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ABSTRACT 137 
 138 
Agricultural intensification is a leading cause of global biodiversity loss, which can reduce 139 

the provisioning of ecosystem services in managed ecosystems. Organic farming and plant 140 

diversification are farm management schemes that may mitigate potential ecological harm by 141 

increasing species richness and boosting related ecosystem services to agroecosystems. What 142 

remains unclear is the extent to which farm management schemes affect biodiversity 143 

components other than species richness, and whether impacts differ across spatial scales and 144 

landscape contexts. Using a global meta-dataset, we quantified the effects of organic farming 145 

and plant diversification on abundance, local diversity (communities within fields), and 146 

regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, 147 

and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod 148 

abundance, particularly for rare taxa. This resulted in increased richness but decreased 149 

evenness. While these responses were stronger at local relative to regional scales, richness 150 

and abundance increased at both scales, and richness on farms embedded in complex relative 151 

to simple landscapes. Overall, both organic farming and in-field plant diversification exerted 152 

the strongest effects on pollinators and predators, suggesting these management schemes can 153 

facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our 154 

results suggest that organic farming and plant diversification promote diverse arthropod 155 

meta-communities that may provide temporal and spatial stability of ecosystem service 156 

provisioning. Conserving diverse plant and arthropod communities in farming systems 157 

therefore requires sustainable practices that operate both within fields and across landscapes. 158 
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INTRODUCTION 159 

Simplification of agricultural landscapes, and increased use of fertilizers and 160 

pesticides, threaten arthropod communities worldwide (Matson et al., 1997; Tscharntke et al., 161 

2005; Potts et al., 2016). This could impair agricultural sustainability because declines in 162 

arthropod abundance and diversity are often associated with reduced provisioning of 163 

ecosystem services including pollination, pest control, and nutrient cycling (Kremen & Miles, 164 

2012; Oliver et al., 2015). Two strategies purported to mitigate this ecological harm are 165 

organic farming and in-field plant diversification (Table S1). We refer to these strategies as 166 

farm management schemes, both of which include a host of practices that promote biological 167 

diversification (Kremen & Miles, 2012; Puech et al., 2014). We refer to organic farming, 168 

conventional farming, high in-field plant diversification, and low in-field plant diversification 169 

as separate field types. Mounting evidence indicates that arthropod communities are more 170 

diverse and abundant in fields lacking synthetic fertilizers and pesticides, and in those with 171 

greater plant diversity (e.g., intercropped or having non-crop vegetation like hedgerows or 172 

floral strips) (Letourneau et al., 2011; Crowder et al., 2012; Kennedy et al., 2013; Garibaldi 173 

et al., 2014; Batáry et al., 2015; Fahrig et al., 2015). 174 

The benefits of diversified farming practices may manifest at different scales, such as 175 

within individual fields (local diversity) or across multiple fields in a landscape (regional 176 

diversity) (Table S1). One observational study of 205 farms across Europe and Africa, for 177 

example, found that although organic farming provided strong benefits for local richness of 178 

plants and pollinators, these benefits faded at regional scales (Schneider et al., 2014). This 179 

suggests that while farmers may promote local diversity on their field(s) by using organic 180 

practices, their efforts may not enhance biodiversity across multiple fields. Conversely, the 181 
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addition of hedgerows to crop fields has been shown to increase community heterogeneity 182 

and species turnover (measures of local diversity), which are important components of 183 

regional diversity (Ponisio et al., 2016). The effects of farm management for particularly 184 

mobile arthropods, such as pollinators, may also transcend individual fields if the improved 185 

quality of habitats on one field boosts abundance, with organisms spilling over to nearby 186 

fields (Tscharntke et al., 2012; Kennedy et al., 2013). While increases in local diversity have 187 

been shown to provide the strongest benefits to individual ecosystem services (i.e., 188 

pollination and biological control), regional diversity can support the simultaneous provision 189 

of multiple ecosystem services over space and time (Pasari et al., 2013). Thus, to mitigate the 190 

effects of biodiversity loss across agroecosystems, farm management schemes should ideally 191 

benefit both local and regional diversity. 192 

Research on the impacts of organic farming and in-field plant diversity has primarily 193 

focused on beneficial functional groups such as natural enemies and pollinators (Crowder et 194 

al., 2010; Kennedy et al., 2013) across intensively sampled regions of Europe and North 195 

America (Shackelford et al., 2013; De Palma et al., 2016). Moreover, almost all studies rely 196 

on richness (the number of taxa; Table S1) as a proxy for biodiversity but ignore metrics such 197 

as evenness (the relative abundances among species; Table S1) (e.g., Bengtsson et al., 2005; 198 

Tuck et al., 2014). Yet, richness poorly reflects overall community diversity (Duncan et al., 199 

2015; Loiseau & Gaertner, 2015), and its measurement is strongly confounded by abundance 200 

(Chao & Jost, 2012). Variation in richness has also been shown to have minimal impacts on 201 

ecosystem functioning when richness increases are driven primarily by rare species that 202 

contribute little to ecosystem services (Kleijn et al., 2015; Winfree et al., 2015). While 203 

common species may provide the majority of ecosystem services on some farms (Schwartz et 204 
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al., 2000; Kleijn et al., 2015), rare species can provide redundancy (Kleijn et al., 2015) or 205 

support provisioning of multiple ecosystem services (Soliveres et al., 2016). Assessing 206 

evenness can help determine whether richness increases are driven by rare or common 207 

species. Richness, evenness, and abundance can also independently or interactively affect 208 

ecosystem function (Wilsey & Stirling, 2006; Wittebolle et al., 2009; Crowder et al., 2010; 209 

Northfield et al., 2010; Winfree et al., 2015). Thus, teasing apart the effects of farm 210 

management schemes on abundance and each diversity metric is critical. While existing 211 

studies find that organic farming and in-field plant diversification tend to boost abundance 212 

and richness of certain taxa, whether these effects are consistent for other biodiversity 213 

components such as evenness, for functional groups other than pollinators and natural 214 

enemies, and for less-well studied regions of the world (e.g., the tropics and Mediterranean) 215 

remains unclear. 216 

Here, we present a comprehensive synthesis of studies that explore how organic 217 

farming and in-field plant diversification influence arthropod communities across global 218 

agroecosystems. We determine whether community responses to these management schemes 219 

vary based on different metrics (abundance, local richness and evenness, regional richness 220 

and evenness) and arthropod functional groups (detritivores, herbivores, pollinators, and 221 

predators). We investigate if these responses depend on landscape complexity (i.e., the 222 

proportion of natural and semi-natural habitat surrounding the farm; Fig. S1, Table S1), 223 

because landscape heterogeneity has been shown to influence the effectiveness of farm 224 

management schemes (Batáry et al., 2011; Kleijn et al., 2011; Kennedy et al., 2013; Tuck et 225 

al., 2014). We also explore whether farm management schemes have similar impacts on 226 

relatively rare compared to common taxa. Our results demonstrate whether local and regional 227 



 9 

diversity and abundance of different functional groups are similarly affected by on-farm 228 

management and landscape complexity, and the extent of covariance between biodiversity 229 

within and across fields in a landscape. Broadly, our findings further reveal the role of farm 230 

management in mitigating biodiversity loss and maintaining healthy arthropod communities 231 

in agroecosystems under global change. 232 

 233 

MATERIALS AND METHODS 234 

Literature survey 235 

We compiled data from studies on arthropod diversity in agroecosystems that 236 

compared one or both of the farm management schemes of interest: (1) organic vs. 237 

conventional farming and (2) high vs. low in-field plant diversity. We defined organic 238 

agriculture as fields that were organically certified or met local certification guidelines (Table 239 

S1). These guidelines involve, at minimum maintaining production systems free of synthetic 240 

pesticides and fertilizers. We defined conventional agriculture as fields or farms that used 241 

recommended rates of synthetic, or a mix of synthetic and organic, pesticides and fertilizers. 242 

Other types of farming systems, such as integrated, which fit neither category where excluded 243 

from the analysis. Fields were defined as having high in-field plant diversity if they had 244 

diverse crop vegetation or managed field margins to include non-crop vegetation (e.g., 245 

hedgerows, border plantings, flower strips) (Table S1). We also classified small (< 4 ha) 246 

fields as diverse because they yield small-scale crop diversity (across several fields) even if 247 

the target field is a monoculture (Pasher et al., 2013). Fields were defined as having low in-248 

field plant diversity if they had none of these features. Studies that compared these schemes 249 

were identified by (1) searching the reference lists of recent meta-analyses (Batáry et al., 250 
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2011; Chaplin-Kramer et al., 2011; Crowder et al., 2012; Garibaldi et al., 2013; Kennedy et 251 

al., 2013; Scheper et al., 2013; Shackelford et al., 2013), (2) searching ISI Web of 252 

Knowledge (April and May 2013) using the terms “evenness or richness” and “organic and 253 

conventional” or “local diversity”, and (3) directly contacting researchers who study 254 

arthropods in agricultural systems. 255 

We identified 235 relevant studies that we examined for inclusion based on five 256 

criteria: (1) sampling was performed in the same crop or crop type (e.g., cereals) for organic 257 

and conventional fields, or fields with high and low in-field plant diversity; (2) sampling was 258 

conducted at the scale of individual crop fields rather than using plots on experiment stations; 259 

(3) the study included at least two fields of each type; (4) all organisms collected were 260 

identified to a particular taxonomic level (i.e., order, family, genus, species, or 261 

morphospecies), such that no taxa were lumped into groups such as “other”; and (5) at least 262 

three unique taxa were collected. We use “taxon” to refer to a single biological type (e.g., 263 

species, morphospecies, genus, family), determined as the finest taxonomic resolution to 264 

which each organism was identified in a particular study (see examples in Table S1). A total 265 

of 60 studies met our criteria, representing 43 crops, 21 countries, and 5 regions (Asia, 266 

Europe, North and Central America, South America, Oceania) (Fig. S2, Table S2). For 267 

studies that investigated both management scheme comparisons, we included the data in both 268 

analyses only when the field types were independently assigned (Table S3); otherwise we 269 

selected the scheme that the authors indicated the study was designed to address (Table S2). 270 

Across these 60 studies, our meta-analysis included 110 unique data points: 81 comparing 271 

organic and conventional fields and 29 comparing fields with high vs. low in-field plant 272 

diversity (Fig. S2, Tables S2, S4, archived data). Among organic vs. conventional studies, the 273 
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number with high in-field plant diversity, low in-field plant diversity, and both levels of plant 274 

diversity were independent of organic vs. conventional management (χ2
2 = 0.47, p = 0.79). 275 

 276 

Calculation of effect sizes 277 

Unlike traditional meta-analyses that extract summary statistics from studies, we 278 

gathered and manipulated raw data, which enabled us to calculate evenness and classify taxa 279 

into functional groups. For each study, we compiled data on the abundance of all taxa in each 280 

field. For studies conducted across multiple years or crop types, separate values were 281 

compiled for each year and crop. To avoid pseudoreplication, for multi-year studies we 282 

selected a single year to analyze based on maximizing the number of (1) sites that met the 283 

evenness criterion (at least three taxa), (2) fields, or (3) individuals (in decreasing priority 284 

order; Garibaldi et al., 2013). Each collected taxon was classified into one of four functional 285 

groups: detritivore, herbivore, pollinator, or predator (see Supporting Methods for details). 286 

These taxon-level data were used to calculate effect sizes for abundance, local diversity, and 287 

regional diversity in paired organic vs. conventional or high vs. low in-field plant diversity 288 

systems. For local and regional calculations, we defined diversity as both richness and 289 

evenness, and treated each functional group separately (Fig. S1). 290 

Local diversity reflects the average diversity within each field, and was calculated 291 

using individual crop fields as the sampling unit (Fig. S1, Table S1). In studies with sub-292 

samples at a scale smaller than a field (i.e., plots within fields), values across these sub-293 

samples were averaged before calculating local diversity. Abundance was the number of 294 

arthropods, and richness the number of unique taxa, in a field. Evenness was calculated using 295 

the metric Evar, which ranges from 0 (one taxon dominant) to 1 (uniform abundance for all 296 
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taxa). This metric was chosen for its desirable statistical properties, particularly independence 297 

from richness, and its use in similar previous meta-analyses (Crowder et al., 2012). After 298 

calculating abundance, richness, and evenness for each field, we averaged values across all 299 

fields of a particular type in a study to obtain the values for effect size calculations. 300 

Regional diversity values were calculated based on individuals pooled across all fields 301 

in a study (Fig. S1, Table S1). Thus, regional richness and evenness are measures of diversity 302 

of meta-communities across fields in a landscape, while local diversity measures 303 

communities in a single field (Wang & Loreau, 2014). We note that regional diversity is not a 304 

direct indication of spatial scale, as the geographical extent of sampling varied among 305 

studies. Some studies were not designed to assess regional diversity specifically, and sampled 306 

unequal numbers of fields of each type. To correct for this sampling bias, we used sample-307 

based rarefaction with 1,000 random samples taken from the set of fields in a given study to 308 

determine pooled species assemblages (Gotelli & Colwell, 2011). For example, if a study had 309 

10 conventional and 6 organic fields, regional diversity values for the conventional 310 

management schemes would be based on the average pooled community taken from 1,000 311 

random draws of 6 field sites. Regional abundance is simply local abundance multiplied by 312 

the number of sites, thus we reported only one abundance value per study. 313 

To compare effects of farm management schemes on diversity and abundance, we 314 

used the log-response ratio as an effect size metric (Hedges et al., 1999). We used this metric, 315 

rather than a weighted effect size, for three reasons. First, weighted effect sizes could not be 316 

calculated for regional diversity because these calculations were based on a single value 317 

(without replication) from each study, such that there was no estimate of variability. Second, 318 

our studies classified arthropods at varying levels of taxonomic resolution. Studies classified 319 
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at the family level had less variability than studies classified at the species level, so using a 320 

weighted metric would give studies conducted at a coarser taxonomic resolution greater 321 

weight. Finally, preliminary analysis showed weighted and unweighted analyses of local 322 

diversity and abundance were qualitatively similar (Table S5). In the Results, we back-323 

transformed log response-ratio effect sizes to percentages. 324 

We assessed funnel plot asymmetry to test for publication bias. Because we used an 325 

unweighted effect size metric, we plotted effect sizes against sample sizes (i.e., number of 326 

fields; Figs. S3, S4) (Sterne & Egger, 2001), and visually assessed asymmetry since formal 327 

statistical tests require effect size variances (Jin et al., 2015) and measures of regional 328 

diversity had no variance component. Based on our visual assessment, we did not find areas 329 

of missing non-significant results, a directional bias to effects, or a strong relationship 330 

between effect and sample sizes. We did not detect any sign of publication bias; funnel plots 331 

were sufficiently symmetrical. Finally, we ensured the sampling method (active versus 332 

passive sampling techniques) did not influence results (see Supporting Information, Table 333 

S6). We calculated abundance and diversity values with R v. 3.1.1 (R Core Team, 2014), 334 

using packages BiodiversityR (Kindt & Coe, 2005), doBy (Højsgaard & Halekoh, 2013), and 335 

reshape (Wickham, 2007). Data and R scripts are available at 10.5281/zenodo.439109. 336 

 337 

Study variables 338 

We gathered data on three categorical variables and assessed whether they mediated 339 

arthropod responses to farm management schemes: (1) landscape complexity (simple, 340 

complex), (2) biome (boreal, Mediterranean, temperate, tropical), and (3) crop cultivation 341 

period (annual, perennial). Landscape complexity (see Fig. S1, Table S1) was determined 342 
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from land cover data on the percentage of natural and semi-natural habitat within 1 km of 343 

sampled fields. Natural and semi-natural habitat was defined as areas dominated by forest, 344 

grassland, shrubland, wetlands, ruderal vegetation, or non-agricultural plantings (i.e., 345 

previously-cultivated areas where vegetation is regenerating, hedgerows, field margins, and 346 

vegetation along roadways or ditches). For each study, we calculated the mean percentage of 347 

natural habitats across fields using locally-relevant land cover databases. Landscapes were 348 

classified as simple if they averaged ≤ 20% natural habitat, and complex if they averaged > 349 

20% natural habitat, following Tscharntke et al. (2005) and common practice (e.g., Batáry et 350 

al., 2011; Scheper et al., 2013) (see Supporting Methods for additional details). Biome was 351 

based on the geographic location of the study. Crop cultivation periods were derived from 352 

several sources (FAO AGPC, 2000; Garibaldi et al., 2013). Table S4 shows the distribution 353 

of data points across each of these descriptive variables. 354 

 355 

Data analyses 356 

Table S7 summarizes specific questions we addressed and the approach we used to 357 

test each one. We first used one-sample t-tests (Crowder & Reganold, 2015) to determine if 358 

the mean effect sizes for abundance, local richness and evenness, and regional richness and 359 

evenness differed significantly from 0. For each management scheme comparison (organic 360 

vs. conventional or high vs. low in-field plant diversity), these analyses were conducted for 361 

the overall arthropod community and for each functional group separately. We also explored 362 

correlations between local and regional richness, and between local and regional evenness, to 363 

determine if these metrics responded similarly to each of the management schemes. We used 364 

α = 0.10, to describe effect sizes that appeared ecologically important but did not meet the 365 
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somewhat arbitrary α = 0.05. This accords with a recent policy statement by the American 366 

Statistical Association (Wasserstein & Lazar, 2016), which notes that reliance on arbitrary 367 

alpha values can lead to erroneous conclusions. 368 

In subsequent analyses, we used meta-regression to examine whether effect sizes 369 

were influenced by functional group and other study characteristics. We excluded studies 370 

lacking landscape complexity data (see archived data) from meta-regressions. For each 371 

management scheme and response, we ran a linear mixed model (lme4 package; Bates et al., 372 

2014) that included eight fixed effect variables: (1) functional group (detritivore, herbivore, 373 

predator, pollinator), (2) diversity scale (local, regional), (3) landscape complexity (simple, 374 

complex), (4) biome (boreal, Mediterranean, temperate, tropical), (5) crop cultivation period 375 

(annual, perennial), (6) functional group×diversity scale interaction, (7) functional 376 

group×landscape complexity interaction, and (8) diversity scale×landscape complexity 377 

interaction. These models included study ID as a random effect. We used information-378 

theoretic model selection to determine the set of best-fit models for each response variable 379 

(MuMIn package; Barton, 2014), which contained models with AICc values within 2 of the 380 

smallest value (Burnham & Anderson, 1998). We examined significance of the fixed effects 381 

in each model in the best-fit set (α = 0.10) with likelihood ratio tests, and used post-hoc 382 

planned contrasts (with p-values adjusted to control the overall Type I error rate using 383 

Holm’s sequential Bonferroni procedure; see Supporting Methods) (phia package; Rosario-384 

Martinez, 2013) to test for (1) differences in effect size among functional groups and biomes, 385 

(2) differences in effect size between the local and regional scales within each functional 386 

group, and (3) landscape complexity differences between each pair of functional groups. 387 
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We also tested whether abundance and richness effect sizes differed for rare and 388 

common taxa. Following Kleijn et al. (2015), within each study we classified taxa as 389 

common if their relative abundance was at least 5% of the total community; other species 390 

were categorized as rare. We then calculated local abundance and richness as well as regional 391 

abundance and richness separately for rare and common taxa. We used one-sample t-tests to 392 

determine if mean effect sizes differed significantly from zero, and paired t-tests to determine 393 

whether mean effect sizes differed between rare and common taxa. 394 

 395 

RESULTS 396 

Effects of management schemes on overall arthropod communities 397 

Organic farming increased arthropod abundance (45% change), local richness (19%), 398 

and regional richness (11%) (Fig. 1a, Table S8). These positive effects were stronger for local 399 

compared to regional richness (Fig. 1a, Tables S9, S10). Arthropod communities on organic 400 

farms had significantly but only moderately lower local evenness (-6%) and regional 401 

evenness (-8%) than on conventional farms (Fig. 1a, Table S8). Fields with high in-field plant 402 

diversity increased local richness (23%) and regional richness (19%), with similar magnitude 403 

(Fig. 1b, Tables S8, S11, S12). In-field plant diversity did not significantly affect abundance 404 

(27%), local evenness (-6%) or regional evenness (-13%) (Fig. 1b, Table S8). Overall, there 405 

were strong positive correlations between local and regional richness (r = 0.87), and between 406 

local and regional evenness (r = 0.57; Fig. S5). 407 

Organic farming increased abundance and richness of both rare and common 408 

arthropods at the local and regional scales (Fig. S6a,c, Table S13). At the local scale, organic 409 

farming increased arthropod richness by promoting rare taxa (27% increase) more strongly 410 
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than common taxa (14% increase) (Fig. S6c, Table S14). In-field plant diversification also 411 

had differential effects on rare and common taxa, increasing richness of both at the local 412 

scale, but only of rare taxa at the regional scale (Fig. S6d, Table S13). Fields with higher in-413 

field plant diversity increased abundance of common arthropods, but not of rare arthropods 414 

(Fig. S6b, Table S13). 415 

 416 

Effects of management schemes on arthropod functional groups 417 

Organic farming substantially increased the abundance (90%), local richness (55%), 418 

and regional richness (32%) of pollinator communities, but did not impact pollinator 419 

evenness (Fig. 2a, Table S15). For predator communities, organic farming increased 420 

abundance (38%) and local richness (14%), lowered local (-9%) and regional (-14%) 421 

evenness (Fig. 2c, Table S16), but did not affect regional richness (Fig. 2c, Table S16). 422 

Organic farming also did not impact abundance, local or regional richness, or local or 423 

regional evenness for herbivore (Fig. 2e, Table S17) or detritivore (Fig. 2g, Table S18) 424 

communities. For all biodiversity components and functional groups, effect sizes in response 425 

to organic farming did not differ between the local and regional scales (Fig. 2a,c,e,f, Tables 426 

S9, S10). The diversity scale×landscape complexity interaction was never retained in a best-427 

fit model (Tables S9, S11). 428 

High in-field plant diversity promoted the abundance (45%), local richness (44%), 429 

and regional richness (29%) of pollinator communities, but decreased local pollinator 430 

evenness (-11%) (Fig. 2b, Table S15). In-field plant diversity did not affect regional 431 

pollinator evenness (Fig. 2b, Table S15). In addition, in-field plant diversity did not alter 432 

abundance, local or regional richness, or local or regional evenness for predator (Fig. 2d, 433 
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Table S16) or herbivore (Fig. 2f, Table S17) communities. In-field plant diversity increased 434 

the regional richness (69%) of detritivores and lowered regional detritivore evenness (-65%), 435 

but did not impact detritivore abundance, local richness, or local evenness (Fig. 2h, Table 436 

S18). The low sample size for detritivores, however, limits our ability to make inferences 437 

about this group. 438 

 439 

Effects of landscape complexity, biome, and crop cultivation period on arthropod 440 

communities 441 

Landscape complexity did not mediate the influences of organic farming or in-field 442 

plant diversity on arthropod abundance or evenness (Fig. 3, Tables S9-S12). However, both 443 

management schemes had stronger positive effects on local and regional arthropod richness 444 

in complex relative to simple landscapes: organic farming 26% vs. 9%, in-field plant 445 

diversification 29% vs. 11%, respectively (Fig. 3c,d, Tables S9-S12). The effects of 446 

landscape complexity were similar in both direction and magnitude for local and regional 447 

diversity (Fig. 3c-e, Tables S9-S12). Organic farming promoted herbivore richness to a 448 

greater extent in simple than complex landscapes (Table S10), but other effects of landscape 449 

complexity on abundance and diversity were similar across functional groups (Tables S9-450 

S12). 451 

Stronger richness gains in complex than simple landscapes were driven 452 

predominantly by rare taxa (Fig. 4). In complex landscapes, both organic farming and in-field 453 

plant diversification had stronger positive effects on local richness of rare (organic 44%, 454 

plant diversification 68%) than of common (organic 21%, plant diversification 18%) 455 

arthropod taxa (Fig. 4c,d, Table S19). Organic farming within complex landscapes also 456 
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increased local abundance and regional richness of rare taxa (78% and 17%, respectively) to 457 

a greater extent than common taxa (33% and 4%, respectively) (Fig. 4a, Table S19). Neither 458 

management scheme differentially affected abundance or richness of rare and common taxa 459 

in simple landscapes (Fig. 4, Table S19). 460 

Biome mediated the impacts of in-field plant diversity on arthropod richness (pooled 461 

across local and regional scales) (Tables S11, S12). Post-hoc tests failed to indicate 462 

significant differences among biomes when considering all studies; but when the single 463 

boreal study was removed from the analysis, high in-field plant diversity more strongly 464 

promoted richness in Mediterranean (53%) than in temperate studies (-2%) (Table S12). 465 

Biome did not mediate the effects of organic farming or in-field plant diversification on 466 

arthropod abundance or evenness (Tables S9-S12). Organic farming increased arthropod 467 

abundance to a greater extent in annual (70%) than in perennial (1%) crops (Tables S9, S10). 468 

The effects of in-field plant diversification on abundance and diversity were consistent across 469 

crop cultivation periods (Tables S11, S12). 470 

 471 

DISCUSSION 472 

Our global meta-analysis showed that both organic farming and in-field plant 473 

diversification strongly increased arthropod abundance and richness, but had weaker effects 474 

on evenness. The minimal evenness decreases on diversified farms reflected the presence of 475 

more rare taxa. Emerging evidence suggests that rare taxa contribute to individual ecosystem 476 

services less than common taxa (Schwartz et al., 2000; Kleijn et al., 2015), although they 477 

may be important for maintenance of multiple ecosystem services across time and space 478 

(Isbell et al., 2011; Soliveres et al., 2016). Thus, while organic farming and plant 479 
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diversification promote arthropod biodiversity conservation goals, their impacts on 480 

ecosystem services may be nuanced. The positive effects of both organic farming and in-field 481 

plant diversification were greatest for two groups of beneficial arthropods: pollinators and 482 

predators. Thus, both schemes may increase agroecosystem sustainability by promoting key 483 

ecosystem service providers without boosting pest (herbivore) densities. 484 

Previous meta-analyses have investigated how organic farming and, to a lesser extent, 485 

in-field plant diversification, affect arthropod abundance and richness (e.g., Bengtsson et al., 486 

2005; Batáry et al., 2011; Chaplin-Kramer et al., 2011; Scheper et al., 2013; Shackelford et 487 

al., 2013; Tuck et al., 2014). Our study extends upon this work by (1) combining data on 488 

multiple arthropod functional groups (but see Shackelford et al., 2013), and (2) examining 489 

the type and scale of diversity across a variety of crop types. As such, we offer a more 490 

comprehensive understanding of when and how farm management schemes alter arthropod 491 

biodiversity. Our findings caution that the frequent use of richness as the sole proxy for 492 

biodiversity fails to reflect the full impacts of farming practices on biologic communities. 493 

While multiple studies have shown that organic farming boosts richness (e.g., Bengtsson et 494 

al., 2005; Tuck et al., 2014), we found that evenness decreased: an outcome that was due 495 

mainly to promotion of rare species. Species richness might be increased by conservation 496 

practices that target specific taxa, but the promotion of evenness requires practices that can 497 

simultaneously balance the abundances of many taxa (Crowder et al., 2010, 2012). Finally, 498 

our results highlight the necessity of targeting farm management within the context of local 499 

conditions (Cunningham et al., 2013; Saunders et al., 2016). For example, our results suggest 500 

that farmers in Mediterranean biomes might see greater arthropod richness gains by 501 



 21 

increasing in-field plant diversity than by farming organically, while farmers growing annual 502 

crops may be more likely to boost arthropod abundance with organic farming. 503 

Disentangling relationships between biodiversity components at local and regional 504 

scales can inform patterns of community assembly and mechanisms that shape community 505 

structure (Gering & Crist, 2002; Wang & Loreau, 2014). We found that regional diversity 506 

positively correlated with local diversity under both management schemes. Further, organic 507 

farming increased richness at both scales, although local effects were stronger than regional 508 

ones. One possible explanation is that diversified farming practices increase the heterogeneity 509 

of local communities (e.g., Ponisio et al., 2016), which could lead to greater regional 510 

diversity. Another possibility is that diversified fields serve as source habitats within a matrix 511 

of crop and non-crop habitats across farming landscapes (M’Gonigle et al., 2015). Further, 512 

the benefits of diversification practices on local communities in fields can be strongly 513 

mediated by regional species pools across farming landscapes (Gering & Crist, 2002). 514 

Our results, in combination with another recent meta-analysis (Schneider et al., 2014), 515 

suggest that mobility of organisms can determine whether the benefits of farm diversification 516 

accrue at both local and regional scales. While we show that organic farming can boost 517 

arthropod diversity at local and regional scales, Schneider et al. (2014) found that organic 518 

farming increased plant, earthworm, and spider richness at field but not regional scales. 519 

These groups of organisms tend to have limited dispersal capacity, particularly plants and 520 

earthworms. Thus, their local communities may be structured more by competition than long-521 

distance dispersal (Gering & Crist, 2002), which would limit the similarity between 522 

communities within and across fields. At the same time, Schneider et al. (2014) found that 523 

organic farming boosted the richness of bees, a more mobile group of organisms, by 524 
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approximately 25% at the local scale and 15% at the regional scale. We likewise found that 525 

diversified farming increased abundance, and local and regional richness, of mobile 526 

pollinators, but had less impact on detritivores that tend to have lower mobility (Sattler et al., 527 

2010). 528 

Overall, our results are consistent with mounting evidence that farm management and 529 

landscape complexity interactively affect arthropod biodiversity (e.g., Rusch et al., 2010; 530 

Batáry et al., 2011; Kennedy et al., 2013; Tuck et al., 2014), although results across studies 531 

reveal sometimes conflicting patterns (Kleijn et al., 2011; Tscharntke et al., 2012; Tuck et 532 

al., 2014). For example, agri-environment schemes that promote low input, low disturbance, 533 

and diverse farms are sometimes most effective in fostering biodiversity in structurally 534 

simple landscapes (Batáry et al., 2011; Scheper et al., 2013). This presumably occurs because 535 

simple landscapes fail to satisfy the resource needs of many species, such that these species 536 

may disperse into diverse farms to seek resources (Tscharntke et al., 2005; Kremen & Miles, 537 

2012). In contrast, we found that impacts of organic farming and plant diversification on 538 

arthropod richness were heightened for fields embedded in complex landscapes. This could 539 

occur if complex landscapes support more diverse species pools that can respond positively 540 

to farm management (Duelli & Obrist, 2003; Hillebrand et al., 2008; Kennedy et al., 2013). 541 

Consistent with this hypothesis, we showed that organic farming in complex landscapes 542 

preferentially increased richness of rare taxa locally (i.e., in fields) and regionally (i.e., across 543 

landscapes). Importantly, the interactive effects of landscape complexity and on-farm 544 

management may differ across arthropod functional groups with varying capacity to move 545 

across landscapes (Tscharntke et al., 2005; Chaplin-Kramer et al., 2011). However, the only 546 

interaction between landscape complexity and management schemes we found was for 547 
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richness of herbivores, a group with considerable variation in mobility among taxa (Sattler et 548 

al., 2010). 549 

Ideally, increases in abundance and diversity of arthropods on farms would enhance 550 

the provisioning of ecosystem services (Kremen & Miles, 2012). However, empirical studies 551 

have provided mixed evidence. In-field plant diversification and increased landscape 552 

complexity have been found to promote predator abundance and diversity with no change in 553 

pest control levels (Chaplin-Kramer et al., 2011; Rusch et al., 2016) or reduced crop damage 554 

(Letourneau et al., 2011). The relationship between biodiversity and ecosystem services on 555 

farms is thus likely strongly mediated by species’ abundances and functional roles. For 556 

example, Northfield et al. (2010) found that greater predator richness increased pest control, 557 

but only with high predator densities where complementarity among predator species was 558 

fully realized. Increases in pollinator richness can have minimal impacts on ecosystem 559 

services when richness gains are associated with rare species that contribute little to 560 

pollination (Kleijn et al., 2015; Winfree et al., 2015). Increasing wild pollinator richness on 561 

large farms (> 14 ha) only increases fruit set when wild pollinator density is also high 562 

(Garibaldi et al., 2016). Higher predator species evenness on organic farms has also been 563 

shown to translate to increased pest control, with the potential to reduce yield gaps compared 564 

with conventional agriculture (Crowder et al., 2010). However, models suggest that 565 

decreased evenness could also lead to greater ecosystem services when abundance of 566 

common species that are effective ecosystem services providers increases at the expense of 567 

rare species that are functionally less important (Crowder & Jabbour, 2014), a result seen 568 

with pollinators in agricultural systems (Kleijn et al., 2015; Winfree et al., 2015). The 569 

combination of context-specific responses to farm management schemes shown by this study 570 
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and biodiversity-ecosystem functioning relationships that depend on species’ abundances and 571 

functional traits suggest that the effects of diversified farming on ecosystem services are 572 

likely to depend on taxon, biome, landscape, and crop characteristics. 573 

By promoting biodiversity and abundance of arthropods, diversified agriculture could 574 

provide a multitude of other benefits (Oliver et al., 2015). Biodiversity can help maintain 575 

stability of ecosystem processes through mechanisms such as response diversity and 576 

functional redundancy (Cardinale et al., 2012; Mori et al., 2013). Arthropod richness gains in 577 

response to organic farming and plant diversification, such as those documented here, could 578 

guard against the loss of ecological function by supporting multiple species that occupy 579 

similar functional niches (functional redundancy) or that are functionally similar but respond 580 

differentially to environmental change (response diversity; Elmqvist et al., 2003). The 581 

abundance and richness increases we detected for pollinators and predators but not for 582 

herbivores suggest that the two former groups may benefit more from these stabilizing 583 

processes. Resilient systems must also exhibit multiple ecosystem functions 584 

(multifunctionality) as environmental conditions and arthropod populations fluctuate. 585 

Increases in rare taxa, as detected in this study, may be critical for multifunctionality (Isbell 586 

et al., 2011; Soliveres et al., 2016) and even for single ecosystem functions (Zavaleta & 587 

Hulvey, 2004; Mouillot et al., 2013). Thus, regional-scale refuges for rare species may ensure 588 

resilient agricultural systems. 589 

Overall, our results suggest that both organic farming and in-field plant diversification 590 

promote biodiversity on farms. Moreover, these two schemes might have interactive effects 591 

on farm productivity. Practices such as multi-cropping (plant diversification) and longer, 592 

more diverse, crop rotations can reduce the yield gaps between organic and conventional 593 
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agriculture (Ponisio et al., 2015), and increase the profitability of organic relative to 594 

conventional systems (Crowder & Reganold, 2015). Diversified small farms are increasingly 595 

being replaced by large, simplified, and intensive monoculture production systems 596 

(Tscharntke et al., 2005; Bennett et al., 2012). This is problematic because intensified 597 

farming reduces the long-term sustainability of agroecosystems, thereby threatening global 598 

food security (Ray et al., 2012). One of the greatest challenges of the 21st century is meeting 599 

the food, fiber, and energy needs of a growing human population while maintaining farm 600 

sustainability and ecosystem functioning (Tilman et al., 2011). Our study underscores that 601 

adopting organic farming or in-field plant diversification practices might aid society in 602 

attaining these goals.  603 
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FIGURE CAPTIONS 812 
 813 
Figure 1. Effects of farm management schemes on arthropod abundance, local diversity, and 814 
regional diversity. Values shown are for the entire arthropod community, and indicate the 815 
mean log-response ratio (± SE) of (a) adopting organic farming and (b) promoting in-field 816 
plant diversity on abundance, richness, and evenness. A “*” above a mean effect size denotes 817 
a significant difference from zero (determined via one-sample t-tests; α = 0.1; statistical 818 
details in Table S8), while one below a pair of means indicates a significant difference 819 
between local and regional diversity (determined via linear mixed models; α = 0.1; Tables 820 
S9-S12). 821 
 822 
Figure 2. Effects of farm management schemes on abundance, local diversity, and regional 823 
diversity of arthropod functional groups. Mean log-response ratios (± SE) of (left column) 824 
adopting organic farming and (right column) promoting in-field plant diversity for (a-b) 825 
pollinators, (c-d) predators, (e-f) herbivores, and (g-h) detritivores. A “*” above a mean effect 826 
size denotes a significant difference from zero (determined via one-sample t-tests; α = 0.1; 827 
Tables S15-S18). Meta-regressions indicated that differences between local and regional 828 
values did not vary with functional group (Tables S9-S12). 829 
 830 
Figure 3. Effects of landscape complexity on the entire arthropod community in organic vs. 831 
conventional farms (left column) and fields with high vs. low in-field plant diversity (right 832 
column). Each graph shows the mean log-response ratio (± SE) for studies in simple (≤ 20% 833 
natural habitat) or complex (>20% natural habitat) landscapes for (a,b) abundance, (c,d) 834 
richness, and (e,f) evenness. A “*” below a set of means indicates a significant difference 835 
between means at the habitat complexity levels (determined via paired t-tests; α = 0.1; Tables 836 
S9-S12). 837 
 838 
Figure 4. Effects of farm management schemes on abundance (a, b) and richness (c, d) of 839 
common vs. rare taxa in simple and complex landscapes. Mean log-response ratios (±SE) of 840 
(left column) adopting organic farming and (right column) promoting in-field plant diversity. 841 
A “*” below a pair of means indicates a significant difference between rare and common taxa 842 
within a landscape complexity category (determined via paired t-tests; α = 0.1; Table S19). 843 
  844 
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