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MANY CUBIC SURFACES CONTAIN RATIONAL POINTS

T.D. BROWNING

For Klaus Roth, in memoriam.

Abstract. Building on recent work of Bhargava–Elkies–Schnidman and
Kriz–Li, we produce infinitely many smooth cubic surfaces defined over the
field of rational numbers that contain rational points.

1. Introduction

This paper is concerned with the Hasse principle for the family of projective
cubic surfaces

f(x0, x1) = g(x2, x3), (1.1)
where f, g ∈ Q[u, v] are binary cubic forms. Our main result shows that a
positive proportion of these surfaces, when ordered by height, possess a Q-
rational point. First, we discuss the question of local solubility. The following
result will be addressed in §2.2.

Theorem 1.1. Approximately 99% of the cubic surfaces (1.1), when ordered
by height, are everywhere locally soluble.

It has long been known that the Hasse principle does not always hold for
cubic surfaces and so local solubility is not enough to ensure that the surface
(1.1) has a Q-rational point. In the special case that f and g are diagonal there
are many known counter-examples to the Hasse principle, the most famous
being the surface

5x30 + 9x31 + 10x32 + 12x33 = 0,

that was discovered by Cassels and Guy [6]. As explained by Manin [16], this
example is accounted for by the Brauer–Manin obstruction. It has been con-
jectured by Colliot-Thélène and Sansuc [7, §V] that this obstruction explains
all failures of the Hasse principe for smooth cubic surfaces. This conjecture
remains wide open in general. However, work of Swinnerton-Dyer [21] con-
firms it for a special family of diagonal cubic surfaces, conditionally under the
assumption that the Tate–Shafarevich group of elliptic curves is finite.
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2 T.D. BROWNING

A recent investigation of Bright [4] has focused on families of varieties over
number fields that have no Brauer–Manin obstruction to the Hasse principle.
In §2.1 we shall check that the conditions of his main result are satisfied for
the family of cubic surfaces (1.1), thereby leading to the following conclusion.

Theorem 1.2 (Bright). Assume that the Brauer–Manin obstruction is the
only obstruction to the Hasse principle for smooth cubic surfaces. Then 100%
of the cubic surfaces (1.1), when ordered by height, satisfy the Hasse principle.

There are very few results which establish the existence of Q-rational points
on cubic surfaces unconditionally. Given coprime a, b ∈ Z, Heath-Brown and
Moroz [12, Cor. 1.2] have shown that any cubic surface

x30 + 2x31 + ax32 + bx33 = 0

has a Q-rational point, provided that either a ≡ {±2,±3} mod 9, or b ≡
{±2,±3} mod 9, or a ≡ ±b mod 9. This result combines sophisticated sieve
methods, which allow primes to be represented by binary cubic polynomials,
with a result of Satgé [17, Prop. 3.3], which demonstrates that the curve
u3 + 2v3 = pz3 has a Q-rational point for any prime p ≡ 2 mod 9.

Our main result provides a much denser set of smooth cubic surfaces which
are in possession of a rational point.

Theorem 1.3. A positive proportion of the cubic surfaces (1.1), when ordered
by height, possess a Q-rational point.

Recall that the set of Q-rational points is Zariski dense on the cubic surface
(1.1) as soon as it is non-empty, as proved by Segre [18].

Theorem 1.3 will be established in §3. Our proof follows a strategy of
Bhargava [1, §4], which was developed to show that a positive proportion of
plane cubic curves have a Q-rational point. The key input is recent work of
Kriz and Li [15], concerning the family of Mordell curves

Ek : y2 = x3 + k,

for k ∈ Z. Using a Heegner point construction, Kriz and Li show that a
positive proportion of these elliptic curves have rank 1. The curves Ek have
also been the focus of novel work by Bhargava, Elkies and Schnidman [3] and
we shall draw heavily on their investigation. It follows from [3, Thm. 8], in
particular, that at least 41.1% of the curves Ek, for k ∈ Z, have rank 1, but
this is only achieved under the assumption that the Tate–Shaferevich group is
finite, whereas the work of Kriz and Li is unconditional.

Associated to Ek is an obvious 3-isogeny ϕ and we shall monopolise on the
correspondence between elements of the ϕ-Selmer group and locally soluble
binary cubic forms. Let V (Z) be the lattice of (integer-matrix) binary cubic
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forms
f(u, v) = au3 + 3bu2v + 3cuv2 + dv3,

for a, b, c, d ∈ Z. Associated to each f ∈ V (Z) is the genus 1 plane curve

Cf = {z3 = f(u, v)} ⊂ P2. (1.2)
In order to establish Theorem 1.3, it will suffice to show that there is a pos-
itive proportion of irreducible f ∈ V (Z), when ordered by height, such that
Cf (Q) 6= ∅. To see this we first note that, since f is irreducible, we must have
z 6= 0 in any rational point (u : v : z) ∈ Cf (Q). Now if the binary cubic
forms f, g ∈ V (Z) give rise to the rational points (u : v : z) ∈ Cf (Q) and
(u′ : v′ : z′) ∈ Cg(Q), with zz′ 6= 0, then it follows that the rational point
(z′u : z′v : zu′ : zv′) ∈ P3(Q) lies on the cubic surface (1.1).

Remark 1.4. It is also possible to say something about appropriate K3 sur-
faces. Consider the family of Kummer surfaces with affine equation

z2 = g1(x)g2(y), (1.3)
where g1, g2 are irreducible quartic polynomials defined over Q. Recent work
of Harpaz and Skorobogatov [11] establishes the Hasse principle for these sur-
faces, provided that g1, g2 satisfy suitable genericity conditions, albeit under an
assumption about the finiteness of certain associated Tate–Shaferevich groups.
It has been shown by Bhargava [1, Thm. 11] that a positive proportion of the
genus 1 curves y2 = g(u, v) possess a Q-rational point, when the binary quar-
tic forms g ∈ Q[u, v] are ordered by height. An immediate consequence of
this is the unconditional statement that a positive proportion of the Kummer
surfaces (1.3), when ordered by height, possess a Q-rational point.

Acknowledgements. The author is very grateful to Tim Dokchitser, Adam
Morgan, Jack Thorne and Olivier Wittenberg for useful conversations, and to
the anonymous referee for several helpful comments. Thanks are also due to
Jörg Jahnel for help with Remark 2.1. While working on this paper the author
was supported by ERC grant 306457.

2. The family of cubic surfaces and local solubility

Let X ⊂ P7 × P3 be the biprojective hypersurface defined by
ax30 + bx20x1 + cx0x

2
1 + dx31 = ex32 + fx22x3 + gx2x

2
3 + hx33.

We obtain a flat surjective morphism π : X → P7 by projecting to the point
(a : b : · · · : h), with X smooth, projective and geometrically integral. We
denote by XP the fibre above any point P = (a : b : · · · : h) ∈ P7(Q). Let
η : Spec(K)→ P7 denote the generic point and η : Spec(K)→ P7 a geometric
point above η, where K is the function field of P7 and K is an algebraic closure
of K. The geometric generic fibre Xη is a smooth cubic surface and so it is
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connected and has torsion-free Picard group. Denote by X the base change of
X to an algebraic closure Q of Q and let AQ denote the ring of adèles of Q.

2.1. Proof of Theorem 1.2. The statement follows from [4, Thm. 1.4], pro-
vided that the following hypotheses are met:

(1) X(AQ) 6= ∅;
(2) the fibre of π at each codimension-1 point of P7 is geometrically integral;
(3) the fibre of π at each codimension-2 point of P7 has a geometrically

reduced component;
(4) H1(Q,PicX) = 0;
(5) BrX is trival;
(6) H2(Q,PicP7)→ H2(Q,PicX) is injective;
(7) BrXη = 0.

Since X is Q-rational the conditions (1), (4) and (5) are automatically met.
The cubic surface XP has equation f(x0, x1) = g(x2, x3) for suitable binary
cubic forms f and g. If XP fails to be be geometrically integral then it must
be singular, which can only happen when disc(f) = disc(g) = 0. This is a
codimension-2 condition, which thereby establishes (2). The only way that
(3) can fail is if f and g are proportional and both have repeated roots. But
this is a codimension-3 condition on the set of coefficients. Condition (6)
follows from [5, Prop. 5.17]. Finally, Xη is a smooth cubic surface over an
algebraically closed field of characteristic 0. Thus it is rational and it follows
that BrXη = 0, as required for condition (7). This completes the proof of
Theorem 1.2.

Remark 2.1. Although we shall not need it in our work, it is possible to show
that BrXη/BrK = 0 for the family of cubic surfaces considered here, using an
argument suggested to us by Jörg Jahnel. According to Swinnerton-Dyer [20],
there is no Brauer–Manin obstruction whenever the action of Gal(Q/Q) on the
27 lines is as large as possible. A binary cubic form splits into 3 linear forms,
generically by an S3-extension. Thus, generically, there is an S3×S3-extension
k/Q, such that the surface may be written in the classical Cayley–Salmon form
l1l2l3 = l4l5l6, for binary linear forms l1, l2, l3 ∈ k[x0, x1] and l4, l5, l6 ∈ k[x2, x3].
There are 9 obvious k-rational lines, given by li = lj = 0 for i ∈ {1, 2, 3} and
j ∈ {4, 5, 6}, and 6 obvious tritangent k-rational planes. The latter form a pair
of Steiner trihedra, both of which are defined over Q. The group S3× S3× S3

is the maximal Galois group stabilising two such Steiner trihedra. Consider
now the cubic surface S ⊂ P3 with equation

3x30 + 7x20x1 + 11x0x
2
1 + 13x31 = 17x32 + 19x22x3 + 23x2x

2
3 + 31x33.

A calculation in magma shows that the Galois group operating on the 27 lines
is precisely the maximal possible group S3 × S3 × S3. Since the Galois group
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has order 216, we may consult the appendix in work of Jahnel [13] to conclude
that BrS/BrQ = 0. This suffices to show the claim.

2.2. Proof of Theorem 1.1: initial steps. Conditions (1) and (2) in §2.1
are sufficient to ensure that all of the hypotheses of [5, Thm. 1.3] are met.
Thus it follows that

lim
H→∞

#{(a, b, . . . , h) ∈ (Z ∩ [−H,H])8 : X(a:b:···:h)(AQ) 6= ∅}
(2H)8

=
∏
v

ϑv > 0,

where ϑv is the density of cubic surfaces XP which have Qv-points, for each
place v of Q. Clearly ϑ∞ = 1. We shall show that ϑp = 1 − χp(1/p) for a
suitable rational function χp ∈ Q(x). Let

Q(x) = 9(1 + x+ x2 + x3 + x4)2(1 + x+ x2)(1− x+ x2)(1− x2)
Then we shall show that

χp(x) =
(1 + x4)(1 + x2)x4

Q(x)

when p ≡ 1 mod 3, while if p 6≡ 1 mod 3 then

χp(x)=
P (x)x4

(3− 2x10)(3− 2x5)(1− x+ x2 − x3 + x4)(1− x2 + x4)(1 + x2)3Q(x)
,

where

P (x) = 4x35 − 4x34 + 16x33 − 16x32 + 56x31 − 58x30 + 126x29 − 132x28

+ 228x27 − 236x26 + 292x25 − 314x24 + 342x23 − 378x22 + 342x21

− 361x20 + 197x19 − 184x18 − 68x17 + 110x16 − 293x15 + 336x14

− 489x13 + 543x12 − 669x11 + 702x10 − 639x9 + 639x8 − 477x7

+ 450x6 − 315x5 + 306x4 − 180x3 + 180x2 − 45x+ 45.

We note that 1−χ3(1/3) = 0.9965901 . . . . Inserting our expressions for χp(1/p)
into a computer and taking a product over primes 6 10, 000 we find that∏

p6104

p≡1 mod 3

ϑp = 0.9973776 . . . and
∏
p6104

p≡2 mod 3

ϑp = 0.9998049 . . . .

Combining these, one verifies that
∏

p ϑp has numerical value 0.993782 . . . ,
which is satisfactory for Theorem 1.1.

Our calculation of ϑp, for a given prime p, is based on work of Bhargava,
Cremona and Fisher [2], who perform the same sort of calculation for the
family of all ternary cubic forms. We shall say that a binary cubic form over
Fp is diagonal if it takes the shape au3 + bv3 for a, b ∈ F∗p. We begin by
recording the following result.
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Lemma 2.2. (1) The probability that a random monic cubic over Fp has
a simple root in Fp is σ1 = 2

3
(p2− 1)/p2, and the probability that it has

a triple root is τ1 = 1/p2.
(2) The probability that a random primitive binary cubic form over Fp has

a simple root in P1(Fp) is σ∗ = 1
3
p(2p+1)/(p2 +1), and the probability

that it has a triple root is τ∗ = 1/(p2 + 1).
(3) The probability that a random diagonal binary cubic form over Fp has

a simple root in P1(Fp) is

σ2 =

{
1
3

if p 6≡ 2 mod 3,
1 if p ≡ 2 mod 3.

Proof. Part (1) is proved in [2, Cor. 4]. According to [2, Cor. 6], the probability
that a random binary cubic form over Fp has a simple root in P1(Fp) is σ =
1
3
(p2 − 1)(2p + 1)/p3, and the probability that it has a triple root is τ =

(p2 − 1)/p4. Part (2) therefore follows on noting that σ∗ = σp4/(p4 − 1) and
τ∗ = τp4/(p4 − 1). Consider now the special case of diagonal binary cubic
forms over Fp. The lemma follows on noting that a random element of Z∗p is a
cube in Q∗p with probability σ2. �

We now proceed with our calculation of the density ϑp for a given prime p.
Over Qp, cubic surfaces of the shape (1.1) are determined by pairs (f, g) of
binary cubic forms f ∈ Zp[u, v] and g ∈ Zp[x, y], where

f(u, v) = c0u
3 + c1u

2v + c2uv
2 + c3v

3,

g(x, y) = d0x
3 + d1x

2y + d2xy
2 + d3y

3.

We say that the surface (f, g) is soluble over Qp if there exist u, v, x, y ∈ Zp,
with min{vp(u), vp(v), vp(x), vp(y)} = 0, such that f(u, v) = g(x, y). We say
that a binary cubic form over Zp is primitive if not all of its coefficients are
divisible by p. We are only interested in surfaces (f, g) defined over Zp for
which f or g is primitive.

Mimicking [2], we shall say that the surface (f, g) has valuations

> ϕ0 > ϕ1 > ϕ2 > ϕ3

> γ0 > γ1 > γ2 > γ3,

if we happen to know that vp(ci) > ϕi and vp(di) > γi, for 0 6 i 6 3.
Likewise, we shall replace the inequality symbol with equality if and only if
we know the exact p-adic valuation of the relevant coefficient. We may clearly
assume without loss of generality that min06i63 vp(ci) = 0 (i.e. f is primitive).
Through a change of variables, furthermore, we will also be able to restrict
attention to the case where min06i63 vp(di) = ξ ∈ {0, 1, 2}, in which case we
write g = pξg̃ for a primitive form g̃.
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We shall examine the solubility of (f, g) = (f, pξg̃) by considering its re-
duction modulo p. Let f (respectively, g) be the reduction of f (respectively,
g̃) modulo p. Whenever f has a simple root over Fp, then this root can be
lifted to a root over Zp and it follows that the cubic surface (f, g) is soluble
over Qp. We claim the same is true when g has a simple root. This is obvious
when ξ = 0 and so we suppose that ξ > 0. In this case we merely substitute
pu, pv for u, v and divide by pξ to obtain a new cubic surface (p3−ξf, g̃), which
is plainly soluble over Qp.

Suppose now that f does not have any Fp-roots and that g doesn’t have a
simple root. Then, either ξ = 0, in which case (f, g) is absolutely irreducible
and it follows that the surface has a smooth Fp-point which can be lifted, or
else ξ > 0. But in the latter case, substituting pu, pv for u, v and dividing by
pξ, we obtain a new cubic surface (p3−ξf, g̃). If g does not have any Fp-roots
then certainly (f, g) is not soluble over Qp. Next, suppose that f has a triple
root and g has no Fp-roots. If ξ = 0 then once again the surface (f, g) has a
smooth Fp-point which can be lifted to ensure solubility over Qp.

For each ξ ∈ {0, 1, 2}, we define the following probabilities:
• α1(ξ) is the probability of solubility for a pair (f, pξg̃) such that both
f and g have a triple root;
• α2(ξ) is the probability of solubility for a pair (f, pξg̃) such that f has
a triple root and g is insoluble;
• α3(ξ) is the probability of solubility for a pair (f, pξg̃) such that f is
insoluble and g has a triple root;
• α4(ξ) is the probability of solubility for a pair (f, pξg̃) such that f and
g are both insoluble.

Our work above already implies that

α2(0) = α3(0) = α4(0) = 1 and α4(1) = α4(2) = 0.

Next we claim that α3(ξ) = α2(3− ξ) for ξ ∈ {1, 2}. Indeed, over Fp, the only
solutions have u = v = 0. Substituting pu for u and pv for v and dividing
by p2 we are left with the cubic surface (p3−ξf, g̃). This establishes the claim,
implying that

α2(ξ) + α3(ξ) = α2(ξ) + α2(3− ξ) = α2(1) + α2(2),

for any ξ ∈ {1, 2}.
We now return to our calculation of ϑp. For each 1 6 i 6 4, we let βi(ξ) be

the probability that our pair of cubic forms (f, g) = (f, pξg̃) has the reduction
type considered in the definition of αi(ξ). Let S ⊂ Z4

p be a set of coefficients
producing primitive binary cubic forms. Then for any ξ ∈ {0, 1, 2}, the prob-
ability that a binary cubic form takes the shape pkg̃ for k ≡ ξ mod 3, where g̃
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has coefficient vector in S, is∑
k≡ξ mod 3

1

p4k
µ(S) =

1

p4ξ

(
1− 1

p12

)−1
µ(S),

where µ(S) is the probability that a primitive binary cubic form has coefficient
vector in S. It now follows from Lemma 2.2 that βi(ξ) = p−4ξβi/(1 − 1/p12),
for 1 6 i 6 4, where

β1 = τ 2∗ , β2 = β3 = τ∗(1− σ∗ − τ∗), β4 = (1− σ∗ − τ∗)2.

Hence we deduce that the probability of insolubility of a cubic surface (1.1)
with coefficients in Qp is equal to

1− ϑp =
∑

ξ∈{0,1,2}

∑
16i64

βi(ξ)(1− αi(ξ))

=
τ 2∗

1− 1/p12

(
1− α1(0) +

1− α1(1)

p4
+

1− α1(2)

p8

)
+ (2− α2(1)− α2(2))

(1 + 1/p4)τ∗(1− σ∗ − τ∗)
p4(1− 1/p12)

+
(1− σ∗ − τ∗)2(1 + 1/p4)

p4(1− 1/p12)
.

(2.1)

It remains to analyse α1(ξ) for ξ ∈ {0, 1, 2} and α2(1), α2(2). In doing so,
when the reduction of the form has a triple point, the density will not depend
on what this triple point is and so we shall always take it to be (1 : 0).

In the special case α1(1), which corresponds to surfaces (f, pg̃), where f and
g both have triple roots, we may assume that f and g both have the triple
root (1 : 0). Substituting pv for v and dividing by p, it is easily seen that
α1(1) is equal to the probability of solubility over Qp for a cubic surface with
valuations

> 0 > 1 > 2 = 2

> 1 > 1 > 1 = 0,

in which one is only interested in solutions with min{vp(u), vp(x)} = 0.
As in [2], we will develop recursions in order to solve for the densities of

soluble cubics among those whose reductions produce the bad configurations
outlined above.

2.3. Technical lemmas. The purpose of this section is to collect together
definitions and calculations of particular probabilities that will feature in our
analysis.
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Lemma 2.3. Let λ be the probability that a cubic surface (f, g) with valuations

= 2 > 2 > 2 = 1

> 0 > 0 > 1 = 1,

is soluble over Zp with x ∈ Z∗p. Then

λ =

(
1− 1− σ2

p5

)−1(
1− 1

p
+

1

p2
− (1− σ2)2

p4
− (1− σ2)σ2

p5

)
.

Proof. If vp(d1) = 0 (which happens with probability 1−1/p) there is a simple
root which can be lifted to a Qp-point on the cubic surface with x ∈ Z∗p. If
vp(d0) = 0 and vp(d1) > 1 (probability (p−1)/p2) then the equation is insoluble
over Qp with x ∈ Z∗p. If vp(d0), vp(d1) > 1 (probability 1/p2) then we divide
by p to get the valuations

= 1 > 1 > 1 = 0

> 0 > 0 > 0 = 0.

With probability σ1 we obtain a simple root of g over Fp which can be lifted.
Note that if g is insoluble (probability 1 − σ1 − τ1) then the equation f = g
is absolutely irreducible and so has a smooth Fp-point which can be lifted.
Finally, with probability τ1 there is a triple root over Fp, which we may take
to be (1 : 0). Now with probability σ2 the surface is soluble over Zp with
x ∈ Z∗p. With probability 1 − σ2 the diagonal cubic form is insoluble over Fp
and we replace v by pv and y by pv. Dividing by p leads us to the valuations

= 0 > 1 > 2 = 2

> 0 > 1 > 2 = 2.

If vp(d0) = 0 (probability 1− 1/p) then we get solubility over Qp with proba-
bility σ2, since when the diagonal cubic form is insoluble over Fp we will not
obtain solutions with x ∈ Z∗p. Alternatively, if vp(d0) > 1 (probability 1/p)
then we replace u by pu and divide once more by p to get the valuations

= 2 > 2 > 2 = 1

> 0 > 0 > 1 = 1,

for which the probability of solubility over Qp with x ∈ Z∗p is λ. All in all it
follows that

λ = 1− 1

p
+

1

p2

{
1− τ1 + τ1

(
σ2 + (1− σ2)

(
(p− 1)σ2

p
+
λ

p

))}
.

The lemma follows on rearranging and recalling that τ1 = 1/p2. �
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Lemma 2.4. Let % be the probability that a cubic surface (f, g) with valuations

= 0 > 1 > 1 = 1

> 0 > 1 > 2 = 2,

is soluble over Zp with x ∈ Z∗p. Then

% =

(
1− 1

p5

)−1((
1− 1

p
+

1

p2
− 1

p3

)
σ2 +

1

p
− 1

p2
+
σ1
p3

)
.

Proof. The first case to consider is when vp(d0) = 0 (which happens with
probability (p − 1)/p). In this case the cubic surface is soluble over Qp with
x ∈ Z∗p with probability σ2, else it is insoluble over Qp. Suppose next that
vp(d0) > 1 (probability 1/p). Then we must have vp(u) > 1. Replacing u by
pu and simplifying, we get a cubic surface with valuations

= 2 > 2 > 1 = 0

> 0 > 0 > 1 = 1.

When vp(d1) = 0 (probability (p−1)/p) this is soluble over Qp. When vp(d0) =
0 and vp(d1) > 1 (probability (p−1)/p2) this is soluble over Qp with probability
σ2. Finally, we suppose that vp(d0), vp(d1) > 1 (probability 1/p2). In this
case we must have vp(v) > 1. Replacing v by pv and simplifying we get the
valuations

= 1 > 2 > 2 = 2

> 0 > 0 > 0 = 0.

With probability σ1 the second cubic form has a simple root which can be
lifted to get solubility over Qp. With probability τ1 we get a triple root, which
on moving to (1 : 0) leads us to replace y by py. On simplification, this gives
a cubic surface with valuations whose probability of solubility is %.

All in all, it follows that

% =
(p− 1)σ2

p
+

1

p

{
p− 1

p
+

(p− 1)σ2
p2

+
σ1 + τ1%

p2

}
.

Rearranging this and recalling that τ1 = 1/p2, the lemma follows. �

Lemma 2.5. Let ω be the probability that a cubic surface (f, g) with valuations

= 0 > 1 > 2 = 2

> 1 > 1 > 1 = 0,

is soluble over Zp with min{vp(u), vp(x)} = 0. Then

ω =

(
1− 1− σ2

p5

)−1(
σ2 +

1− σ2
p

(
1− 1− σ2

p
+

1− σ2
p2

− 1

p4

))
.
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Proof. With probability σ2 there is a solution over Fp which can be lifted to
ensure solubility over Qp. Otherwise, with probability 1−σ2, the only solution
has vp(u), vp(y) > 1. Replacing u by pu, y by py and simplifying, we arrive at
the valuations

= 2 > 2 > 2 = 1

> 0 > 1 > 2 = 2,

in which we are interested in solubility over Qp with x ∈ Z∗p. If vp(d0) = 0
(probability (p − 1)/p) then there are no solutions. If, on the other hand,
vp(d0) > 1 then we simplify to get the valuations

= 1 > 1 > 1 = 0

> 0 > 0 > 1 = 1.

Now if vp(d1) = 0 (probability (p − 1)/p) then there is a simple Fp-root of g
which can be lifted to get solubility over Qp. If vp(d1) > 1 and vp(d0) = 0
(probability (p− 1)/p2) then the cubic surface is soluble over Qp with proba-
bility σ2. If vp(d0), vp(d1) > 1 (probability 1/p2) then we replace v by pv and
simplify, in order to get the valuations

= 0 > 1 > 2 = 2

> 0 > 0 > 0 = 0.

With probability σ1 the second polynomial has a simple root over Fp which can
be lifted to get solubility over Qp. With probability 1− σ1 − τ1 the form g is
irreducible over Fp and we also get solubility over Qp. Finally, with probability
τ1, the form g has a triple root. Without loss of generality we may assume
that the root is (1 : 0) and the probability of solubility over Qp for a cubic
surface with these valuations is ω.

Putting everything together, we obtain

ω = σ2 +
1− σ2
p

(
1− 1

p
+

(
1− 1

p

)
σ2
p

+
1− τ1 + τ1ω

p2

)
.

The lemma follows on rearranging and recalling that τ1 = 1/p2. �

Lemma 2.6. For i ∈ {0, 1} let γi be the probability that a cubic surface (f, g)
is soluble over Zp with x ∈ Z∗p, assuming that f is irreducible over Fp and the
surface has valuations

> 0 > 0 > 0 = 0

> 0 > i > i+ 1 = i+ 1.

Then

γi =

(
1− 1

p5

)−1(
1− 1

p2
+

σ1
p2+i

)
.
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Proof. If vp(d0) = 0 (probability 1 − 1/p) then the cubic surface is soluble
over Qp. If vp(d0) > 1 and vp(d1) = 0 (probability (1 − i)(1 − 1/p)/p) then
we also get solubility over Qp with x ∈ Z∗p. If vp(d0), vp(d1) > 1 (probability
(1 + i(p − 1))/p2) then we replace u by pu, v by pv and simplify to get the
valuations

> 2 > 2 > 2 = 2

> 0 > 0 > i = i.

We seek solubility over Qp with x ∈ Z∗p.
Suppose first that i = 0. Then with probability σ1 the second cubic form g

has a simple Fp-root which can be lifted. With probability 1−σ1− τ1 it is not
soluble over Qp and with probability τ1 the form g has a triple root, which we
can move to (1 : 0). Replacing y by py we are led to the new valuations

> 1 > 1 > 1 = 1

> 0 > 1 > 2 = 2.

If vp(d0) = 0 then there are no solutions. If vp(d0) > 1 (probability 1/p) then
we simplify and observe that the probability of solubility is now γ0.

Suppose next that i = 1. If vp(d1) = 0 (probability 1 − 1/p) then we get
solubility over Qp. If vp(d1) > 1 and vp(d0) = 0 then the surface is not soluble
over Qp with x ∈ Z∗p. If vp(d0), vp(d1) > 1 (probability 1/p2) then we simplify
to arrive at the valuations

> 1 > 1 > 1 = 1

> 0 > 0 > 0 = 0.

With probability σ1 the second cubic form g has a simple Fp-root which can
be lifted to ensure the desired solubility over Qp. With probability 1− σ1− τ1
it is not soluble over Qp and with probability τ1 the form g has a triple root,
which we can move to (1 : 0). Replacing y by py we are led to the a cubic
surface for which the probability of solubility with x ∈ Z∗p is precisely γ1.

Thus, for i ∈ {0, 1}, we have shown that

γi = 1− 1

p2
− i(p− 1)

p2
+

1 + i(p− 1)

p2
×

{
σ1 +

τ1γ0
p

if i = 0,
1− 1

p
+ σ1+τ1γ1

p2
if i = 1.

The lemma follows on rearranging and recalling that τ1 = 1/p2. �

Lemma 2.7. Let ε be the probability that a cubic surface (f, g) with valuations

> 0 > 0 > 1 = 1

> 1 > 1 > 1 = 0,
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is soluble over Zp with min{vp(u), vp(x)} = 0. Then ε = A+ α1(1)/p
4, where

A = 1− 1

p
+
p− 1

p2

(
σ2 + (1− σ2)

((
1− 1

p

)
σ2 +

λ

p

))
+
σ1 + (1− σ1)γ1

p2
− γ1
p4
.

Proof. If vp(c1) = 0 (probability (p− 1)/p) then the surface is soluble over Qp.
If vp(c1) > 1 and vp(c0) = 0 (probability (p−1)/p2) then with probability σ2

the surface is soluble over Qp. Alternatively (probability 1−σ2) we must have
vp(u), vp(y) > 1 in any solution. Replacing u by pu, v by pv and simplifying,
we are led to the valuations

= 2 > 2 > 1 = 0

> 0 > 1 > 2 = 2,

in which we are interested in solubility over Qp with x ∈ Z∗p. If vp(d0) = 0
(probability (p − 1)/p) then this is soluble over Qp with probability σ2. If
vp(d0) > 1 (probability 1/p) then we replace v by pv and simplify to get
valuations for which the probability of solubility for such cubic surfaces is
precisely λ, in the notation of Lemma 2.3.

We now turn to the case vp(c1), vp(c0) > 1 (probability 1/p2) in the original
equation. Replacing y by py and simplifying we arrive at the valuations

> 0 > 0 > 0 = 0

> 0 > 1 > 2 = 2,

in which we are interested in solubility over Qp with min{vp(u), vp(x)} = 0.
With probability σ1 the first cubic form has a simple root which can be lifted.
With probability 1 − σ1 − τ1 the first cubic form is irreducible Fp and the
probability of solubility is equal to γ1, in the notation of Lemma 2.6. Finally,
with probability τ1 it has a triple root, which we may move (1 : 0). In this final
case, in view of our earlier discussions, the probability of solubility is equal to
α1(1). The lemma easily follows on recalling that τ1 = 1/p2. �

2.4. Calculation of α2(1) and α2(2). For ξ ∈ {1, 2} we proceed to calculate
α2(ξ). The density doesn’t depend on the triple point that f has and so we
may take it to be (1 : 0). Substituting pv for v and dividing by p we arrive at
the cubic surface (f ′, pξ−1g̃) where the reduction g of g̃ modulo p is insoluble
and the coefficients of f ′ have valuations

> 0 > 1 > 2 = 2.

If ξ = 1 then clearly α2(1) = γ1, in the notation of Lemma 2.6. Suppose
next that ξ = 2. If vp(c0) = 0 then we must have vp(u) > 1 and a change of
variables from u to pu leads us to the conclusion that the surface is insoluble
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over Qp since g is insoluble over Fp. If vp(c0) > 1 (probability 1/p) then we
divide by p to get the cubic surface (f ′′, g̃), in which the coefficients of f ′′ have
valuations

> 0 > 0 > 1 = 1.

The probability of solubility in this case is precisely γ0, in the notation of
Lemma 2.6. Thus we have shown that

α2(1) = γ1 and α2(2) =
γ0
p
.

2.5. Calculation of α1(0). We may assume that the coefficients of (f, g) have
valuations

> 1 > 1 > 1 = 0

> 1 > 1 > 1 = 0.

With probability σ2 the equation c3v3 = d3y
3 has a simple root over Fp which

can lifted, thereby ensuring solubility over Qp. With probability 1 − σ2 it is
insoluble over Fp. In the latter case we replace v by pv, y by py and simplify.

Suppose first that min{vp(c0), vp(d0)} > 2 (which happens with probability
1/p2). Then we get a new pair of cubic forms with valuations

> 0 > 0 > 1 = 1

> 0 > 0 > 1 = 1.

If vp(c1) = 0 or vp(d1) = 0 (probability 1−1/p2) then there is a simple root over
Fp which can be lifted. If, on the other hand, vp(c1), vp(d1) > 1 (probability
1/p2) then the probability of solubility is κ, where κ denotes the probability
that a pair of cubics with valuations

> 0 > 1 > 1 = 1

> 0 > 1 > 1 = 1

is soluble over Zp with min{vp(u), vp(x)} = 0. We claim that

κ =

(
1− 1

p

)2

σ2 +
1

p2
− 1

p6
+
α1(0)

p6
+

2κ1
p

(
1− 1

p

)
,

where κ1 is the probability of solubility for a cubic surface with valuations

= 0 > 1 > 1 = 1

> 1 > 1 > 1 = 1,

with x ∈ Z∗p. To see this, if vp(c0) = vp(d0) = 0 (probability (1− 1/p)2), then
with probability σ2 we get a simple root over Fp which can be lifted (and it is
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insoluble over Qp otherwise). If vp(c0), vp(d0) > 1 (probability 1/p2) then we
simplify and obtain the valuations

> 0 > 0 > 0 = 0

> 0 > 0 > 0 = 0.

With probability σ1 the cubic form f has a simple Fp-root which can be lifted
to get solubility over Qp. With probability 1−σ1−τ1 the form f is irreducible
over Fp and we also get solubility over Qp. Finally, with probability τ1 the
form f has a triple root. In this case, with probability 1− τ1 we get solubility
over Qp, since either g has a simple root over Fp or it is irreducible over
Fp. Alternatively, with probability τ1 the form g also has a triple root over
Fp and the probability of solubility is precisely α1(0). The claim follows on
recalling that τ1 = 1/p2 and noting that the probability of solubility is κ1 when
vp(c0) = 0, vp(d0) > 1 or vp(c0) > 1, vp(d0) = 0.

Next we calculate κ1, noting that we must have vp(u) > 1 in any solution.
Replacing u by pu and simplifying we arrive at the valuations

= 2 > 2 > 1 = 0

> 0 > 0 > 0 = 0.

With probability 1− τ1 this is soluble over Qp. With probability τ1 the second
form g has a triple root over Fp which we can move to (1 : 0). But then
with probability σ2 the cubic surface is soluble over Q∗p and with probability
1− σ2 the only solution has vp(v), vp(y) > 1. Replacing v by pv, y by py and
simplifying, we therefore obtain the valuations

= 1 > 2 > 2 = 2

> 0 > 1 > 1 = 1.

If vp(d0) = 0 there are no solutions over Q∗p, while if vp(d0) > 1 we may
remove a factor of p from all of the coefficients. In the new pair of forms we
get solubility if vp(d1) = 0 (probability 1 − 1/p), while we get solubility with
probability σ2 if vp(d1) > 1 and vp(d0) = 0 (probability (p−1)/p2). Finally, the
probability of solubility is κ1 if vp(d1), vp(d0) > 1 (probability 1/p2). Recalling
that τ1 = 1/p2 and rearranging, we easily conclude that

κ1 =

(
1− 1− σ2

p5

)−1(
1− 1− σ2

p2
+

1− σ2
p3

(
1− 1− σ2

p
− σ2
p2

))
.

Next, suppose that vp(c0) = 1 and vp(d0) > 2 (probability (p−1)/p2). Then
our cubic surface has valuations

= 0 > 1 > 2 = 2

> 1 > 1 > 2 = 2.
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Hence we replace u by pu and divide by p to get the new valuations

= 2 > 2 > 2 = 1

> 0 > 0 > 1 = 1.

But the probability that a pair of cubics with these valuations is soluble over
Zp with x ∈ Z∗p is precisely equal to λ in the notation of Lemma 2.3. The case
in which vp(c0) > 2 and vp(d0) = 1 yields the same conclusion.

Finally, we suppose that vp(c0) = vp(d0) = 1 (probability (p− 1)2/p2). This
leads to the valuations

= 0 > 1 > 2 = 2

= 0 > 1 > 2 = 2.

With probability σ2 the equation c0u3 = d0x
3 has a simple root over Fp which

can be lifted. The alternative case leads to insolubility over Qp.
Summarising our argument so far, we have shown that

α1(0) = σ2 + (1− σ2)

{
1

p2

(
1 +

κ− 1

p2

)
+

2(p− 1)λ

p2
+

(
1− 1

p

)2

σ2

}
.

Our calculations show that κ = B + α1(0)/p
6, where

B =

(
1− 1

p

)2

σ2 +
1

p2
− 1

p6

+
2 (p− 1)

p2(1− 1−σ2
p5

)

(
1− 1− σ2

p2
+

1− σ2
p3

(
1− 1− σ2

p
− σ2
p2

))
.

Substituting κ and rearranging, we finally conclude that

α1(0) =

(
1− 1− σ2

p10

)−1
×

(
σ2 + (1− σ2)

{
1

p2
+
B − 1

p4
+

2λ

p

(
1− 1

p

)
+

(
1− 1

p

)2

σ2

})
.

2.6. Calculation of α1(1). In this section we calculate the value of α1(1)
recorded at the close of §2.2. If vp(c0) = 0 (probability 1−1/p) then the prob-
ability of solubility is precisely ω, in the notation of Lemma 2.5. Alternatively,
with probability 1/p, we have vp(c0) > 1. Replacing y by py and simplifying,
we deduce that

α1(1) =

(
1− 1

p

)
ω +

ω1

p
,
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were ω1 is the probability of solubility over Qp for a cubic surface with valua-
tions

> 0 > 0 > 1 = 1

> 0 > 1 > 2 = 2,

with min{vp(u), vp(x)} = 0.
It remains to calculate ω1. If vp(c1) = 0 (probability (p−1)/p) then there is a

simple root over Fp which can lifted. If vp(c1) > 1 and vp(c0) = 0 (probability
(p − 1)/p2) then the probability of solubility over Qp is precisely %, in the
notation of Lemma 2.4. Suppose now that vp(c1), vp(c0) > 1 (probability
1/p2). If vp(d0) = 0 (probability (p − 1)/p) then we must replace x by px in
order to arrive at the valuations

> 0 > 0 > 0 = 0

= 2 > 2 > 2 = 1.

Arguing as in the close of the proof of Lemma 2.4, the probability of solubility
over Zp with u ∈ Z∗p is found to be σ1 + τ1%.

If vp(d0) > 1 (probability 1/p), we simplify to get the valuations

> 0 > 0 > 0 = 0

> 0 > 0 > 1 = 1.

We are interested in solubility over Qp with min{vp(u), vp(x)} = 0. With
probability σ1 the first form has a simple Fp-root which can be lifted. With
probability 1 − σ1 − τ1 the first form is irreducible over Fp and the overall
probability of solubility is equal to γ0, in the notation of Lemma 2.6. Finally,
with probability τ1 the first form has a triple root which can be moved to
(1 : 0). In this case the probability of solubility is equal to ε = A + α1(1)/p

4,
in the notation of Lemma 2.7.

Recalling that τ1 = 1/p2, we have shown that ω1 = C + α1(1)/p
9, where

C = 1− 1

p
+

(p− 1)%

p2
+

(p− 1)(σ1 + %/p2)

p3
+
σ1 + (1− σ1 − 1/p2)γ0

p3
+
A

p5
.

We now substitute this into our earlier expression and rearrange things to
finally conclude that

α1(1) =

(
1− 1

p10

)−1{(
1− 1

p

)
ω +

C

p

}
.
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2.7. Calculation of α1(2). It remains to study the probability of solubility
over Qp for cubic surfaces with valuations

> 1 > 1 > 1 = 0

> 3 > 3 > 3 = 2.

We claim that

α1(2) =

(
1− 1

p

)
%+

A

p
+
α1(1)

p5
,

in the notation of Lemmas 2.4 and 2.7. To begin with, if vp(c0) = 1 (which
happens with probability (p−1)/p) then we must have vp(u), vp(v), vp(y) > 1 in
any solution. Making the obvious transformations and simplifying, the prob-
ability of solubility over Qp with x ∈ Z∗p is precisely %. If, on the other hand,
vp(c0) > 2 (probability 1/p) then we replace v by pv to arrive at valuations for
which the probability of solubility over Qp is ε, in the notation of Lemma 2.7.
The claim follows.

2.8. Conclusion. Returning to (2.1), we substitute the values of σ∗, τ∗ from
part (2) of Lemma 2.2. This leads to the expression

χp(1/p) =
E(p)

p4(1 + 1/p2)2(1− 1/p12)

where

E(p) = 1− α1(0) +
1− α1(1)

p4
+

1− α1(2)

p8

+
(1− 1/p)(1 + 1/p4)

3p2
(2− α2(1)− α2(2)) +

(1− 1/p)2(1 + 1/p4)

9
.

Using a computer algebra package, it remains to substitute our various ex-
pressions for α1(0), α1(1), α1(2) and α2(1), α2(2) into this, before simplifying
the expression. This ultimately leads to the expressions for χp(x) recorded in
§2.2, with x = 1/p.

3. Global solubility

We have seen that in order to prove Theorem 1.3 it suffices to prove that
there is a positive proportion of irreducible f ∈ V (Z), when ordered by height,
such that Cf (Q) 6= ∅, where Cf is the associated genus 1 curve (1.2). Our
template for proving this is the argument developed by Bhargava [1, §4] to
show that a positive proportion of plane cubic curves have a Q-point.
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3.1. Selmer groups of Mordell curves. Our work relies on the arithmetic
of Mordell curves

Ek : y2 = x3 + k,

for k ∈ Z. These elliptic curves have j-invariant 0 and (potential) complex
multiplication by the ring of integers of Q(

√
−3). There is a 3-isogeny ϕ = ϕk :

Ek → E−27k and, by duality, a 3-isogeny ϕ̂ = ϕ−27k : E−27k → Ek. As k varies
over the integers, Bhargava, Elkies and Schnidman [3] have undertaken an
extensive investigation into the average size of the ϕ-Selmer groups Selϕ(Ek) ⊂
H1(GQ, Ek[ϕ]) and Selϕ̂(E−27k) ⊂ H1(GQ, E−27k[ϕ̂]), where GQ = Gal(Q/Q),
consisting of “locally soluble” cohomology classes. Let

% =
103 · 229

2 · 32 · 72 · 13
∏

p≡5 mod 6

(1− 1
p
)(1 + 1

p
+ 5

3p2
+ 1

p3
+ 5

3p4
+ 1

p5
)

1− 1
p6

= 2.1265 . . . .

While it doesn’t play a role in our work, when the elliptic curves Ek are ordered
by height, it follows from [3, Thm. 1] that the average of #Selϕ(Ek) is 1 + %
(resp. 1 + %/3) if k < 0 (resp. k > 0).

We shall be interested in soluble elements of Selϕ(Ek) and Selϕ̂(E−27k) Ac-
cording to the fundamental short exact sequence

0→ E−27k(Q)/ϕ(Ek(Q))→ Selϕ(Ek)→X(Ek)[ϕ]→ 0,

the soluble elements of Selϕ(Ek) are precisely those that come from the group
E−27k(Q)/ϕ(Ek(Q)). Similarly, soluble elements of Selϕ̂(E−27k) are precisely
those that come from Ek(Q)/ϕ̂(E−27(Q)). Noting that ϕ̂ ◦ ϕ = [3], we may
now turn to the exact sequence

0→ E−27k(Q)[ϕ̂]

ϕ(Ek(Q)[3])
→ E−27k(Q)

ϕ(Ek(Q))

ϕ̂→ Ek(Q)

3Ek(Q)
→ Ek(Q)

ϕ̂(E−27k(Q))
→ 0,

which is recorded in [19, Remark X.4.7]. The groups appearing in this sequence
are all F3-vector spaces and it follows that

dimF3

E−27k(Q)

ϕ(Ek(Q))
+ dimF3

Ek(Q)

ϕ̂(E−27k(Q))
> dimF3

Ek(Q)

3Ek(Q)

> rankEk(Q).

(3.1)

(Since the two groups on the left hand side sit inside the relevant Selmer
groups, this automatically implies the inequality recorded in [3, Prop. 42(i)].)

3.2. Binary cubic forms. For any Dedekind domain D, we write V (D) for
the set of binary cubic forms f(u, v) = [a, 3b, 3c, d], with a, b, c, d ∈ D. We put

disc(f) = −3b2c2 + 4ac3 + 4b3d+ a2d2 − 6abcd,

for the (reduced) discriminant of f . We put V (D)A for the set of f ∈ V (D)
such that disc(f) = A.
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Taking D = Z, we shall adopt the notation in [3] and introduce the sets

V (Z)sol = {f ∈ V (Z) : Cf (Q) 6= ∅}
V (Z)loc sol = {f ∈ V (Z) : Cf (Qp) 6= ∅ ∀ primes p},

where Cf is given by (1.2). Put V (Z)sol
A and V (Z)loc sol

A for the corresponding
subsets restricted to have discriminant A. The group GL2(Z) acts naturally on
V (R) by linear change of variables and the discriminant is SL2(Z)-invariant.
We let F be a fundamental domain for the action of SL2(Z) on V (R). We set

FX = F ∩ {f ∈ V (R) : 0 < | disc(f)| 6 X} .
This set has finite volume. The following result (cf. [3, Thm. 37]) is due to
Davenport [8] and Davenport–Heilbronn [9].

Lemma 3.1 (Davenport–Heilbronn). We have

#{f ∈ FX ∩ V (Z) : f irreducible} = c1X + o(X),

as X →∞, where c1 = meas(F1) =
π2

3
.

The following result allows us to associate a ϕ-Selmer element of an elliptic
curve Ek over Q, with k ∈ Z, to an element of V (Z).
Lemma 3.2. Let k ∈ 3Z. There exists an injective map from the set of non-
identity elements of Selϕ̂(E−27k) to the set of irreducible f ∈ F ∩ V (Z)loc sol

4k .

Proof. Assume throughout the proof that k ∈ 3Z. According to [3, Thm. 33]
there is a bijection between the SL2(Q)-equivalence classes of V (Q)loc sol

4k and el-
ements of Selϕ̂(E−27k). Under this bijection, the identity element of Selϕ̂(E−27k)
corresponds to the unique SL2(Q)-equivalence class of reducible forms in the
space V (Q)4k (i.e. the orbit of f(u, v) = ku3 + 3uv2 under SL2(Q)). Next,
it follows from [3, Thm. 34] that any SL2(Q)-equivalence class of V (Q)loc sol

4k

contains an element of V (Z)4k. This therefore produces the required map
from non-identity elements of Selϕ̂(E−27k) to SL2(Z)-equivalence classes of ir-
reducible elements of V (Z)loc sol

4k . Injectivity follows from injectivity of the map
in [3, Thm. 33]. �

3.3. A positive proportion of curves with positive rank. We now turn
to the work of Kriz and Li [15]. Let D ⊂ Z be the subset of fundamental
discriminants. Then d ∈ D if and only if either d ≡ 1 mod 4 is square-free, or
d = 4d′ for some square-free integer d′ ≡ {2, 3} mod 4. We have the following
result.

Lemma 3.3. We have

#{k ∈ D ∩ (0, X] : rankE−432k(Q) = 1} > 1

2π2
X + o(X),

as X →∞.
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Proof. It follows from [15, Thm. 1.8] that the analytic rank of E−432k is 1 for
at least 1

6
of fundamental discriminants k ∈ D . By appealing to the celebrated

work of Gross and Zagier [10], and Kolyvagin [14], we deduce that the same is
true for the arithmetic rank. Finally, the statement of the lemma follows on
recalling that #D ∩ (0, X] = 3

π2X + o(X), as X →∞. �

3.4. Proof of the main result. Since 432k ∈ 3Z, we begin by deducing from
Lemma 3.2 that there is an injective map from soluble non-identity elements
of Selϕ̂(E27·432k) to the set of irreducible elements in F ∩ V (Z)sol

−4·432k. Recall-
ing that ϕ̂−432k = ϕ27·432k, we may make the change of variables 27k → −k,
in order to deduce that there is an injective map from soluble non-identity
elements of Selϕ(E−432k) to the set of irreducible elements in F ∩ V (Z)sol

64k.
In view of (3.1), if k ∈ Z is such that rankE−432k(Q) = 1, then either
E27·432k(Q)/ϕ(E−432k(Q)) or E−432k(Q)/ϕ̂(E27·432k(Q)) must have size at least
3. But then it follows that there are at least 2 soluble non-identity elements
belonging to Selϕ(E−432k) or Selϕ̂(E27·432k). This implies that

#{f ∈ FX ∩ V (Z)sol : f irreducible} >
∑

0<k6X/(4·432)
rankE−432k(Q)=1

2

>
1

26 · 33 · π2
X + o(X),

(3.2)

by Lemma 3.3. We henceforth set c2 = 1
26·33·π2 for the constant appearing in

this bound.
We need a version of this which runs over irreducible elements of V (Z)sol

which are ordered by height, for which we ape an argument of Bhargava [1,
§4]. Let B = [−1, 1]4. We require a lower bound for the counting function

N(X) = #{f ∈ X
1
4B ∩ V (Z)sol : f irreducible},

as X → ∞. Since FX has finite volume, it follows that for any given ε > 0,
there exists rε > 0 such that

meas(rεB ∩FX) > (1− ε)meas(FX),

for all X > 1. Thus there exist constants δ > 0 and r > 0 such that

meas(rX
1
4B ∩FX) >

(
1− c2

c1
+ δ

)
meas(FX) = (c1 − c2 + δc1)X,

for any X > 1, where we recall from Lemma 3.1 that c1 = meas(F1) = π2

3
.

Now it easily follows from Lemma 3.1 and Hilbert’s irreducibility theorem that

#{f ∈ rX
1
4B ∩FX ∩ V (Z) : f irreducible} > (c1 − c2 + δc1)X + o(X).
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The number of binary cubic forms contributing to the left hand side which
don’t belong V (Z)sol is

6 #{f ∈ FX ∩ V (Z) : f irreducible} −#{f ∈ FX ∩ V (Z)sol : f irreducible}
6 (c1 − c2)X + o(X),

by Lemma 3.1 and (3.2). Putting Y = r−4X, it therefore follows that

N(X) = #{f ∈ rY
1
4B ∩ V (Z)sol : f irreducible}

> #{f ∈ rY
1
4B ∩FY ∩ V (Z)sol : f irreducible}

> δc1Y + o(Y ).

This completes the proof of Theorem 1.3.
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