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Subdivision curves are defined as the limit of a recursive application of a subdivision rule to an initial
set of control points. This intrinsically provides a hierarchical set of control polygons that can be used
to provide surface control at varying levels of fidelity. This work presents a shape parameterisation
method based on this principle and investigates its application to aerodynamic optimisation. The
subdivision curves are used to construct a multi-level aerofoil parameterisation that allows an opti-
misation to be initialised with a small number of design variables, and then be periodically increased
in resolution throughout. This brings the benefits of a low fidelity optimisation (high convergence
rate, increased robustness, low cost finite-difference gradients) while still allowing the final results to
be from a high-dimensional design space. In this work the multi-level subdivision parameterisation
is tested on a variety of optimisation problems and compared to a control group of single-level sub-
division schemes. For all the optimisation cases the multi-level schemes provided robust and reliable
results in contrast to the single-level methods that often experienced difficulties with large numbers
of design variables. As a result of this the multi-level methods exploited the high-dimensional design
spaces better and consequently produced better overall results.

I. Introduction and Background
With optimisation becoming more common in aerodynamic design, a significant effort is being made to improve both
its effectiveness and its efficiency1,2. Within an optimisation procedure the choice of shape parameterisation con-
trols the relationship between the optimisation design variables and the aerodynamic surface itself. Consequently the
choice of shape parameterisation method can have a significant impact on the effectiveness and efficiency of the overall
procedure3. Many different methods have been used within an aerodynamic optimisation framework, from standard
geometric curve definitions such as B-splines4 or NURBS5 to aerospace-specific methods such as CST6,7, Hicks-
Henne bump functions8,9 or PARSEC9,10 to Free-Form Deformation11–14, proper orthogonal decomposition2,15,16 or
the discrete method17. All of these approaches are subject to the ‘curse of dimensionality’; in the context of aerody-
namic optimisation this refers to the problems associated with increasing the number of design variables used in the
optimisation procedure. For many optimisation schemes the number of objective function evaluations is proportional
to the number of design variables used, in conjunction with this a large number of design variables can lead to poor
convergence rates and poor design space conditioning. Considering that for aerodynamic optimisation each objective
function evaluation equates to a single, often expensive, aerodynamic solution the impact of dimensionality can be
large. On the other hand, the fidelity of the parameterisation, and therefore the design space of the problem, is directly
linked to the number of design variables. This often leads to a compromise between available resources and desired
accuracy of the results.

One approach to reducing this effect is to control the shape with a series of nested, hierarchical parameterisation
schemes and increase the fidelity at intervals throughout the optimisation process. This approach was first used in an
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aerodynamic optimisation setting by Beux and Dervieux18 and has since been applied to a range of aerofoil optimi-
sation problems using a variety of different parameterisation frameworks such as Bèzier curves19–22, Bèzier surface
FFD23–26, RBFs27 and B-splines with a knot insertion algorithm28,29. In general, it was shown that implementation of
multi-level nested parameterisations can improve the convergence rate, robustness and final solution of an optimisation
procedure. This paper investigates the application of multi-level shape parameterisation techniques to multi-resolution
subdivision curves for aerodynamic optimisation procedures.

Subdivision curves and surfaces are a shape parameterisation method used predominantly in computer graphics
and animation. They describe a smooth curve or surface based on an initial coarse network of points and a simple
subdivision rule of refinement. By successively applying the subdivision rule increasingly fine networks are created,
which at the refinement limit create a curve or surface. In some cases these limit curves are equivalent to B-splines,
for example Chaikin’s corner cutting scheme30 is equivalent to uniform quadratic B-splines and further extensions
to higher order uniform B-splines can also be derived31. For subdivision surfaces there are similar equivalences; for
a set of regular, rectangular control points Doo-Sabin subdivision32 is equivalent to bi-quadratic B-spline surfaces
and Cattmull-Clark subdivision33 is equivalent to uniform bi-cubic B-spline surfaces. However, subdivision surfaces
can be generalised to arbitrary topologies while B-spline surfaces can not; this is a key benefit of the subdivision
framework. B-splines and subdivisions share many characteristics; the method of implementation is, however, one area
of major difference. B-splines utilise continuous parametric representation whereas subdivisions use a hierarchical
process of discrete refinement. It is the innately hierarchical nature of subdivisions that make them easily applicable
to multi-resolution analysis.

Multi-resolution analysis utilises hierarchical nested data sets to increase efficiency by allowing operations to be
performed at varying levels of detail. For geometry and shape parameterisation applications this typically means the
ability to implement either coarse geometry changes while maintaining the fine detail, or fine geometry changes while
maintaining the overall shape. This approach has been implemented comparably from both B-spline34 and subdi-
vision35 perspectives in both their two-dimensional and three-dimensional forms, though it would seem that in three
dimensions the advantage of being able to represent arbitrary topologies with subdivision surfaces has lead to it becom-
ing the industry standard choice in multi-resolution computer animation36. It is also slowly being incorporated into
some computer aided design (CAD) packages37,38. A comprehensive overview of subdivisions and multi-resolutional
analysis can be found in Stollnitz et al.39.

The aim of this work is to explore the use of multi-resolution subdivision curves for aerodynamic shape optimi-
sation with particular emphasis on how they can be used to improve both the efficiency, accuracy and robustness of
current optimisation procedures.

II. Subdivision Curves
Subdivision curves are defined as the limit of a process of repeated subdivision refinement of an initial control polygon.
Each subdivision refinement defines a new set of smoother, denser points as a linear combination of the old points.
For this reason the refinements can conveniently be expressed as a simple matrix transformation

Cn+1 = PnCn (1)

from old points Cn to new points Cn+1. For simple subdivision schemes on closed polygons these matrices are just the
two row offset repetition of a subdivision ‘mask’. Two common examples are Chaikin’s rule30 (figures 1a and 1b) and
the Cubic B-spline rule (figures 1c and 1d). Figure 2 shows a simple implementation of Chaikin’s rule on a closed
polygon. Note how the rows of the transformation matrices all sum to 1 and therefore describe a weighted averaging
of the previous points, this is a key feature of all subdivision transformation matrices. Figures 1a and 1c show the
matrices for areas of smooth subdivision whereas figures 1b and 1d represent areas with a corner or endpoint, where
the non-averaged matrix row represents the corner or endpoint itself.

Given a set of subdivision matrices P the N th subdivision level CN can be expressed as

CN = PN−1 . . . Pn+1PnCn (2)

for some n < N. The limit curve can therefore be described by the relation

C∞ = lim
N→∞

CN = . . . Pn+1PnCn. (3)

In practice this calculation must be truncated at some point and the limit curve calculated. A typical solution to this is to
calculate an evaluation matrix based on eigenanalysis40 that pushes the subdivision points to their limit locations. With
this method however the user cannot directly parameterise the curve itself and therefore cannot specify the distribution
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Pn =



. . . . . .
0.25 0.75

0.75 0.25
0.25 0.75

0.75 0.25
0.25 0.75

. . . . . .


a) Chaikin’s rule for smooth areas

Pn =



. . . . . .
0.5 0.5

1
0.5 0.5

0.25 0.75
. . .


b) Chaikin’s rule for corners or endpoints

Pn =



. . . . . .
0.125 0.75 0.125

0.5 0.5
0.125 0.75 0.125

0.5 0.5
0.125 0.75 0.125

. . . . . .


c) Cubic B-spline rule for smooth areas

Pn =



. . . . . .
0.5 0.5

1
0.5 0.5

0.75 0.25
0.1875 0.6875 0.125

. . . . . .


d) Cubic B-spline rule for corners or endpoints

Figure 1. Matrix representations of the Chaikin and Cubic B-spline subdivision schemes.

Figure 2. Simple closed subdivision using Chaikin’s Scheme

of points on it. As the distribution of points around an aerofoil can be very important an alternative method is used
in this work. This is done by exploiting the fact B-spline curves and some subdivision formulations create equivalent
limit curves for identical control polygons. This means that the discrete operation between the final subdivision level
N and the limit curve can be expressed as a continuous B-spline transformation. This B-spline transformation can then
be discretised and formulated as matrix PBS

N such that a desired point distribution is achieved. This method is however
constrained to subdivisions with B-spline equivalents.

It is then convenient to define

φn = PBS
N PN−1 . . . Pn (4)

and therefore the relationship between any level of control polygon and the limit curve can be expressed as

C∞ = φnCn. (5)

The columns of φi represent the basis functions of the subdivision scheme. Figure 3 shows the basis functions for a
Chaikin subdivision with fixed endpoints, these are identical to the basis functions of an equivalent quadratic B-spline.
From this it can be seen that the different subdivision levels can be used to control and deform the limit surface at
varying levels of fidelity.

III. Reverse Subdivision Curves
Given a set of points it can often be desirable to obtain the subdivision polygon (or closest possible match) that
produced them. Consider a fine set of points Cn; the coarser set of points Cn−1 can simply be calculated as the least
squares solution of equation 1,

Cn−1 = P+n−1Cn, (6)
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Figure 3. The basis functions for the first two levels of a Chaikin subdivision with fixed endpoint conditions with a 4 point initial control
polygon

where + denotes the Moore-Penrose pseudo-inverse. However as Pn is a non-square, non-invertible matrix this leads
to some loss of information with the result that, for almost all cases,

Pn−1Cn−1 6= Cn. (7)

For this reason it is important to retain any errors created through the least squares process and include them in any
subsequent refinement. This can be done very conveniently and efficiently if Pn has full column rank by extending
the refinement matrices Pn by any orthogonal compliment of the column space Qn = null

(
PT

n

)
. It should be noted

that Qn is not uniquely defined and while any choice makes theoretical sense, numerically it is important that it is well
conditioned. For this reason an orthonormal basis of the null space is used. The subdivision refinement (equation 1)
can then be reformed such that

Cn+1 =
[
Pn Qn

] [Cn

Dn

]
= PnCn + QnDn,

(8)

for some set of error coefficients Dn. Then by letting
[
Pn Qn

]−1
=

[
An

Bn

]
, equation 6 can be re-expressed as the reverse

subdivision equations

Cn−1 = AnCn, (9)
Dn−1 = BnCn. (10)

This importantly creates a one-to-one relationship between the subdivision refinement levels and thus allows in-
formation to be propagated uniquely and exactly in either the refinement or coarsening direction (figures 4 and 5).

Ci Ci+1 Ci+2 · · ·

Di Di+1 Di+2

×Pi ×Pi+1 ×Pi+2

×Qi ×Qi+1 ×Qi+2

Figure 4. Process for subdivision refinement.

Ci Ci−1 Ci−2 · · ·

Di−1 Di−2 · · ·
×Bi

×Ai

×Bi−1

×Ai−1

×Bi−2

×Ai−2

Figure 5. Process for reverse subdivision.

Equation 5 can then be reformed using equation 8 such that

C∞ = φnCn +

N∑
i=n

φi+1QiDi. (11)

By storing and including these error terms it means that any discretised shape can now be represented by any
subdivision rule as long as the correct error terms Dn are used.
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IV. Aerofoil Parameterisation
To parameterise the aerofoils in this work a cubic B-spline subdivision scheme is used with a single, closed initial
polygon with ‘corners’ at the leading and trailing edges. This ensures that the position of the leading and trailing edges
are equal to the ‘corner’ control points at every subdivision level. This is equivalent to using two distinct subdivision
curves for the upper and lower surfaces with shared endpoints at the leading and trailing edges. In physical terms the
trailing edge is a corner, however the leading edge is not, for this reason the control points closest to the leading edge
are constrained to lie directly above and below it; this enforces the vertical surface required.

In this work the first subdivision level has been defined by six control points with two points defining the leading
and trailing edges at [x/c, z/c] = [0, 0] and [1, 0] respectively, and points at x/c = 0 and x/c = 0.5 on each surface.
The maximum control level is defined by the 8th subdivision level with 260 control points.

It was found that if the number of discrete points defining the aerofoil is reduced to the vicinity of the number
of design variables, the influence of the point distributions can significantly skew the optimisation results through an
aliasing effect. For this reason, unless otherwise specified, the aerofoils have been defined by 601 points, significantly
more than the maximum number of design variables. The points were then distributed along the chord in a half-cosine
fashion.

Table 1 shows the total number of control points in each level used. All of the control points are then allowed to
move in just the z direction apart from the trailing edge which is held fixed.

Subdivision Level Number of Control Points

1 6
2 8
3 12
4 20
5 36
6 68
7 132
8 260

Table 1. Number of control points at each subdivision level

Given an initial aerofoil Cinitial, the starting initial subdivision positions can then be calculated by the recursive
application of equation 9. The resulting control point positions, Cinitial

n , represent the least-squares approximations of
the initial aerofoil for the limit surfaces φnCinitial

n . At each of these subdivision levels a set of fixed error terms Dn can
then be calculated by applying equation 10. Then for the set of control points Cinitial

n calculated, equation 11 implies
that

Cinitial ≡ φnCinitial
n +

N∑
i=n

φi+1QiDi, ∀n ≤ N. (12)

This approach has been used for all the optimisations in this paper, therefore all cases start from the exact pre-
scribed (discrete) initial aerofoil rather than a best approximation. Figure 6 shows the initial positions for the first four
subdivision levels.

Each of these available subdivision levels can then be used to parametrise the aerofoil independently, in what have
been described hereafter as ‘single-level’ schemes, or in an ascending series, which have been described as ‘multi-
level’. For the single-level schemes the aerofoils are defined by

Caero = φnCn +

N∑
i=n

φi+1QiDi (13)

for the desired subdivision level n with control points Cn. For the multi-level schemes the same definition applies but
when a ‘refinement trigger’ is activated n → n + 1. This increases the number of design variables, and therefore the
available fidelity, while maintaining the aerofoil shape exactly. The aim of this is to use fewer design variables in the
early stages of optimisation to increase the rate of convergence, robustness and, for finite-difference gradients, reduce
gradient calculation times. Then, as the lower dimensional design space looks to be fully exploited, the refinement
process is applied to allow the larger design space to be explored.
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NACA0012

Level 1

Level 2

Level 3

Level 4

Figure 6. Initial control point positions for the first four subdivision levels for a NACA0012.

For each optimisation case investigated a variety of subdivision schemes have been applied. Each available sub-
division level has been applied as a single-level parameterisation as well as four multi-level schemes starting from
the first, second, third and fourth levels respectively and refining up to the final level. The single-level schemes are
equivalent to using normal cubic B-splines and act as the control group for which the benefits of the multi-level tests
have been compared against.

V. Optimisation Methodology
In this work subdivion curves have been applied to a range of aerodynamic optimisation problems. For all of these
tests the multi-purpose large-scale optimiser SNOPT41 was used. This is a gradient-based sequential-quadratic pro-
gramming (SQP) method that employs a reduced-Hessian BFGS search-direction and, in this work, a non-derivative
line-search technique. A feasibility tolerance of 10−6 was also used and optimiser convergence was determined based
on the activation of one of three criteria:

1. The Karush-Kuhn-Tucker (KKT) first-order optimality condition41 satisfying a tolerance level of 10−6

2. The optimiser unable to improve the objective function

3. For the multi-level schemes not on the final level, satisfying the refinement condition (equation 14)

The refinement condition aims to trigger the refinement of the subdivision scheme when the optimisation has
exploited most of the available gains from the current design space and is approaching the local minimum. This
moment can be difficult to identify as it is very hard to differentiate between the optimiser converging to a local
optimum and the optimiser traversing a difficult area of the design space. If refinement is triggered too early the under-
exploitation of design space can result in slower convergence and possibly a poorer final result, and if it is triggered too
late, over-exploitation of the design space can waste resources. A method for approximating the optimum refinement
time was proposed by Anderson27 where refinement was triggered when the convergence of the objective function
with respect to the iterations dropped below some proportion t < 1 of the maximum attained. A slightly modified
version of this is implemented in this work. This triggers refinement if the rolling average of the slope of the objective
function (and constraints) is less than a proportion t of their max rolling average; i.e.∣∣∣∣∣∣∣∣ 1

w

w−1∑
j=0

Gk− j

∣∣∣∣∣∣∣∣ <
∣∣∣∣∣∣∣∣max
m≤l≤k

t
m

m−1∑
j=0

Gl− j

∣∣∣∣∣∣∣∣ , ∀G ∈ {Gob j,Gcon} (14)

where Gob j
i = log10(Ji−1) − log10(Ji)

and Gcon
i = ξi−1 − ξi

for objective function J with constraints ξ, iteration k (at current refinement level) and parameters t, w and m. It should
be noted that the slope of the objective is calculated on a log scale. This was found to be work better than a linear scale
as the convergence of the objective functions considered in this work are typically logarithmic.
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The parameter 0 < t < 1 controls the change in gradient required to trigger the scheme and the positive integers
w and m control the size of the rolling average windows for the maximum and current slope. If small values are used
for w and m this defines a very aggressive triggering system, for well behaved, consistently converging optimisations
this ensures that iterations are not wasted converging areas close to a local minimum. For more complex optimisation
procedures this can however cause premature triggering when the optimiser only makes a small improvement through
a highly non-linear area. For this reason these parameters can be increased to average the gradients and only trigger
refinement when improvements are consistently small.

VI. Optimisation Results
To test benefits of using the multi-level subdivision parameterisation described above, a series of optimisations of
varying difficulty have been performed. A set of geometry matching problems present the simplest test, minimising
the RMS geometry error between the aerofoil surface and a target aerofoil. A further set of inverse design problems
present a more challenging optimisation with a final set of three drag optimisation cases representing the most difficult
tests.

A. Geometry Matching

Three geometry matching problems have been considered in this work. Each one starts from an initial NACA0012
then targets RAE2822, NACA4410 and ONERA M6 aerofoils. For all of these optimisations the objective function is
defined as the root-mean-squared difference between the vertical components of the current and target aerofoils, i.e.,

J =

√√
1
n

n∑
i=1

(
zi − ztarget

i

)2
. (15)

The gradients are then calculated analytically and the refinement parameters used are w = m = 1 and t = 0.3.
Figures 7a, 7b, 7c show the results of these optimisations. For all of the cases tested, final convergence was

triggered through reduction of the KKT optimality condition below the prescribed tolerance and all of the cases achieve
consistent minima. For the single-level parameterisations this means that as more design variables are used the results
improve and for the multi-level methods this means that optimums equivalent to the single-level 8 cases are always
achieved; these are are all of order 10−7. It can also be seen that for the single-level cases the rate of convergence
typically reduces when large numbers of design variables are used. For the multi-level cases however, convergence
seems to be fairly consistent regardless of the numbers of design variables used. As a result they generally show better
overall convergence rates than the equivalent single-level cases; in particular the multi-level 4 → 8 method shows the
best convergence rates for all three test cases.

Other work by the authors42 has shown that for aerofoil approximations the errors in drag coefficient prediction
for transonic Euler flow relative to a target aerofoil are roughly equivalent to the maximum geometric error. These
results therefore suggest that if the eight subdivision level is used for an inviscid drag reduction case, the design space
should include aerofoils within the order of a thousandth of a drag count of any optimum.

B. Inverse Design

Three inverse design problems have also been considered to compare the subdivision aerofoil parametrisations. Each
one starts from an initial NACA0012 then targets RAE2822, NACA4410 aerofoils with α = 0 and an ONERA M6
with α = 3. For all of these the objective function is defined as the root-mean-squared difference between the current
and target pressure distributions, i.e.,

J =

√√
1
n

n∑
i=1

(
Cpi −Cptarget

i

)2
. (16)

The pressure distributions are calculated with a potential flow panel code and the gradients are calculated through
finite-forward-differencing with a step size of 10−8. The refinement parameters used are w = m = 1 and t = 0.1.

Figures 8a, 8c, 8e show the inverse design test case results. For all of the cases the final convergence was triggered
due to an inability to improve the solution, the optimality had typically reduced to around 10−4 at this point. For the
single-level methods it can again be seen that, in general, the final results improve with increased fidelity. There are
however some instances where this is not true, for example, for the NACA4410 case (figure 8c) the 6th, 7th and 8th
level methods fail to improve on the final result obtained using just the 5th level. This shows that the optimiser has
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Figure 7. Results for the geometry matching optimisations. Numbers represent the number of design variables at the end of each optimi-
sation phase.
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failed to reach an improved solution. It can also be seen that the rate of convergence tends to increase with fidelity
for these cases, in particular it can be seen for the RAE2822 case (figure 8a) where the ‘single-level 8’ case takes a
significantly longer to converge than any of the other methods. The multi-level methods converged to the optimum
result consistently for all cases investigated and have better convergence rates than the high fidelity single-level cases.
This represents an improvement to both the robustness and efficiency of the optimisation by using the multi-level
methods.

C. Inviscid Drag Reduction

A series of three inviscid drag optimisation cases have also been tested. A symmetric NACA0012 drag reduction case,
a lifting NACA0012 case with a constraint on lift and a lifitng RAE2822 case with lift and moment constraints. A full
description of the test specifications is presented in table 2.

The unstructured CFD solver SU2 43 has been used for all of these optimisations with the design variable gradients
calculated using the continuous adjoint method43 and convergence acceleration using three multi-grid levels.

The computational meshes were generated using a structured conformal mapping approach where all surface cells
have aspect ratio one and the farfield distance is 50 chord lengths. The mesh was then deformed at every iteration
using an RBF method44 with a support radius of 10 chord lengths and Wendland’s C4 RBF45. This ensures the surface
deformations are dissipated smoothly across the mesh to maintain mesh quality.

For each test case a mesh resolution study has been performed on four different resolution meshes: 257 × 129,
513 × 257, 1025 × 513, 2049 × 513 (surface points × points to far field). For each of these calculations the flow was
converged to approximately machine zero and it should be noted that for the symmetric NACA0012 case half meshes
were used so the number of surface points was reduced by a factor of two. For all three cases the 513 × 257 mesh was
chosen for optimisation to provide a compromise between accuracy and computation time. Figure 10 shows the initial
mesh used for the lifting NACA0012 optimisation; an identical halved mesh was used for the symmetric case and an
equivalent topology mesh was used for the RAE2822 case.

A gradient accuracy test was also performed for each case. This calculated the gradients for all of the level 8
control points for the initial aerofoils using both the continuous adjoint method that will be used for the optimisation
as well as finite-forward-differencing. Again, all of the flow and adjoint solutions were converged to machine zero.
A finite-difference step-size of 10−5 was used, this was calculated as the root of the precision, which for SU2 is the
output precision of 10−10. Figure 9 shows the comparison of these gradients for both the objective function and the
constraints. It can be seen that for all three cases the two gradient types match closely though with some discrepancy,
particularly in the shocked regions. A further gradient comparison was performed at the increased mesh resolution of
1025 × 513, however errors of a similar magnitude were found. The errors seem to be associated with the continuous
adjoint method itself, which is in agreement with results found by other researchers46–50.

It was found that, much like for the inverse design cases, final convergence drag for these cases was always
triggered due to an inability to improve the result rather than the convergence of KKT optimality condition. This was
typically reduced to an order of 10−2.

For the final optimisations the flow and adjoint residuals were reduced by 6 orders. This produced lift and drag
force adjoints converged to an order of 10−7. A preliminary study found that, for a single multi-level optimisation,
reducing the residuals by 12 orders compared to 6 only improved the final solution by 7 hundredths of a drag count
while increasing the runtime by a factor of 2.2. A 6 order reduction was therefore considered satisfactory.

Symmetric NACA0012 Lifting NACA0012 RAE2822

Initial Aerofoil: NACA0012 NACA0012 RAE2822
Flow Conditions: α = 0 α = 1.25 α = 2.79

M = 0.85 M = 0.82 M = 0.734
Minimise: CD CD CD

Subject to: CL = 0 CL ≥ CLorig CL ≥ CLorig

z ≥ zNACA0012 A ≥ Aorig CM ≥ CMorig

A ≥ Aorig

Refinement Parameters: t = 0.1,w = 3,m = 3 t = 0.1,w = 3,m = 3 t = 0.1,w = 3,m = 3

Table 2. Test specifications for inviscid drag reduction cases.
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b) NACA0012→ RAE2822 (Close-up)
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Figure 8. Results for the inverse design optimisations. Numbers represent the number of design variables at the end of each optimisation
phase.
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a) Symmetric NACA0012

Mesh Res. CD

129 × 129 469.41
257 × 257 469.35
513 × 513 469.41
1025 × 513 469.41

b) Lifting NACA0012

Mesh Res. CD CL CM

257 × 129 359.84 0.394 0.0781
513 × 257 360.49 0.396 0.0787

1025 × 513 361.13 0.397 0.0792
2049 × 513 360.03 0.396 0.787

c) RAE2822

Mesh Res. CD CL CM

257 × 129 233.38 1.016 1.464
513 × 257 234.08 1.021 1.477

1025 × 513 234.13 1.022 1.479
2049 × 513 234.02 1.022 1.479

Table 3. Mesh convergence results for all three inviscid drag reduction cases.

1. Symmetric NACA0012

This test case was originally outlined by the Aerodynamic Design Optimisation Discussion Group51 and describes
the inviscid drag reduction of a NACA0012 at M = 0.85 and α = 0 under the constraint that the local thickness can
only increase. A considerable number of papers have been published on this case1,2,52–60 and it has been shown to
be a particularly difficult problem due to a range of characteristics such as multiple local minima58, non-symmetric
solutions59 and hysteresis60. In this previous work, results ranging from 100 to 25 drag counts have been reported
with the best cases produced by Lee and Zingg et al59, 42 counts, Bisson and Nadarajah55, 25 counts, and Masters et
al.58, 25 counts.

Due to the symmetry of the problem a symmetry plane was aligned with the aerofoil chord and just half the mesh
was solved. This meant that only half of the aerofoil surface, and therefore only half of the subdivision curve, needed
to be modelled. For this reason each subdivision level has half the number of control points and design variables used
in the other optimisation cases.

The local thickness constraint for this case can be expressed as a linear transformation of the design variables so is
enforced as linear constraint in SNOPT (at every chord-wise percentile). This enables SNOPT to efficiently satisfy it
at every iteration major and minor iteration. For this optimisation each CFD run was initialised from the previous best
solution. This was found to decrease the computation time for solutions close to the best geometry and have a small
negative impact on those far away. This resulted in a significant reduction in overall computation time. It was also
found to increase the chances of a similar solution being found when multiple solutions exist59,60. This is believed to
be the main contributor to the improvement in results compared to previous work from the authors58,61.

For this case no improvement was made at subdivision level 1 (with 2 design variables) therefore only levels two
and above are included in the results (displayed in figures 11-13). The drag convergence histories in figure 11 show that
the single-level methods improve with fidelity up to level 5 after which they fail to successfully exploit the available
design space. This can further be seen in figures 12 and 13 where the single-level results show significantly different
aerofoil shapes and CP distributions to the optimum found. In particular the aerofoil shapes for levels 6, 7 and 8 are not
very smooth. The formation of these non-smooth shapes is likely to be the reason for their premature stagnation which
is in agreement with the conclusions of Masters et al.58. It can then be seen that the multi-level methods all converge
to good results and all surpass those from the single-level methods. In this case the ‘3→ 8’ method produces the best
result of 15.7 drag counts. Figures 12 and 13 show that all three of the multi-level methods converge to similar aerofoil
shapes though there are some small discrepancies in the CP distributions. Interestingly, even though the ‘2 → 8’ and
‘4 → 8’ methods converge to very similar drag values they have slightly different CP distributions at the leading and
trailing edges. This indicates that there may be some degree of multi-modality around the optimum solution.

A limited study was also done on the effects of increasing the mesh resolution. For this the ‘3 → 8’ multi-level
optimisation was run with increased mesh resolutions of ‘513 × 513’ and ‘1025 × 513’. The refinement parameters
were also relaxed to t = 0.01, w = 7 and m = 7. This was done to ensure the best final results were achieved, though at
the cost of some efficiency. The convergence histories for these optimisations are displayed in figure 14 and show that
the all three mesh resolutions produce similar results up to approximately 16 drag counts where the increased mesh
resolution allows a further reduction in drag over the initial result. The final drag results are then summarised in table
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Figure 9. Comparison of finite-difference and adjoint gradients calculated for the level 8 control points on 513 × 257 mesh.

5 which show that the finest mesh produces the best result of 4.2 drag counts. Figures 15a and 15b then show the
aerofoil shapes and pressure distributions for these cases. They show that the optimised trailing edge geometries are
very similar though show some notable differences in their pressure distributions.

It appears that these increased resolution results are converging to zero as the number of surface points is increased.
As the solutions appear to be shock free this would represent a reduction in the numerical drag as would be expected.
An attempt was made to run the final shapes with an increased mesh resolution in an attempt further reduce the final
drag. Difficulties were however encountered with the hysteresis present at the design point for these solutions. It
was found that the ‘lower branch’ drag solution was unattainable from a uniform initialisation and could not even
be achieved through a sweep in Mach number (as was used by Meheut et al.). It was therefore deemed that the full
optimisation history of solutions was crucial in attaining these solutions.

2. Lifting NACA0012

This second case describes the optimisation of a NACA0012 under non-symmetric flow conditions. The optimisation
is constrained such that the lift coefficient and total area must not decrease below their initial values. Due to the strong
influence of angle of attack on lift and drag it is included as a design variable for this case and the leading edge control
point is held fixed. Any deviation from the initial value of 1.25 is then implemented as a rotation of the aerofoil
surface mesh rather than an alteration of the the solver settings. This is done to preserve the boundary conditions
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Figure 10. Mesh used for Lifting NACA0012 optimisations.

CD (Counts)

Baseline 469.4
Single-Level 2 (3 DV) 332.2
Single-Level 3 (5 DV) 148.5
Single-Level 4 (9 DV) 65.9
Single-Level 5 (17 DV) 25.1
Single-Level 6 (33 DV) 246.5
Single-Level 7 (65 DV) 247.0
Single-Level 8 (129 DV) 144.7
Multi-Level 2→8 18.8
Multi-Level 3→8 15.7
Multi-Level 4→8 18.6

Table 4. Table of final drag results (in counts) for the inviscid NACA0012 optimisation at α = 0 and M = 0.85 with 257 × 257 mesh.

exactly throughout the optimisation. The lift and area constraints are implemented as non-linear in SNOPT for this
case. This enforces them by transforming the constrained optimisation of the objective function into the unconstrained
optimisation of an augmented Lagrangian merit function41. A consequence of this is that objective function is not
guaranteed to decrease for every iteration like in the symmetric NACA0012 problem.

The CFD solutions were again initialised from previous solutions, though as the objective function was not guar-
anteed to monotonically decrease it could not be taken as the solution with the lowest drag. The optimisations are
however guaranteed to improve (based on the constraints as well as the objective function) at every major iteration, for
this reason the previous major iteration was used for initialisation.

Figures 16-19 and table 6 show the results of this optimisation. From table 6 and the drag convergence history (fig-
ure 16) it can be seen that all four multi-level methods and single-levels 3 to 5 achieve good results. They each obtain
a final drag value of between 3 and 4 counts and converge to approximately this solutions within 20-40 iterations. The
Level 6 case does also produce a comparable result though is slightly infeasible and takes 290 iterations to converge.

Considering the pressure distributions for these low drag solutions (figure 19) it can be seen that all of them produce
shock free solutions. It is however clear from these distributions as well as the final aerofoil shapes (figure 18) that
there are large differences in the solutions. This shows that there is a range of shapes that eliminate the shock for this
test case, which by d’Alemberts paradox should exert zero drag, therefore a definitive optimum point may not be well
defined. It should also be noted that the remaining drag calculated in these cases is a result of numerical error and does

Mesh Resolution CD (Counts)

Multi-Level 3→8 257 × 257 15.7
Multi-Level 3→8 513 × 513 8.2
Multi-Level 3→8 1025 × 513 4.2

Table 5. Final drag results (in counts) for the symmetric NACA0012 optimisation with increased mesh resolution.
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Figure 11. Drag convergence for the symmetric NACA0012 optimisation. Numbers represent the number of design variables at the end of
each optimisation phase.
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Figure 12. Final aerofoil shapes for the symmetric NACA0012 optimisation.
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Figure 13. Final pressure distributions for the symmetric NACA0012 optimisation.
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not represent a physical quantity.
The single-level 7 and 8 results display similar trends to previous test cases, showing a very slow rate of conver-

gence and stopping a long way from their best possible result. In this instance the level 8 case does particularly poorly,
only achieving a final result of 80 drag counts. Looking at the final aerofoil and pressure distribution produced in
figure 19 it can be seen that a sharp step is formed on the surface around the shock and high frequency oscillations
are present in the pressure. Looking at this shape it is unsurprising that the optimiser could not find a way to navigate
away from it towards the smooth solutions found by the other cases.

It can be seen that there are some large variations in both the final objective function and constraint values. This
is surprising as it would be expected that all of the successful cases would converge to similar shapes and for those
solutions to lie on the constraint boundary. The most likely conclusion for these difficulties derive from sources of
error or noise in the objective and gradient calculations. Firstly, as many of the cases find shock-free solutions the
drag is dominated by numerical noise which can not be accounted for in the continuous gradient calculation. This will
mean that even with a physically correct gradient it may not be possible to find an improved solution along the search
direction. Secondly the continuous gradient itself has some degree of error, identified in figures 9c and 9d, which may
be more influential in this area where low gradients are expected.

Nevertheless these results again show good evidence for the robustness of using a multi-level method and the
difficulties that can arise by using high-fidelity design variables throughout a full optimisation.

α(◦) CD CL

Baseline 1.25 360.49 0.396
Single-Level 1 (5 DV) 2.20 205.53 0.349
Single-Level 2 (7 DV) 1.60 33.69 0.396
Single-Level 3 (11 DV) 0.15 3.82 0.396
Single-Level 4 (19 DV) 0.14 3.75 0.400
Single-Level 5 (35 DV) -0.15 3.27 0.397
Single-Level 6 (68 DV) -0.47 3.27 0.393
Single-Level 7 (131 DV) -0.46 11.29 0.395
Single-Level 8 (259 DV) 0.08 80.79 0.400
Multi-Level 1→8 1.14 4.03 0.407
Multi-Level 2→8 1.12 3.82 0.405
Multi-Level 3→8 0.08 3.30 0.399
Multi-Level 4→8 0.23 3.30 0.399

Table 6. Final results for the lifting NACA0012 optimisation. Red cells represent constraint violations.
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Figure 16. Drag convergence for the lifting NACA0012 optimisation. Numbers represent the number of design variables at the end of each
optimisation phase.
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Figure 17. Lift convergence for the lifting NACA0012 optimisation. Numbers represent the number of design variables at the end of each
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Figure 18. Final aerofoils for the lifting NACA0012 optimisation.
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Figure 19. Final pressure distributions for the lifting NACA0012 optimisation.
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3. RAE2822

The final optimisation presented in this work is based on ADODG test case 251 , it has however been modified to
exclude viscosity. As with the lifting NACA0012 optimisation the angle of attack is included as a design variable and
the CFD solutions are again initialised from the previous major iteration. The lift and pitching moment coefficients
and total area were also constrained such that they must not decrease. Some difficulties were however experienced
with some preliminary optimisations where a cusped leading edge was created. This lead to the CFD solutions failing
due to an overlapping mesh in this area. To avoid this behaviour a further constraint was added to enforce positive
curvature around the leading edge. This was calculated using a three-point Menger scheme62 and was applied to all
the points in the first 1% of the chord.

The results for this test case are shown in figures 20 to 24, and table 7. The drag results show that all of the multi-
level methods, as well as single-level methods for levels 3 to 5, converge to results of between 16 and 18 drag counts.
The pressure distributions in figure 24 suggest that all of these solutions are shock free. These cases also show good
convergence rates, reducing the drag to below 20 counts in 10 to 40 iterations. Figures 23 and 24 do however display
some quite large differences in the aerofoil shapes and pressure distributions. This suggest, in a similar fashion to the
lifting NACA0012 case, there are a range of solutions that eliminate the shocks.

The single-level 7 case also achieved a comparable result of 19 drag counts though interestingly figure 24 shows
that a significant shock is still present. It appears that for this case the optimiser has found a solution with a portion
of back-pressure that cancels some of the wave drag. The single-level 8 case again displays difficulties exploiting its
available design space, obtaining a final drag of just 157 counts. Similarly the single-level 6 case stagnates after only
5 iterations with 131 counts.

Much like for the lifting NACA0012 case some difficulties were experienced converging to consistent, feasible
minima; this can most likely be attributed to similar difficulties obtaining accurate gradients. These difficulties are
however compounded by the additional pitching moment constraint. As a result a significant number of the constraints
have been violated by small amounts (table 7). Despite these difficulties, this case again shows the benefits achieved
by using the multi-level methods relative to the high-dimensional single-level parametrisations.

α(◦) CD CL CM

Baseline 2.79 234.07 1.021 0.1477
Single-Level 1 (5 DV) 2.88 96.13 1.007 0.1411
Single-Level 2 (7 DV) 2.34 35.96 1.021 0.1478
Single-Level 3 (11 DV) 2.12 16.93 1.020 0.1475
Single-Level 4 (19 DV) 2.23 17.38 1.020 0.1480
Single-Level 5 (35 DV) 2.17 18.02 1.019 0.1424
Single-Level 6 (68 DV) 2.64 130.91 0.961 0.1136
Single-Level 7 (131 DV) 2.06 18.72 1.019 0.1465
Single-Level 8 (259 DV) 2.44 156.89 1.037 0.1471
Multi-Level 1→8 2.15 17.50 1.016 0.1466
Multi-Level 2→8 1.92 16.51 1.020 0.1475
Multi-Level 3→8 2.18 16.82 1.018 0.1472
Multi-Level 4→8 2.23 17.76 1.021 0.1476

Table 7. Final results for the RAE2822 optimisation. Red cells represent constraint violations.

VII. Conclusions
In this work a multi-level subdivision parameterisation scheme has been tested on a series of optimisation problems and
have been compared to a range of single-level subdivision parameterisations that are equivalent to cubic B-splines. In
total nine test cases have been investigated, three geometric shape matching cases, three inverse design cases and three
inviscid drag reduction cases. These provide a range of tests that vary significantly in their computational requirements
and complexity.

The geometric shape matching cases represent the simplest of the optimisations. For all three of the tests all of
the individual cases reach a consistent local minimum. It was however found that by using the multi-level methods
compared to the single-level methods the optima could be reached with 20-60% fewer iterations.

The three inverse design cases then represent a significant increase in complexity compared to the geometry match-
ing optimisations. For these cases it was found that some of the high-fidelity single-level methods stopped prematurely
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Figure 20. Drag convergence for the RAE2822 optimisation. Numbers represent the number of design variables at the end of each optimi-
sation phase.
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Figure 21. Lift convergence for the RAE2822 optimisation. Numbers represent the number of design variables at the end of each optimi-
sation phase.
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Figure 22. Pitching moment convergence for the RAE2822 optimisation. Numbers represent the number of design variables at the end of
each optimisation phase.
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Figure 23. Final aerofoils for the RAE2822 optimisation.
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Figure 24. Final pressure distributions for the RAE2822 optimisation.

and failed to fully exploit the available design space. The multi-level methods, however, did not have this problem and
all reached a consistent minimum. In some instances this meant that the multi-level methods found solutions orders of
magnitude better than the single-level cases.

The three drag reduction cases then represent the most complex optimisations investigated. For all three of these
optimisations the multi-level cases, and the first five single-level cases all appeared to converge to good, consistent
results. This however was not the case for the higher level single-level methods, which typically struggled to even
achieve results equivalent to their lower dimensional alternatives.

The main difference between the three cases was whether or not the optimum result could be achieved with a
low number of design variables. In the case of the lifting NACA0012 and the RAE2822 optimisations a shock free
solution was achieved with only 11 design variables (single-level 3), therefore the multi-level methods could only
match these results. For the symmetric NACA0012 case however, it seems that a high dimensional design space was
required to achieve the optimum, this was not possible using single-level methods due to the difficulties of navigating
the high dimensional space. As a result, all of the multi-level methods outperformed the best single-level case with the
‘3→8’ method producing the best result of 15.7 drag counts. Further improvement on this result was then achieved
by increasing the mesh resolution by a factor of 8. This yielded a final drag count of just 4.2; this is a significant
improvement on the previously published results for this test case.

In conclusion, it was found that significant robustness and convergence difficulties were experienced if a large,
fixed number of design variables were used for the full duration of an optimisation process. As a consequence this
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meant that potentially beneficial high-dimensional design spaces could not be utilised reliably. This was however
overcome by using a multi-level subdivision parameterisation that started the optimisation with a low number of
design variables then increased them throughout the process. It was found that by using this approach robust and
efficient performance could be achieved across all nine of the optimisations, with the high-dimensional design space
available consistently exploited where possible. In some instances this enabled the multi-level methods to achieved
results orders of magnitude better than the single-level control group.
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