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Abstract  

Osteoarthritis (OA) and rheumatoid arthritis (RA) are the most prevalent of all the rheumatic 

diseases and currently, there are no reliable biochemical measures for early diagnosis or 

predicting who is likely to progress. Early diagnosis is important for making decisions on treatment 

options and for better management of patients. This narrative review highlights the first-

generation biomarkers identified over the last 2 decades and focuses on the discovery and 

validation of candidate OA biomarkers from recent mass spectrometry-based proteomic studies 

for diagnosis and monitoring disease outcomes in human. It discusses the challenges and 

opportunities for discovery of novel biomarkers, progress in the development of techniques for 

measuring biomarkers, and provide directions for future discovery and validation of biomarkers 

for OA and RA. 
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Introduction 

Arthritis is one of the most common causes of pain and disability in the community, affecting 

people of all ages and gender although it is more common in women than man. Arthritis is a major 

drain on the economy due to loss of productivity and absence in the work place, medical and non-

medical costs and costs incurred due to poor quality of life. Many of these costs adversely affect 

the patients and their families [1-3] and therefore arthritis is a major socioeconomic problem 

today. There are approximately 200 different arthritides of which osteoarthritis (OA) and 

rheumatoid arthritis (RA) are the most prevalent. In this review, we focus on the discovery of OA 

biomarkers from recent proteomic studies and discuss the opportunities and challenges 

associated with mass spectrometry (MS)-based identification of proteomic biomarkers and their 

development into suitable point of care diagnostic tests. We draw on our recent experiences of 

discovery and validation of OA biomarkers and provide directions for future research in this field. 

 

Pathophysiology of OA 

OA is a disease of the synovial joint organ where patient clinically present with symptoms such as 

chronic joint pain, tenderness, stiffness and crepitus (cracking) of joints with movement [4]. It is 

the most common chronic joint disease [5] and is becoming increasingly prevalent as the 

population ages. Obesity is a major risk factor for developing OA and recent data suggests that 

there will be an epidemic of obesity-related OA in the general population in the future [6]. By 2020, 

OA will be the fourth leading cause of disability in the world [7]. It is estimated that in UK 

radiographic evidence of OA is present in as many as 80% of the people who are in their late 50s 

[8]. The common joint sites affected by OA include knee, hip, hand, spine and big toes. The risk 

factors for developing OA at different joint site are very different but the processes of joint 

damage following the initial trigger is similar at all joint sites. Knee OA is the most common and 

two regions of the knee joint are usually affected, the tibiofemoral (TFJ) and patellofemoral (PFJ) 

areas, although the TFJ compartment is commonly affected first. OA pathology is characterised by 

focal loss of cartilage, especially in early stages of the disease, osteophytes, sclerosis, variable 

inflammation of the synovium and the presence of cysts [9]. The progressive loss of articular 

cartilage (AC), involves degradation of articular cartilage, alongside attempted repair [10].  
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The American College of Rheumatology (ACR) has developed diagnostic criteria for OA at various 

joint sites [11-13] based on the original diagnostic criteria developed by Kellgren and Lawrance 

[14]. OA develops over many years and can be asymptomatic and is active at sub-clinical level long 

before a diagnosis can be made. Therefore, new and more sensitive tools are required for studies 

of OA and many joint tissue-specific molecules have been investigated as potential markers of the 

disease process(es) in OA.  

 

Pathophysiology of RA 

RA is a systemic chronic inflammatory disease where patient clinically present with symptoms 

such as tenderness, swollen and morning stiffness of the affected joints. It is typically 

characterised by bone resorption, inflammation of the synovium and cartilage loss [15]. RA causes 

progressive destruction of cartilage and bone with radiographic joint erosion being the most 

important outcome measure [16, 17]. The aetiology of RA is unknown but historic and recent 

studies suggest that both genetic (particularly HLA-DRB1) and environmental (smoking, lifestyle, 

socioeconomic status etc.) factors are involved in the pathophysiology of RA [18-20]. Interestingly, 

a small percentage of patients with RA enter remission after about two years, and approximately 

20% develop chronic progressive disease despite receiving treatment [21]. 

The presence of inflammatory cells and pro-inflammatory cytokines in synovial fluid (SF), and 

circulatory auto-antibodies such as rheumatoid factors (RFs) and anti-citrullinated protein 

antibodies (ACPAs) are also hallmarks of RA. RFs and ACPAs are auto-antibodies against self-IgG 

and citrullinated peptides respectively and their presence correlate with more severe disease 

progression and a higher mortality in RA patients [22, 23]. Recent studies have also identified 

epigenetic events (including DNA methylation, histone modification, and microRNA expression) 

and microbiome associated risk factors for development of RA. For an excellent review of these 

risk factors please see the article by Firestein et al [24]. RA often leads to extra-articular risks such 

as increased cardiovascular disease [25] leading to functional impairment, long-term disability and 

mortality [26, 27]. 

 

In 1987, the ACR developed the RA classification criteria partly to help maximise homogeneous 

populations for clinical trials [28]. However, the sensitivity and specificity of the criteria in early RA 

were 40-60% and 80-90% respectively and therefore unsuitable for diagnosis of early RA [29]. The 
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diagnosis of early RA depends on the onset of symptoms and can only really be given by the 

patients themselves which can be inaccurate, biased and therefore unreliable [30]. In 2010, the 

ACR and the European League Against Rheumatism (EULAR) suggested a new classification criteria 

for RA, to improve the sensitivity of detection of early RA by focusing on identifying chronic 

erosive disease [31]. This new classification cannot solely be used for definite diagnosis of RA but 

only support it as the criteria involve the scoring of both clinical and laboratory measures to 

establish a diagnosis of RA including the numbers of small or large joints, the length of the disease, 

the presence of serum autoantibodies and the increase of acute phase reactants. 

 

Over the years, studies have suggested that the early treatment of RA is correlated with better 

outcomes in patients which led to the concept of “window of opportunity” [32]. This concept is 

now widely accepted in the scientific community and support that treatment during a specific 

window during the early course of the disease could alter the progression of the disease by 

preventing inflammation and erosion leading to a long-term improvement [32-34]. Identification 

of specific and reliable serological markers of RA is a crucial unmet need in the field and the 

availability of such biomarkers will improve patient care via early diagnosis and identification of 

the “window of opportunity” for more effective treatment.  

 

Diagnosis of OA and RA and possible role of biomarkers  

Currently, conventional radiography is the ‘gold’ standard for diagnosis and monitoring OA 

however plain x-ray is rather insensitive and provides little or no information on soft tissues. 

Additionally, actual cartilage thickness cannot be measured directly by x-ray and so the loss of 

joint space width (JSW) is used as a substitute and usually by the time a definite radiographic 

diagnosis is made, the disease is often in advanced stages [35]. To improve detection, Magnetic 

Resonance Imaging (MRI) can be used early on and can be predictive of radiographic change as it 

can directly visualise all articular tissues [36], but may not be cost-effective. Plain x-ray is also used 

to assess joint erosions and loss of joint space in RA. Ultrasonography can detect synovitis and 

cortical bone lesions in RA [37, 38] and is increasingly used for diagnosis of RA. Several 

independent studies have showed that ultrasound was better than clinical examination in up to 

75% of patients [39], and in 2013 ultrasonography and MRI were recommended by EULAR to help 

confirm the diagnosis of RA [38].  
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Dual-energy X-ray absorptiometry (DXA), bone mineral density (BMD) can be measured at specific 

regions of interest (ROI) in OA. Increased BMD is associated with an increase in Kellgren and 

Lawrence (KL) score, sub-chondral sclerosis and minimum JSW. DXA has its limitations whereby 

the position of the knee must be identical in serial readings for accurate data. Soft tissue swelling 

may prevent the full extension of the knee preventing the DXA image from being within the ROI. 

There is also an overlap in BMD readings between OA and non-OA patients using DXA [40]. 

Scintigraphy bone scans have been used in research for investigation and assessment of early OA 

and can provide crucial information on the underlying pathology of the disease process [41], 

however, it delivers a relatively high radiation dose. Accordingly, new more sensitive and less 

invasive tools are required for both early diagnosis and monitoring disease progression in OA.  

 

There are several common pathological features in OA and RA including loss of cartilage, changes 

in the subchondral bone and synovium inflammation. However, the pattern of changes in each of 

the joint tissues in the two conditions is very different. For example, in early OA cartilage loss 

tends to be focal while in RA, cartilage is lost from the whole of the articulating surface of the 

affected joints. There is increased bone remodelling in OA while in RA there is a loss of bone, and 

RA is typified by marked inflammation of the synovial membrane while only mild to moderate 

inflammation of the synovium is usually seen in OA. These pathological changes in the joint tissues 

of OA and RA lead to release of joint tissue-specific biomarkers into the SF, serum and eventually 

urine. Therefore, the concentrations of these biomarkers in the body fluids is likely to reflect the 

different disease processes in OA and RA joints.  

 

Over the last two decades, a large number of biomarkers have been identified for the investigation 

of OA and RA and extensive studies of biomarkers in vitro as well as in vivo (in OA and RA patients) 

have led to the identification of some biomarkers which are clearly useful and others of 

questionable value. Many of these biomarkers have been validated in our laboratory using well-

characterised cohorts of patients [10, 40, 42]. For example, our early studies demonstrated that SF 

osteocalcin (OC) (a marker of bone formation) correlates positively with scintigraphy scan 

abnormalities [43] while serum OC and markers of bone degradation N-telopeptide of type I 

collagen (NTX) were unrelated to scintigraphy scan abnormalities [44]. Serum markers of cartilage 

and synovial tissue turnover (cartilage oligomeric matrix protein (COMP), cartilage glycoprotein-39 
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(YKL-40), hyaluronic acid (HA) and sensitive C-reactive protein (senCRP)) were higher in patients 

with scintiscan negative knees compared to scintiscan positive ones [44]. These studies helped to 

identify biomarkers for the different pathological processes (e.g. bone remodelling, cartilage loss 

etc.) in arthritic joints, but none of these biomarkers is sufficiently specific for use in individual 

patients.  

 

Elevated levels of autoantibodies such as RFs and ACPAs are good indicators of the presence of RA. 

RF antibodies are not strictly specific for RA but can be detected in the serum of 70 to 80% of 

patients with RA and therefore are important diagnostic and prognostic marker of RA. ACPAs are 

the most specific biomarker for RA so far, with sensitivity and specificity of 67% and 95% 

respectively [45]. ACPAs appear as early as 10-14 years before the beginning of symptoms and 

therefore a reliable marker of disease progression in RA [46, 47]. In addition, acute phase 

reactants (APR) biomarkers are usually used to assess RA activity which includes Erythrocyte 

sedimentation rate (ESR) and C-reactive protein (CRP) but their sensitivity and specificity are lower 

than autoantibodies [48]. 

 

Biomarkers are a non-invasive way of measuring disease activity in RA and OA, and provide a cost-

effective way of investigating these diseases. For example, there are a number of commercially 

available biomarker assay kits for investigation of OA and RA (such as COMP, C-telopeptide of type 

II collagen (CTX II), HA etc.) which cost on average about £500 for 96 tests, and will do 40 samples 

when assayed in duplicate (£12.5/sample). These kits are much cheaper than the NHS costs for 

adults x-ray and MRI (without contrast) for a single knee which are £46 and £145 respectively and 

costs 2 to 3 times more in private sectors [49] 

The more information about arthritis that health workers can glean from results of these assays, 

the more able they will be, in the future, to diagnose early and treat the diseases appropriately. In 

the long-term, this could potentially reduce the economic burden due to medical and non-medical 

costs, lost working hours and increase the quality of life for the patients and their families. 

Biomarkers can provide information about the pathology at the time of sampling [40], can be used 

for early detection of the disease and monitor effect of treatment. Most currently available 

biomarkers can be classified as markers of a particular process e.g. synthesis, degradation and 

turnover. However, in 2006 a classification system of OA biomarkers known as the “BIPED” 

(Burden of disease, Investigative, Prognostic, Efficacy of intervention and Diagnostic) was 
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proposed by Bauer et al [50] in order to improve our understanding and to help disseminate the 

results of OA biomarker studies with a common language. Despite the active research in this field, 

none of the first-generation biomarkers discussed above (except ACPAs) have proven to be 

sufficiently specific for early diagnosis, predicts the course of disease with time, or monitor 

response to therapy for either OA or RA. The recent advances in the proteomic technology are 

providing a new opportunity for discovery of better biomarkers. The omics technologies 

collectively have already resulted in more than 150,000 papers on biomarkers, but only about 100 

biomarkers have been validated for routine clinical practice for various disorders other than 

arthritis [51].  

 

The mass spectrometry technology  

The development of new technologies in the proteomics field have been driven by the necessity to 

detect and quantify the vast abundance of proteins/peptides in biological samples, providing 

insight into the biological and pathophysiological processes, leading to the discovery of new 

biomarkers for investigation of many chronic diseases. A number of different MS-based proteomic 

technics have become available in the last decade (see Table 1) as the primary instrument for 

largescale protein analysis and are constantly improving in terms of mass accuracy, resolution and 

sensitivity to face the analytical challenges of the rich protein range of biological samples. 

Proteomic discovery studies are commonly used to give a proteome overview of a given sample, in 

the medical context that may aim to detect/quantify the expression of proteins changes related to 

a different condition such as disease versus healthy states. 
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Table1: Range of MS-based proteomic techniques currently available for biomarker discovery 

Mass spectrometry 

Ionization 
Techniques 

Electrospray ionization (ESI) 

Matrix-assisted laser desorption ionization (MALDI) 

Surface-enhanced desorption ionization (SELDI) 

Mass analyser 

Linear ion trap (LIT or LT) 

Quadrupole (Q) 

Time-of-flight/time-of-flight mass spectrometry (TOF/TOF-MS) 

Fourier transform ion cyclotron mass spectrometry (FTMS) 

Ion Trap 

Quantification 
Techniques using 

mass 
spectrometry 

Relative quantification 

Isotope-coded affinity tag (ICAT) 

Non selective isotope-coded protein labelling (ICPL) 

O16 / O18 labelling 

Stable isotope labelling of amino acids in mammals (SILAM) 

Stable isotope labelling with amino acids in cell culture (SILAC) 

Label free quantification (LFQ) (semi  quantitative approach) 

Relative & absolute quantification 

Isobaric tags for relative and absolute quantification (iTRAQ®) 

Tandem mass tags (TMT®) 

Isobaric peptide termini labelling (IPTL) 

Absolute quantification 

Absolute quantification (AQUA),  

Quantification concatemer (QconCAT) 

Protein Standard Absolute Quantification (PSAQTM) 

 

Mass spectrometers are composed of three important components: an ion source, a mass 

analyser, and an ion detector. Molecules are first converted into gas-phase ions (ionisation 

techniques). Ions are then separated in a mass analyser on the basis of mass-to-charge ratio and 

finally, ion strike a detector generating a record of the number of events or the electrical current 

created [52, 53]. In short, two strategies could be summarised for proteomic studies: analysing the 

full-length protein (top-down method) and analysing peptide resulting from enzymatic digestion of 

the proteins (bottom-up method). “Top-down” protein analysis approach allows for the 

measurement of whole intact protein permitting a full characterisation of the protein (such as 

molecular weight, protein type, location and relative abundance of post-translational 

modifications (PTM)) [54, 55]. It requires little time for sample preparation however, this method 

can be challenging due to difficulties with protein fractionation, reduced ionisation, longer MS 

acquisition times and detection for proteins with increasing molecular weight [56, 57].  
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The “Bottom-up” proteomics approach also called “shotgun” is the most commonly used MS-

based method for protein analysis [53, 58, 59]. It consists of identifying proteins by analysis of 

peptides levels released by enzymatically or chemically cleaved into proteines. Digested peptides 

are separated by LC before being ionised and subject to tandem MS (MS/MS) that provides a 

spectrum for each peptide. Using an algorithm, acquired MS/MS spectrums can be compared to in 

silico proteins sequences in a database for identifications. However this method is insensitive to 

protein isoforms; for instance, it may not identify PTMs that occur on peptides, causing their 

relation to one another to be lost following digestion [52].  

 

There are numerous mass spectrometers that can be used in proteome research [60]. The 

combination of MS instrument allows for a better accuracy, sensitivity and speed of analysis going 

beyond identification and allowing for quantification of peptides/proteins of interest. Indeed, over 

the years different strategies have been developed for relative quantification and absolute 

quantification. The former providing measurement of protein levels amongst different samples 

expressed in fold change of protein abundance and the later providing exact measurement of a 

protein using both stable isotope label and label-free approaches (Table 1). At present, there is no 

method or instrument that is able to identify and quantify in single-step operation the 

components of a complex protein sample [60]. 

 

When it comes to choosing the best MS-based approach for accurate protein quantification or 

biomarker discovery, one should consider the reproducibility of the assay, the representation of 

the protein spectrum that will be analysed (low-abundance protein) or/and the need for detection 

of PTM. In addition, the methods utilised prior to quantitative MS such as depletion, enrichment 

and fractionation should be carefully considered as they can introduce error in the measurement 

of the original sample. 

 

Stable Isotope labelling consists of labelling a protein or peptides of interests metabolically or 

chemically with a differential mass tag that will alter its mass but not its chemical properties 

during chromatography or MS [61]. The principle is to use MS to compare the amounts of a 

labelled molecule “heavy” (known concentration) against the endogenous “light” isoforms to 

determine the relative or absolute quantification in a sample [61]. In contrast, the label-free 

approach can achieve relative quantification based on peptide peak intensity and spectral 
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counting. These approaches and their uses have been widely described and published in many 

reviews [62, 63] so we are not going into further details regarding their application but rather 

emphasise that any methodology used will have pros and cons and will define the type of 

biomarkers selected. For instance, the label-free approach as described by Wasinger et al, will be 

less consistent for low mass proteins and more reliable for higher abundant proteins as more 

abundant proteins will produce more MS/MS spectra. It has also been reported that relative 

quantification by using peak intensity measurements could be affected by condition variation such 

as instrument calibration and sensitivity in a long-term project and introduce up to 40% 

discrepancy at the peptide level between samples [62]. However, label free techniques are fast, 

easy and inexpensive to perform and offer an alternative to isotope labelling [62, 64]. 

Contemporary mass spectrometers have exceptional sensitivity, providing detection at attomole 

concentrations [65]. However, although MS-based proteomics allows for broad analysis of high 

abundant proteins it has still not overcome the challenge of analysing low abundant protein in 

complex biological samples.  

 

3. Biomarkers from recent proteomic studies 

With the rapid recrudescence of the omics technologies, identification of disease specific 

biomarkers is greater than ever, and many potential new biomarkers for OA have been identified 

during the last 6 year (Table 2). A broad range of different biological samples, including articular 

cartilage from femoral heads and knee, SF, serum and urine, have been investigated in proteomic 

studies to inform about the differential expression and composition of molecules involved in OA 

disease.  
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Table 2: A list of the MS- based proteomic studies in the last 6 years comparing results of analysis 

of samples from OA, RA patients and control subjects. (Listed from old to new publication) 

 

Proteins/peptides of interest  Method Sample 

Protein 
confirmed by 

WB and/or 
ELISA 

Reference 

170 targets detected with 6 
identified proteins only found 
in healthy and 9 only in OA 

LC-LTQ 
Articular cartilage vesicles 
isolated from 10 normal and 
10 OA human knee cartilages 

None [66] 

4 targets detected with 2 
identified as C3f and V65 
showing differential expression 
in OA in comparison to RA and 
healthy control  

SELDI-TOF 

Sera from diagnosed OA 
patients, diagnosed RA 
patients and individuals with 
no inflammatory / joint 
disease history 

None [67] 

368 targets detected with 357 
relatively quantified and 38 
significantly modulated when 
chondrocyte stimulation with 
IL-1β.  

LC-MALDI-
TOF/TOF 

Chondrocytes isolated from 
articular cartilage of patients 
OA undergoing total joint 
replacement.  

None [68] 

262 targets detected with 6 
proteins differentially 
expressed in moderate OA, 13 
in severe OA and 7 in both. 

LC-MALDI 
TOF/TOF 
(iTRAQ) 

Sera from 50 moderate OA 
patients, 50 severe OA 
patients and 50 
asymptomatic controls 

None [69] 

136 targets detected with 17 
proteins identified as more 
abundant in OA than RA and 16 
more abundant in RA than OA.  

LC-MALDI-
TOF/TOF 

SF samples from 20 OA 
patients and 20 RA patients 
 

FINC, GELS [70] 

13 targets detected with 2 
peptides of interest Fib3-1 and 
Fib3-2 found increased in OA 
patients compared to control 

LC-MS/MS 
(Ion Trap) 

Urine samples from 10 
women undergoing knee 
replacement surgery and 5 
healthy women 

Fib3-1, 
Fib3-2 

[71] 

37 protein peaks in OA patients 
differed from RA patients. 3 
peaks identified as potential 
biomarkers of OA, only 1 
identified. 

SELDI-TOF-
MS 

SF samples from 36 patients 
with OA and 24 with RA 

S100A12 [72] 

66 targets detected, 
differentially expressed in 
healthy and OA SF 

MALDI-
TOF/LC-

triple 

SF samples from 10 control 
subjects, 10 patients with 
early-stage OA, and 10 
patients with late-stage OA 

None [73] 

Apolipoprotein C-I, C-III, and an 
isoform of transthyretin 
differed significantly between 
progressors and non-
progressors 

SELDI-TOF 

Plasma samples from 25 OA 
patients undergoing 
radiographic progression; 33 
with nonprogression, and 11 
healthy donors 

None [74] 

252 targets detected. 9 
proteins differentially 
expressed by chondrocyte after 
IL-1 β stimulation 

LC-LTQ/ LC-
TQ 

(QconCAT) 

Articular cartilage from 
patient undergoing total knee 
arthroplasty due to OA 

None [75] 

106 proteins quantified for 
early- OA and 118  for late-OA 
of which 31 and 38 proteins 
were differentially expressed 

LC-MS/MS 
(O16 

labelling) 

SF from 5 patient with early 
shoulder OA, 4 with late 
shoulder OA and 5 control 
individuals 

Tenascin, 
Complement 
factor D and 

Aggrecan 

[76] 
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310 targets detected with 55 
proteins increased in OA 
cartilage and 21 decreased in 
OA cartilage compared with 
control 

LC-MALDI/ 
iTRAQ 

Articular cartilage from 16 
patients with OA and 
Articular cartilage from 6 
femoral neck fracture for the 
control group 

LECT2, BAALC 
and PRDX6 

[77] 

575 targets detected with 92 
proteins upregulated and 43 
downregulated in RA SF 
compared to OA 

LC-MS/MS 
(LTQ-

Orbitrap / 
iTRAQ) 

SF samples from affected 
knees of 10 RA and 10 OA 
patients 

CAPG [78] 

677 targets detected among 
which 545 have not been 
previously reported 

LC-LTQ-FT 
Orbitrap/ 
LC-triple 

quadrupole 

SF samples from 10 OA 
patients 

None [79] 

Identification of 12 novel 
COMP neopeptides from RA, 
OA or trauma patients 

Ion Trap 
(MS/MS) 

SF from patients with acute 
knee pain, established OA, 
and established RA 

COMP-Ser77 [80] 

76 targets detected classified in 
3 different group profile 
according to their release from 
the cartilage 

2D-LC-
MALDI 

TOF/TOF 
(iTRAQ) 

Articular cartilage from 4 OA 
patient undergoing joint 
replacement and 4 patient 
with no history of joint 
disease (N) 

Osteoprotegerin, 
periostin 

[81] 

~2400 targets detected with 
269 showing differential levels 
between OA and control.  

LC- LTQ-
Orbitrap 

Chondrocytes isolated from 
articular cartilage of 10 
patients OA undergoing knee 
replacement surgery and 6 
normal donors with no 
history of joint disease  

GSTP1, PLS3 [82] 

29 targets detected with 22 
upregulation proteins and 7 
downregulation in the OA 
group. Haptoglobin protein 
identified as positively 
correlated with the severity of 
OA 

2DE/(MALDI-
TOF/TOF 

MS) 

SF proteins obtained from 10 
knee OA patients and 10 non-
OA patients. 

Haptoglobin [83] 

2-DE: two-dimensional gel electrophoresis; ANPEP: alanyl (membrane) aminopeptidase; BAALC: brain and acute 
leukemia cytoplasmic; CAPG: macrophage capping protein; CHST14: carbohydrate sulfotransferase 14; COMP-Ser77: 
cartilage oligomeric matrix protein (neopeptide) serine77; DKK3: dickkopf WNT signalling pathway inhibitor 3; ELISA: 
enzyme-linked immunosorbent assay; Fib3-1: fibulin 3-1, Fib3-2: fibulin 3-2; FINC: fibronectin; FT: Fourier transform 
ion cyclotron resonance; GELS: gelsolin; GSTP1: Glutathione S-transferase P1; LC: liquid chromatography; LECT2: 
leukocyte cell derived chemotaxin-2; LTQ: linear trap quadrupole; OGN: osteoglycin, PLS3: Plastin-3; PRDX6: 
peroxiredoxin-6; S100A12: calcium binding protein A12; TQ: triple quadrupole; WB: Western Blot. 

 

 

These recent studies have led to the discovery of many potential new OA biomarkers which 

undoubtedly will be investigated widely to establish their value as markers of OA in a similar way 

to the first-generation biomarkers for OA and other joint diseases. From the studies reported in 

table 2, 10 studies confirmed differential expression of proteins/peptides identified by MS using a 

different methodology such as western blot, ELISA or immunohistochemistry. The majority of the 

studies specifically chose to validate their proteins using commercially available antibodies or 

ELISA kits. Only two studies developed their own antibodies [71, 80].  



 14 

In order to identify proteins that are differentially expressed between OA and RA, several groups 

used quantitative proteomic to profile SF obtained from OA and RA patients. A comparative study 

conducted by Mateo et al revealed differential expression of some proteins that could constitute 

potential disease biomarkers [70]. Particularly, fibronectin and gelosin have been identified as 

candidate proteins, as their level increased in SF from OA patient and were chosen to be verified 

for their reported value as biomarkers by western blotting with commercially available antibodies. 

Han et al, also conducted a study comparing SF of OA and RA patients and he too identified a 

protein of interest upregulated in OA patients compared to RA called S100A12 (calcium binding 

protein A12) that has been verified by western blotting [72]. Although these specific studies did 

not include different stages of the diseases and show no comparison with control group patients, 

recent studies confirmed fibronectin and S100A12 as potential new biomarker for OA. Indeed, in 

the literature it has been reported by different groups that fibronectin fragment (initially resulting 

from articular cartilage matrix degradation [84]) is present in high concentration in the cartilage of 

patients with OA and if added to human cartilage explants culture promoted further degradation 

of the cartilage [84, 85]. Wang et al, reported a study where they correlated the level of S100A12 

in serum and SF with the clinical severity of primary knee OA [86]. In addition, another study by a 

different group demonstrated that S100A12 expression significantly increased in OA cartilages, 

and consequently promoted the development of OA by up-regulating inflammatory pathways [87]. 

In 2014, Balakrishnan et al reported the largest number of protein identification from SF of OA and 

RA patients using iTRAQ labelling followed by high-resolution MS analysis. 575 proteins were 

identified out of which 135 were found to be differentially expressed in both conditions with a few 

not previously reported to be associated with RA. Only 1 protein CAPG (macrophage capping 

protein) was confirmed to be up-regulated in RA by WB. All novel proteins identified in these 

different studies should be explored further as they have been confirmed in different technics and 

could constitute a new panel of novel biomarkers for OA and RA.  

 

Henrotin and co-workers performed a study using urine samples from women with severe OA 

undergoing knee replacement and non-OA healthy individuals using LC-MS/MS (Ion Trap) [71]. 

Thirteen proteins showed significant differential expression between groups. Among these, two 

peptides named Fibulin3-1 and Fibulin3-2 (Fib), were of particular interest. After generating 

antibodies to Fib3-1 and Fib3-2, the investigators developed ELISA assays to quantify and validate 

their peptides of interest using serum from 76 patients with OA and 140 age-matched healthy 



 15 

subjects. The data from their validation study showed a significant increase of Fib3-1 and Fib3-2 in 

OA subjects. However, there was no evidence of any disease specificity and the study had a 

number of limitations including use of patients with severe, end-stage OA, who are not 

representative of the general OA population.  

 

Another group studied patients with shoulder OA which is less described in the literature in 

comparison to knee and hip OA and identified a similar pattern of protein expression in these 

three sites [76]. SF from patients with early and late OA shoulder was analysed and compared to 

control individual by MS. Wanner et al observed 31 and 38 differentially expressed proteins for 

early and late OA respectively. From these proteins, only 3 (Tenascin, complement factor D and 

aggrecan) were verified by western blotting and corroborated the MS results.  

 

MS study can be carried out in different biological samples including serum, urine, SF, bone and 

cartilage. Using the iTRAQ method, Ikeda et al identified 76 proteins with differential expression in 

OA cartilage. From these proteins, they identified three: LECT2 (leukocyte cell derived chemotaxin-

2), BAALC (brain and acute leukemia, cytoplasmic), and PRDX6 (peroxiredoxin-6), as potential 

novel biomarkers for OA [77]. The levels of expression of these proteins were verified by WB using 

commercially available antibodies on protein extract from cartilage of OA patients and control 

group. These proteins represent another group of potential new markers of OA but need to be 

further investigated.  

 

COMP is a marker of cartilage metabolism [88], which is known to be increased in cartilage [89], SF 

and serum in both OA and RA patients compared to healthy controls [90, 91]. In a recent study 

using affinity chromatography and MS, Ahrman et al have identified twelve different COMP 

neoepitopes from SF of patients with acute knee pain, established OA, and established RA. One of 

the neoepitopes Ser77, was reported to be elevated in subjects with acute knee pain group 

compared to the other two groups. Antibodies were raised against this neopeptide and an ELISA 

assay was developed. The ELISA clearly distinguished between the COMP fragments containing the 

neoepitope and the total COMP molecules, and therefore may be a suitable for monitoring 

cartilage degradation [80].  
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In 2014, Lourido et al published a quantitative proteomic analysis using iTRAQ on secretome 

(molecule released by cultured cells) from healthy human articular cartilage explants, in 

comparison to explant from different zones of osteoarthritic tissue representing unwounded 

(early disease) and wounded (advanced disease) zones [81]. A panel of 76 proteins was identified 

and shown to be differentially released by the OA tissue and the proteins profile released from 

each cartilage have been classified by cluster analysis into six different groups. The authors 

reported that osteoprotegerin and periostin proteins were decreased and increased in OA 

respectively. Osteoprotegerin is an important regulator of bone erosion [92] and known to be 

involved with periostin in bone remodelling in OA. These proteins were further verified by WB on 

independent samples from cartilage secretome. Furthermore, the group showed an increase of 

periostin in SF from OA-patient compared to non-OA patient as well as an increase of the periostin 

gene expression in OA cartilage which correlated with its abundant release from the OA cartilage 

explant. However, the authors in this study acknowledge the inconsistencies with previously 

published data about the levels of osteoprotegerin in OA patients and its correlation with the 

disease that need to be further investigated. Another MS-based study using proteome of 

chondrocytes isolated from articular cartilage of patients with OA compared to non-arthritic ones, 

identified around ~2400 proteins [82]. Amongst these proteins, 269 were differentially synthesised 

between the two groups and the authors also identified several pathways and proteins to be 

associated with OA chondrocytes. Only two proteins, GSTP1 and PLS3 (Glutathione S-transferase 

P1, Plastin-3), were validated by WB and they should be further investigated as potential markers 

of OA chondrocyte phenotype. 

 

The latest study in table 2 is from Liao et al and describes a 2-DE method, followed by protein 

identification by MS, to look at the proteomic profiles of SF from patients with OA knee compared 

to non-OA patients [83]. The OA patients were categorised into 6 grades of different OA severity 

based on the Outerbridge classification. The 2-DE revelled 29 proteins with significant differential 

expression, with 22 being upregulated and 7 downregulated in the OA group. Only one of the 

upregulated protein was confirmed to be haptoglobin by MS and by ELISA, and showed that the 

levels of haptoglobin was positively correlated with the severity of OA. Interestingly haptoglobin 

has also been identified as a potential OA biomarker in a previous study by Fernandez-Costa et al 

(from Francisco Blanco’s group) using a novel sequential depletion strategy coupled with two-

dimensional difference in-gel electrophoresis technic [93]. This study showed an upregulation of 
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haptoglobin in serum of OA patients and confirmed it by WB. All together these data show 

upregulation in serum and SF of OA-patients making haptoglobin an important protein to 

investigate as diagnostic marker for OA. Candidate biomarkers such as this one, that have been 

identified by independent groups with corroborating results should be taken to the next stage of 

biomarker development and possible clinical application. 

 

We have used MS (SELDI: Surface-enhanced laser desorption / ionisation) to compare serum from 

normal control patient, OA patients and RA patients, that led to the discovery of 4 new novel 

biomarkers of OA [67]. Two of the biomarkers, identified as C3f and V65 peptides appeared to be 

specific for OA patients in comparison to normal control (NC) as well as disease control subjects 

(RA). C3f and V65 could be detected in non-radiographic stage of OA (Kellgren & Lawrence (K&L) 

grade 0) and levels increased as the radiographic disease severity increased. The ProteinChip 

SELDI-TOF used in our proteomic study is limited to high-throughput protein profiling of 

particularly low molecular weight peptides/proteins (below 20 kDa), and this posed significant 

technical challenges for raising suitable antibodies to tiny peptides for the development of 

immunoassays (see later).  

 

Challenges in the validation of biomarkers discovered by proteomic 

The challenge facing the scientific community is the undeniable difference between the 

discoveries of candidate biomarkers every day and the number of actual biomarkers that reach 

qualification to be developed as laboratory tests (figure 1). The question of what is jamming the 

pipeline between the discovery and the validation stage has been asked many times over the 

years. Figure 2, summarises the consensual reason that has emerged to explain this difference as 

well as our one experience in validating biomarkers discovered from MS-based proteomic studies. 
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Figure 1: Current developmental stage of OA biomarkers from MS-based techniques discussed in 

this article 

 

For successful biomarker qualification and validation, patients and normal control selection, as 

well as sample collection are crucial. The collection of specimen such as serum or urine samples in 

most studies is not standardised and many markers levels are affected by demographic variables 

such as age, gender and BMI. The samples should be collected and stored in a similar way and 

ideally not defrosted more than once prior to analysis. Samples must be fully characterised with 

clinical and demographic data and where possible also characterised as progressors or non-

progressors (according to x-ray and MRI scores) for OA cohort studies. The use of poorly 

characterised samples from patients for proteomic analysis is one of the main reason why many of 

the proteomic OA biomarkers have not progressed beyond the initial discovery phase.  
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Figure 2: Possible reasons for the difficulties in validating biomarkers discovered from MS-based 

proteomic 

 

The first step in the identification of biomarkers is the selection of potential candidates based on 

relative association with biological and pathological processes. For OA disease, it might be 

molecules related to bone remodelling, synovial inflammation or cartilage damage. Commonly the 

biological samples used for discovery or comparative analysis are serum that usually contains 

more than 106-fold abundance proteins [94] which poses considerable difficulty for the detection 

of potential proteins of interest that might be present in scarce amount (often nanograms to 

pictograms). Hence the major requirement in sample processing is to maximise the concentration 

of the scarce proteins/peptides before mass spectrometric analysis. Sample processing using 

method for protein separation and purification such as 2-D Clean-Up Kit may also induce loss of 

potential proteins of interests that are already in very small quantities [95]. Moreover, when 

potential new markers are detected by MS it’s a whole new challenge to acquire the level of 

sensitivity for the detection of these proteins/peptide in standard assays for the development of 

diagnostic kits.  
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MS can detect atom quantities, therefore, it can be a real challenge to extrapolate the detection 

by mass spectroscopy to simple assays such as ELISA or Western blotting. Secondly, in standard 

assays, the serum is usually diluted which significantly decreases the amount of the scarce 

proteins of interest to often below the detection limit of the assays. Therefore, pre-processing of 

the sample to enrich the target biomarker by depleting the abundant proteins is often required 

and the sample may also have to be concentrated in order to maximise the chance of detection. 

Generally, the latter treatments work well with large protein but when dealing with very small 

protein (less than 2kDa) any pre-processing tends to remove the small proteins. For instance, 

when developing our ELISA for the detection of C3f and V65, we first depleted the serum of 

abundant large proteins with a 2kDa cut-off filter then concentrated the samples for analysis. 

However, depletion of abundant protein to enhance the concentration of the peptides of interest 

turned out to be far more challenging than we expected. C3f and V65 peptides (<2kDa) did not 

pass through the filter, they got trapped/lost within the filter membrane. When we spiked with 

large known concentrations (microgram to nanogram/ml) of the synthetic peptides none of the 

peptides could be recovered in the filtrate. 

Another major problem associated with the development of simple assays for measuring 

biomarkers derived from MS-based studies is the lack of commercially available antibodies; and 

the generation of suitable antibodies which can be challenging, time-consuming, and costly and 

therefore can impair the chance of establishing sensitive immunoassays for diagnostic use. 

Generally, the proteomic study leads to the identification of potential proteins/peptides candidate 

biomarkers. Then, in order to be verified, antibodies are produced against these candidates 

usually by immunising animals with the synthetic peptide, for development of suitable assays. As 

the exact form of the corresponding peptide/protein in the biological samples is not known, the 

epitope orientation of the synthetic peptide used for the generation of antibodies could be 

different from the endogenous one. In addition, the protein/peptide itself could be part of bigger 

molecules as well as being free. For example, we have identified C3f peptide as a specific 

biomarker for OA which is a tiny 18 amino acid complement fragment released during the 

catabolic degradation of C3b after C3 complement activation [67]. Therefore, as C3f is located 

within the whole C3 and C3b molecules, the development of specific antibodies against C3f posed 

a great challenge in our recent study. Accordingly, future studies would be advised to consider 

these issues before embarking on assay development for biomarkers identified from proteomic 

studies.  
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Recently, multiple reaction monitoring MS (MRM-MS) also known as selected reaction monitoring 

(SRM) or targeted MS method, has emerged as an intermediate stage between the discovery and 

validation of biomarkers [96]. MRM-MS, is used to counter the lack of available affinity reagents 

and antibodies for those novel protein candidates as well as allowing a better and quicker 

selection of these proteins. It is used as an accurate and quantitative multiplex filter to verify the 

specificity and sensitivity of candidates before immunoassay development and validation for 

potential biomarkers. This “verification” step consists of triaging large amounts of potential novel 

biomarkers discovered by MS-based proteomics, in biological fluids using targeted quantitative 

methods [97]. This filtering step ensures that only the most reliable candidate biomarkers progress 

to the assay development and clinical validation studies. Fernandez-Puente et al (From Francisco 

Blanco’s group) used MRM method for verification and quantitation of a selection of 14 biomarker 

candidates for OA, identified by MS-based proteomic studies and/or previously reported to be 

associated with the OA pathology [98]. This panel of proteins was first quantified in five different 

sample types (human articular chondrocytes, healthy and OA cartilage, SF and serum), and for 

verification of the results, the authors analysed the 14 potential OA biomarkers in 116 serum 

samples from OA and healthy controls. The study showed that two of the proteins (haptoglobin 

and von Willebrand Factor) were significantly increased in OA patients. This study is an example of 

how MRM can be used for further verification of potential biomarkers. In addition, the authors 

went on to measure von Willebrand Factor in serum samples from OA patient with K&L grade 2 

and 4 and in healthy subjects using Luminex assay for validation of the biomarker as a marker of 

OA.  

As described above, MS can measure large number of abundant proteins and indicate relative 

changes in abundance for small number of sample. While immunoassays and MRM technologies 

can measure a small number of lower abundance proteins but none of these techniques can do 

both. However, new complementary strategies are emerging to overcome this limitation. For 

instance, a new aptamer-based approached has been developed by using SOMAscan technology. 

SOMAscan assay is a multiplexed, highly sensitive (dynamic range from femtomolar to micromolar 

concentrations) platform that simultaneously measures >1000 analytes in biological samples [99]. 

The SOMAscan assay uses SOMAmer® (Slow Off-rate Modified Aptamers) which are single-

stranded DNA constructs that bind to native folded proteins with high affinity and have specificity 

superior to antibody-mediated detection [100]. In addition, fractionation and enrichment of low 
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abundance proteins are not required as SOMAscan assay is not susceptible to interference from 

high abundance proteins, making sample preparation much simpler compared to mass 

spectrometry methods. 

 

4. Conclusions 

Measurements of metabolic biomarkers of cartilage, bone and synovial tissue in biological 

samples, along with clinical and radiological data from patients, have led us to better understand 

the pathogenesis and structural changes in OA and RA. However, the currently available 

biomarkers (first-generation biomarkers) especially for OA have limited value in diagnosis, 

prognosis or in monitoring effect of treatment. Currently, there is a great deal of interests in MS-

based proteomic studies for discovery of biomarker and already thousands of candidates have 

been identified. However, the MS technologies come with flaws, as they can either measure a 

large number of abundant proteins, or a small number of lower abundance proteins, but not both. 

Not to mention the difficulties associated with the validation of biomarkers from proteomic 

discovery to assay development. Nonetheless, advances in proteomic technology are rapid and 

new generation technologies may help resolve some of the technical challenges encountered 

currently. Until then, studies that develop and carry out validation of new candidate biomarkers 

must be followed through as they represent our best chances to generate new panels of OA 

biomarker.  

 

The availability of disease specific biomarkers would help us to develop simple, non-invasive tests 

to be used as point of care diagnostic/prognostic test. Early diagnosis of OA would enable to 

differentiate between progressive OA (which worsens over time) and non-progressive (stable) to 

help target treatment to those likely to progress and minimise risks of progression, and therefore 

delaying or preventing the need for joint replacement surgery. Discovery of a good OA biomarker 

would involve a long and challenging process from discovery of a potential biomarker to 

verification and validation process. Hence, the need for better funding is critical for research 

looking at tools that will overcome the challenges.  

 

Future perspective  

One of the major issues about the biomarkers discussed above is lack of specificity; there is 

currently no single biomarker that can be considered diagnostic, prognostic or efficacy of 
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treatment for OA. However, ACAPs may be close to being a diagnostic marker for RA. The second 

issue is that the collection of samples (cartilage, serum, urine or synovial fluid) in most studies is 

not standardised and concentrations of many of the biomarkers are affected by demographic 

variables such as age, gender and BMI. These limitations have to be overcome before we can have 

a robust set of biomarkers to investigate OA and RA. In addition, we should be mindful of the fact 

that it may take years to identify a specific biomarker or panel of biomarkers for OA and RA. 

Moreover, as OA is considered to be a complex and heterogeneous disease it would be unrealistic 

to expect a single biomarker to identify the presence of OA. As discussed in this review, several 

candidates OA-biomarker from recent MS-based studies could be potential diagnostic/prognostic 

marker but these biomarkers need to be properly validated using well characterised cohorts of 

patients. Moreover, their potential diagnostic/prognostic values need to be evaluated both singly 

as well as in combination with established biomarkers and clinical and imaging parameters. 

 

 

 

Executive Summary’ 

• Biomarkers specific for RA and OA would enable early diagnosis and better monitoring of 

patients with these conditions. 

Diagnosis of OA and RA and possible role of biomarkers 

• Some biomarkers are markers of pathological processes such as cartilage loss and 

therefore would be useful for monitoring cartilage damage in different conditions including 

OA and RA. 

• The pathogenesis of RA is better defined and understood compared to OA but there is still 

a need for suitable biomarkers that would help to identify treatment windows, when the 

patients are likely to respond better to a particular drug. 

• None of the first-generation biomarkers for OA is sufficiently specific for diagnosis and 

monitoring OA. 

•  The auto-antibody biomarkers (e.g. ACPAs) appear to be better markers of presence of RA.   

Biomarkers from recent proteomic studies 

• Many potential OA biomarkers have been recently identified using MS-based techniques 

but none have been validated and verified for use in individual patient.  
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Future perspective 

• The MS-based techniques are very promising tools for discovery of biomarkers but there 

are a number of technical hurdles that need to be resolved. The availability of MRM-MS 

may help to overcome at least some of the technical problems associated validation of 

biomarker discovered by MS studies. 
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