’s best location found so far, and s is the global
(swarm’s) best location found so far. The acceleration due to GSA is given as:

a(d)n (gsa) = F (d)
n /Mn (8)

where Fn is the forcing vector calculated using Newtonian mechanics and Mn is the particle mass, which
is proportional to the fitness of the particle relative to all other particles (particles with a low objective
function have a high mass and vice versa). A comparison of the update approaches between PSO and GSA
is given in figure 4.

xn

pn

s

c1r1n (pn − xn(t))

c2r2n (s− xn(t))

rnvn(t)

vn(t+ 1)

(a) PSO

Mn

Ma

Mb

Mc

Fn,a

Fn,b

Fn,c

Fn

(b) GSA

Figure 4: Comparison of PSO and GSA update frameworks.

Constraints are not directly handled in the PSO or GSA algorithms, hence the separation-sub-swarm
(3S) [37] constraint handling method is applied. The 3S method is a constraint handling framework that
can be applied to any swarm intelligence algorithm and works by splitting the overall population into two
independent swarms every iteration – one swarm containing all of the feasible particles at that iteration
(all constraints are satisfied) and one containing all of the infeasible particles at that iteration (at least
one constraint is violated). The swarms then independently solve a different objective function, where the
objective function of a particle ζ is determined by:

ζ(α) =

{
J(α) if λ(α) = 0

λ(α) else
(9)
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where λ is the sum of the constraint violations. Hence, the infeasible particles have the objective of minimizing
the constraint violation and therefore trying to find the feasible region whereas the feasible particles are
minimizing the objective that is to be solved for. Updates to the swarm’s and an individual’s best location
are performed using a binary tournament selection [46], which is achieved via the domination operator; given
two locations within the design space, αa and αb:

αb 7→ αa ⇔ αa ≺ αb (10)

where

αa ≺ αb ⇔


J(αb) < J(αa) and λ(αa), λ(αb) ≤ 0

λ(αb) ≤ 0 and λ(αa) > 0

λ(αb) < λ(αa) and λ(αa), λ(αb) > 0

(11)

Bound constraints are handled by placing a particle back in its previous position if it violates the bound
constraints i.e. is outside the design space.

The 3S algorithm has been shown to outperform other common constraint handling methods such as
penalty methods [37]. The overall framework has also successfully been applied to inviscid and viscous
aerofoil optimization [1].

III.D. Optimization Problem Definition

The aerodynamic problem definition has previously been outlined, however, the problem definition that
the optimizer deals with is slightly different. The reason for these differences is due to the way the design
variables have been constructed. For example, explicit local and global planform changes are specified by
design variables, hence, to avoid the over-specification of the problem (too many constraints), many of the
linear constraints outlined in equation 2 can be converted to bound constraints. This improves performance
of the optimizer.

Before the optimization problem can be fully described, the design variable specification needs to be
explained. The design variable specification is as follows:

• α1 - angle of attack

• α2 - linear twist

• α3 to α7 - thickness changes of each section of driver control points

• α8 to α12 - z-deformation of each section of driver control points

• α13 to α17 - x-deformation of each section of driver control points

• α18 to α22 - chord changes of each section of driver control points

As noted above, the span is calculated after the planform deformation to ensure the projected area
constraint is satisfied. Also, to give the optimizer full flexibility, the lift constraint is implemented as an
inequality constraint with the angle of attack variable. In previous work by the authors [1] on aerofoil drag
minimization, using this approach universally results in the lift constraint being active, so is a valid solution
of equation 2.

All constraints are transformed into the standard form given in equation 1, so the optimization problem
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being solved by the optimizer is:

minimise
α∈<D

CD

subject to 0.2625− CL ≤ 0

CMx
− 0.1069 ≤ 0

V (initial)− V ≤ 0

2.46− s ≤ 0

s− 3.67 ≤ 0

3.0 ≤ α1 ≤ 6.0

−3.12 ≤ α2 ≤ 3.12

0.06 ≤ αi ≤ 0.18 ∀i ∈ [3, 7]

−0.45 ≤ αi ≤ 0.45 ∀i ∈ [8, 12]

−1 ≤ αi ≤ 1 ∀i ∈ [13, 17]

0.45 ≤ αi ≤ 1.55 ∀i ∈ [18, 22]

(12)

IV. Results

In this section, results of the optimization of the NACA0012 rectangular wing, subject to the optimization
problem given in equation 12, are presented. To investigate the modality of the problem, three independent
optimization runs were performed. Hence, there are three different initial distribution of particles, which
are randomly positioned within the design space. Furthermore, due to the random terms in the optimizer
update equations, the stochastic nature of the optimizer means no two runs are repeatable.

The optimizations were run using 48 particles on six 2.6GHz 8-core Intel Sandy Bridge chips for a total
of 48 cores (1 per particle). The objective function and constraint evaluations are performed in parallel with
one particle assigned to each core. A master core then performs the optimizer update.

The convergence histories of the three runs are given in figure 5. This is an approximate global optimiza-
tion hence the convergence of the optimizer is restricted, however, it is clear that the optimizer has converged
close to a final result, with all three runs only changing by 1 drag count in the final 200 iterations of the
maximum run. Trends from the results shown can therefore be extrapolated to more general comments
about the problem. It should be noted that all of the three runs have initial drag values above the drag of
the baseline wing due to the initial location of the individuals in the global optimization all having (different)
values that represent random perturbations to the baseline wing.

Iterations

C
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o
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n
ts

)

0 100 200 300 400 500 600
25

30

35

40

45

50

Run 1

Run 2

Run 3

Theoretical Optimal

Figure 5: Convergence histories
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The optimization results of the three independent runs are shown in table 1. It is first worth noting that
the initial solution starts infeasible due to the bending moment constraint being violated (CMx=0.116 which
is slightly higher that the maximum value of 0.1069), however, in all of the final results, this constraint is
satisfied. All of the three runs have provided a feasible solution, and this is testament to the high performance
of the constrained optimizer used. In terms of active constraints, clearly the lift constraint is active in all
cases, as expected, and the area constraint is also active due to the span being calculated to satisfy said
constraint. The maximum span constraint is the only other active constraint, which is, again, expected due
to the requirement to minimise induced drag. The three runs have resulted in similar drag reductions, each
being about a quarter.

Table 1: Optimization results (CD in counts)

CL CD CMx
V s S/2 γ θ ∆J(%) eb2

Baseline 0.263 43.8 0.116 0.247 3.06 3.02 0.0◦ 2.99◦ - 30.2

Run 1 0.263 31.3 0.105 0.248 3.67 3.02 -0.56◦ 3.67◦ -28.5% 42.4

Run 2 0.263 30.7 0.106 0.253 3.67 3.02 -0.50◦ 3.46◦ -29.9% 43.3

Run 3 0.263 34.1 0.104 0.252 3.67 3.02 -1.04◦ 5.09◦ -22.1% 39.0

The surface shapes and upper surface pressure contours are given in figure 6, and this is clearly where
the differences, that are not apparent in the values given in table 1, appear. The spanwise values of the x
and z locations of the quarter-chord, the chord length and the thickness are given in more detail in figure
7. All runs have resulted in an almost consistent reduction in chord length along the span, which therefore
allows the span to increase in accordance with the requirement to hold the area constant. This is, as noted
above to be expected, however the results from run 3 have clearly attempted to reduce the chord as much as
possible inboard and shift load inboard at the expense of having a larger, more lightly loaded wing outboard.
All runs have had to shift load inboard to satisfy the bending moment constraint, but runs 1 and 2 have
resulted in a slightly different approach to run 3.

The profile (y − z) views of the runs reveals an interesting trend. While being slightly different in terms
of the absolute shapes, all three runs have attempted to produce something akin to a winglet. A substantial
change in the profile at about 75% span which all have a similar angle between the profile just preceding the
change and the profile just succeeding it. This indicates a similar magnitude of vortex shedding around the
75% spanwise location.
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(a) Run 1

(b) Run 2

(c) Run 3

Figure 6: Surface shape and upper surface pressure contours
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While the results from the three optimization runs have resulted in substantially different, though showing
similar trends, in terms of their shapes, it is also important to consider spanwise loading. The well known
optimal loading distribution for a finite span wing is the elliptic profile[47]:

Γ(η) = Γ(0)
√

1− η2 (13)

where Γ is the circulation and η = y/s is the non-dimensional spanwise station. However, with a given lift
and bending moment constraint, then the elliptic distribution may not be obtainable, hence the solution of
Jones [48] (which is a specific solution of a result later proved by Klein and Viswanathan[49]) becomes the
optimal result:

Γ(η) = Γ(0)

[
(3− 2ε)

√
1− η2 + 6(ε− 1)η2 cosh−1

(
1

|η|

)]
(14)

where:

ε =
3π

2

CMx

CL

A full discussion on optimal loadings subject to bending moment and lift constraints is comprehensively
covered by Pate and German [50]. The induced drag can be calculated as:

CDi =
C2

L

πAR
(1 + δ)

where δ = 8(ε − 1)2. For the case considered in this paper, the theoretical minimum induced drag is 29.6
counts, however, due to numerical drag, it is unlikely that this is achievable without fine numerical meshes.
Figure 8 gives the initial, elliptic and theoretical optimal result for this case, and compared the three
optimization runs with the theoretical optimal result. The bending moment constraint forces an optimal
solution with higher inboard wing loading. It is very positive that the optimizations have all resulted in
spanwise loadings that are close to optimal. Even though the planforms and profiles are different for all of
the results, the loadings are remarkably similar.
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Figure 8: Spanwise load distributions

Surface pressure coefficients at different spanwise stations are given in figure 9, which clearly show that
for case 3, there is a high inboard pressure, however, due to the smaller chord, the loading is very similar
to the other three cases. The implications for the multimodality of this problem therefore likely depends on
the trade-off of chord and loading to force a spanwise loading that is close to optimal. From the spanwise
load analysis presented above, there is a theoretical minimum value, however, it is clear from the runs shown
here, that there are a number of different ways in which to obtain that minimum value that include vastly
different shape changes. This either indicates the presence of multiple, individual optima, or more likely, a
flat region of the design space where any variation in the local chord that can produce the optimal loading
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distribution. This is analogous in nature to the minimum drag solution of an aerofoil in transonic flow,
where the optimum region is the design space is a large, flat region where any aerofoil shape that eliminates
a shock and therefore minimise drag due to d’Alembert’s paradox, but can still leave an oscillatory surface.
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Figure 9: Surface pressure coefficients at spanwise locations

V. Conclusions

An investigation on a new ADODG optimization benchmark case has been performed. The problem,
which involves drag minimization of a rectangular NACA0012 wing subject to lift and root-bending moment
constraints as well as other geometric constraints, such as span and wing area, is believed to exhibit mul-
timodality. In this work, a constrained global optimizer has been used to optimize the wing, with design
variables characterised using a hierarchical control point approach to allow an efficient representation of the
wing.
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The optimizer, which is a global population-based algorithm (a hybrid of particle swarm optimization
and gravitational search algorithm) has been run three times, with each run being independent of the others.
Hence, the starting location of the particles in each of the three runs are distinctive. Furthermore, the global
optimizer is stochastic and encourages a balance between design space exploration and optima exploitation.
A coarse-convergence has been used to reduce run-time while still allowing exploration of the optimizer.

The optima found from each of the three runs have resulted in feasible solutions and are close to the
theoretical minimum drag value. All optimal wings have gone to the maximum allowable span, and each
have satisfied the lift and wing area equality constraints of the problem. However, while the headline
force coefficient values appear similar, the wing shapes exhibit substantial differences, with two of the wings
showing similar (relatively uniform) chord distributions, while the other showing much smaller inboard chord.
Despite this, the loadings of all three wings are similar. This, possibly, points to the existence of a flat region
of the design space where different chord distributions, that result in the same loading, are all optimal.
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