

Beltrami, A. P., & Madeddu, P. (2018). Pericytes and cardiac stem cells: common features and peculiarities: Common features and peculiarities. *Pharmacological Research*, *127*, 101-109. https://doi.org/10.1016/j.phrs.2017.05.023

Peer reviewed version

Link to published version (if available): 10.1016/j.phrs.2017.05.023

Link to publication record in Explore Bristol Research PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online via ELSEVIER at http://www.sciencedirect.com/science/article/pii/S1043661817304486?via%3Dihub. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research General rights

This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/pure/about/ebr-terms

Pericytes and cardiac stem cells; common features and peculiarities.

Antonio Paolo Beltrami^{1*} & Paolo Madeddu^{2*}

¹Department of Medicine (DAME), University of Udine, Italy

²Experimental Cardiovascular Medicine, Section of Regenerative Medicine, School of Clinical Sciences, University of Bristol

^{*} Corresponding authors:

Antonio Paolo Beltrami, Istituto di Anatomia Patologica, Università degli Studi di Udine, P.zzle S. Maria della Misericordia, 33100 Udine, Italy.

Email: antonio.beltrami@uniud.it

Paolo Madeddu, Chair Experimental Cardiovascular Medicine, Head of Regenerative Medicine Section, Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Level 7, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, United Kingdom

Email: Paolo.Madeddu@bristol.ac.uk

Abstract

Clinical data and basic research indicate that the structural and functional alterations that characterize the evolution of cardiac disease towards heart failure may be, at least in part. reversed. This paradigm shift is due to the accumulation of evidence indicating that, in peculiar settings, cardiomyocytes may be replenished. Moving from the consideration that cardiomyocytes are rapidly withdrawn from the cell cycle after birth, independent laboratories have tested the hypothesis that cardiac resident stem/progenitor cells resided in mammalian hearts and were important for myocardial repair. After almost two decades of intensive investigation, several (but partially overlapping) cardiac resident stem/progenitor cell populations have been identified. These primitive cells are characterized by mesenchymal features, unique properties that distinguish them from mesodermal progenitors residing in other tissues, and heterogeneous embryological origins (that include the neural crest and the epicardium). A further layer of complexity is related to the nature, in vivo localization and properties of mesodermal progenitors residing in adult tissues. Intriguingly, these latter, whose possible perivascular pericyte/mural cell origin has been shown, have been identified in human hearts too. However, their exact anatomical localization, pathophysiological role, and their relationship with cardiac stem/progenitor cells is emerging only recently. Therefore, aim of this review is to discuss the different origin, the distinct nature, and the complementary effect of cardiac stem cells and pericytes supporting regenerative strategies based on the combined use of both myogenic and angiogenic factors.

1) Introduction

The concept of the heart as a terminally differentiated organ was extensively debated between the end of 1800 and the beginning of the last century, until the seminal work of Karsner, Saphir and Todd strongly supported this view, by showing, with quantitative pathology approaches on histological sections, that the adult heart increases its size by hypertrophy only¹. One of the strongest arguments supporting this thesis was the difficulty of pathologists to find mitotic figures in adult human hearts¹. However, in subsequent years, this static notion was challenged, employing a plethora of different techniques, such as stereology², ³H-thymidine labeling³, bromodeoxyuridine labeling⁴, immunofluorescence and confocal microscopy⁵, and, most recently, mass spectrometry of ¹⁴C incorporation into cardiomyocyte DNA⁶. As a result, nowadays the possibility that cardiomyocytes can divide is not anymore regarded to as a heresy. However, both the magnitude of this phenomenon and the origin of the proliferating cardiomyocytes are at the center of a heated debate, where evidence in support of their generation from either adult cardiomyocytes or cardiac stem cells have been reported in the literature (reviewed Cesselli et al. in this isssue).

In nature, the clearest examples of myocardial regeneration, that yield a complete *restitutio ad integrum* of the injured organ, occur in teleost fishes⁷ and urodele amphibians⁸. Additionally, recent reports have shown that neonatal mice too have a transient potential to regenerate cardiac injury that vanishes 1 week after birth⁹. Although this result has the potential to reveal the mechanisms that distinguish myocardial scarring from regeneration, other reports have either refuted this finding¹⁰ or demonstrated that the extent of regeneration depends upon the type and size of damage¹¹. At first, the main mechanism of myocardial regeneration was considered to be, in these models, the activation of cardiomyocyte proliferation^{12, 13}. However, in recent years, a more complex picture has emerged, that involves: a cardiomyocyte de-differentiation program, mediated by miR99/100 and Let-7a/c¹⁴ or stimulated by the neuregulin/ErbB2 axis¹⁵, the infiltration of macrophages with a unique polarization phenotype¹⁶, epicardium-derived factors¹⁷, a specific extracellular matrix¹⁸, and, possibly, stem cells^{17, 19, 20}.

The natural history of cardiac pathology is characterized by a series of molecular, cellular, histologic, conformational, metabolic and functional changes, which have been collectively named

cardiac remodeling. This latter term, indeed, describes a large spectrum of pathologic modifications (including: cardiomyocyte hypertrophy²¹, cardiomyocyte death²², cardiomyocyte dedifferentiation²³, alterations of both calcium dynamics²⁴ and myofilament calcium sensitivity²⁵, profound modifications of myocardial metabolism²⁶, and cardiac fibrosis²⁷), that constitute the common pathophysiologic mechanism leading a wide range of cardiac diseases of different etiology towards overt heart failure.

In addition, vascular, perivascular and stromal cells participate in cardiac remodeling and repair. During the development of hypertrophy, capillary endothelial cells also dynamically undergo a phenotypic change to support contractile function of the myocardium^{28, 29}. Morphometry analyses of hypertrophied hearts in animal models showed that capillary microvasculature and myocytes grow proportionally to the increase of heart mass^{30, 31}, suggesting that an insufficient growth of capillaries could cause myocardial ischemia in pathologically hypertrophied hearts^{32, 33}.

Perivascular mesenchymal cells, alias pericytes, are abundant in the cardiac muscle but their function in cardiac remodeling has not yet been well documented. Recent evidence suggests that cardiac pericytes may contribute to cardiomyogenesis³⁴. Clonal analysis, lineage tracing studies and *in vitro* differentiation experiments showed that coronary smooth muscle cells derive from pericytes in the adult heart^{35, 36}. However, whether pericytes represent a homogeneous population remains a matter of debate. A recent study reported that immunosorted CD146⁺/CD34⁻ perivascular cells from fetal and adult myocardium share some phenotypic and developmental similarities with skeletal muscle pericytes, yet exhibit different antigenic, myogenic, and angiogenic properties, thus suggesting the heterogeneity of pericytes derived from diverse anatomical locations (*vide infra*)³⁴.

Although for many years the remodeling process was thought to be irreversible³⁷, an increasing body of literature is indicating that a fraction of patients in optimal medical and device treatment undergo profound modifications of the ventricular shape, shifting the pressure-volume relationships of their ventricle to the left. Intriguingly, reverse remodeling predicts prognosis in patients affected by idiopathic dilated cardiomyopathy and is related to the duration of heart failure³⁸; consistently, reverse remodeling is very pronounced in infants³⁹. In some instances,

these macroscopic functional benefits have even been coupled with the reversal of more subtle, cellular and molecular alterations, such as cardiomyocyte hypertrophy or the re-expression of fetal cardiac genes⁴⁰. Importantly, according to different investigators, cell therapy can promote reverse remodeling^{41, 42}. Furthermore, for specific pathologic conditions (e.g. acute lymphocytic myocarditis, peripartum cardiomyopathy⁴⁰ and Takotsubo cardiomyopathy⁴³), the spontaneous recovery from heart failure symptoms and a nearly complete normalization of left ventricular function and structure were described, suggesting that, under favorable circumstances (especially after acute, not chronic injury) myocardial recovery can occur⁴⁰. Intrigued by this observation, some investigators verified if, when cardiac injury spares cardiac resident stem cells and (at least in part) tissue architecture, these cells are both necessary and sufficient to promote myocardial regeneration⁴⁴.

 In line, by extensively investigating, since the early 2000s, the possible ability of stem cell therapy to promote myocardial repair, together with the mechanism of action of donated cells, a novel field of studies, aimed at promoting cardiac regeneration, was created⁴⁵. Indeed, the observed ability of primitive cells to stimulate cardiomyocyte proliferation started a new paradigm shift, which now considers feasible to unlock the proliferative potential of the heart. Prompted by these pioneering studies, several new approaches are now under investigation, that include: the combined use of progenitors cells of different origin and complementary mechanisms of action⁴⁶, the use of exogenous microRNA⁴⁷, the use of these latter within exosomes⁴⁸, the direct reprogramming of fibroblasts to cardiomyocytes⁴⁹ or the identification of factors, such as thymosin $\beta 4^{50}$, the neuregulin Erbb2 axis¹⁵ or the Hippo/Yap pathway⁵¹ able to stimulate myocyte proliferation.

Given these premises, aim of this review is to discuss the different origin, the distinct nature, and the complementary effect of cardiac stem cells and pericytes supporting regenerative strategies based on the combined use of both myogenic and angiogenic factors

2) The elusive nature of cardiac stem/progenitor cells.

Stimulated by evidence in support of cardiac myocyte proliferation following acute myocardial infarction⁵, we and other authors started to chase after primitive cells in adult mammalian hearts. The rationale for this was that mature cardiomyocytes are withdrawn from the

cell cycle few days after birth⁵², while primitive, motile cells, able to differentiate in cardiomyocytes could also account for the observed chimerism of cardiac myocytes in male recipient of donated female hearts^{53, 54}. By pursuing this task, Hierlihy and colleagues first described the existence of a cardiac side population (SP), able to differentiate both into hematopoietic cells and cardiomyocytes⁵⁵. Immediately thereafter, the presence of primitive, cardiac resident cells was given employing a single or few antigenic markers. Specifically, cells with stem/progenitor cell characteristics that expressed either the stem cell factor receptor c-Kit⁵⁶ or the stem cell antigen-1 (Sca-1)⁵⁷ were initially identified. Subsequently, independent investigators confirmed the existence of cells with stem/progenitor properties in the postnatal mammalian heart, by evaluating cells expressing the developmental lineage marker Islet-1⁵⁸, employing a selective culture system that promotes the expansion of cells as self-adhesive, floating, clusters (i.e. cardiospheres)⁵⁹ or culturing plastic adherent cardiac cells with mesenchymal stem cell features (MSC, see discussion later)⁶⁰. Although it was shown that, within the cardiac SP, Sca-1⁺CD31⁻ cells were the most cardiomyogenic ones⁶¹, that both c-Kit⁺ and Sca1⁺ cells were present within mouse cardiospheres⁵⁹, that Sca1 was expressed by most cardiac MSC, while cKit was expressed only by a minor fraction of the same cells⁶⁰, that human cKit⁺ cells coexpressed MSC antigens⁶², and that Sca1 expression may be required for c-Kit⁺ cell function⁶³, conflicting reports on the relationship between the different primitive cell populations can be found in the literature.

To clarify the relationship between the different cell types, gene expression analyses were conducted by independent investigators. By comparing freshly isolated, cardiac derived, c-Kit⁺, Sca1⁺ cells, and SP cells with cardiomyocytes of mouse origin employing cDNA microarrays, Dey and collaborators observed that Sca1⁺ cells and SP cells displayed the highest similarity in gene expression with cardiomyocytes, while c-Kit⁺ cells showed the lowest correlation with all the other cell types⁶⁴. The latter population appeared to be a distinct, more primitive cell type, which was, however, distinct from bone marrow (BM) derived c-Kit⁺ cells and BM-MSC⁶⁴. Additionally, by comparing c-Kit⁺ cells of cardiac and hematopoietic origin, it was shown that cardiac cKit⁺ cells are enriched in endothelial cell specific and angiogenesis related genes, including *Wt1*⁶⁴. Investigating the differences among MSC derived from heart, BM and kidney, Pelekanos and collaborators showed that, despite a high degree of correlation, strong biases in gene and protein expression were observed (e.g. increased expression of *Mef2C*, *Tbx4*, *Fgf10*, and, to a less extent, *Isl1* in cardiac MSC), that could account for organ specific functions⁶⁰. Similar results were obtained by

Rossini and collaborators, who showed that MSC obtained from the heart and the bone marrow differed in their gene, miRNA, and protein expression profiles, where c-Kit, GATA4, GATA6, KLF5, and myosin light chain-2a were more expressed in cardiac MSC⁶⁵. Importantly, a common feature of MSC cells obtained from the different tissues is the expression of \approx 66% of the genes comprised within the pluripotency network (plurinet)⁶⁰. Analyzing SP and Sca1 expressing cells by single cell quantitative RT-PCR, Noseda and collaborators showed that *Pdgfra* coexpression identifies cells enriched for the cardiogenic factors Gata4/6, Mef2a/c, Tbx5/20 and Hand2, but mostly negative for Hand1, Isl1, and Nkx2-5, suggesting a similarity between these cells and the developing cardiac mesoderm⁶⁶. Notably, these features were maintained even in clonal cultures of cardiac SP cells⁶⁶. Intriguingly, when Gaetani and collaborators compared the gene expression profile of cultured human cardiac progenitor cells that were isolated employing either cKit or Sca1 and propagated either as monolayer cultures or as spheroid suspension cultures, they observed a very high degree of similarity among the different cell types. Notably, gene expression variability was mostly related to individual donor differences and to culture conditions (i.e. adhesion versus suspension culture). Last, we compared the gene expression profile of human multipotent cells with MSC features isolated from different tissues, including the heart⁶⁷. Importantly, these latter were additionally characterized by cKit positivity⁶⁸. Although in this early report we showed a high degree of transcriptional similarity among cells obtained from heart, liver and bone marrow⁶⁷, in a subsequent work that employed the cap analysis of gene expression (CAGE) technique, we showed that the expression profile of cardiac cells could be clearly distinguished from that of bone marrow or adipose tissue derived cells⁶⁹.

Despite a general agreement on the notion that adult cardiac resident primitive cells have a transcriptional identity that is distinct from mesenchymal cells residing in other adult tissues, less clear is the embryonic origin and the developmental potential of cardiac stem/progenitor cells residing in adult organs. Isl1⁺ cells may be originated from the cardiac progenitor fields during embryogenesis. However, postnatal Isl1 expressing cells were found to be mainly differentiated cells in parasympathetic ganglions, in the great arteries, in the outflow tract and in the sinoatrial pacemaker⁷⁰. More complex is the origin of cKit expressing cells, which, could be remnants of the cardiogenic fields^{71, 72} or, according to Hatzistergos and collaborators, would derive from the cardiac neural crest⁷³. A third possible source of cKit expressing cells is the proepicardium (vide infra). Some lines of evidence support this possibility, such as: the localization of cKit⁺ cells in

epicardial regions, both in mice⁷⁴ and in normal human hearts⁷⁵, and the reported co-expression
of cKit with both Wt1 and Tbx18⁷⁶. Last, *cKit* gene expression may be also induced by the
Oncostatin M mediated de-differentiation of cardiomyocytes²³. Lineage negative SP Sca1⁺ cells,
instead, do not derive from either neural crest, hematopoietic cells or cardiomyocytes, but rather
from *Nkx2-5* or *Isl1* expressing cells. However, they may have a proepicardial origin as well, since
fate mapping studies suggested their derivation from cells expressing the embryonic epicardial
genes *cGATA5* and *Wt1*⁶⁶. A proepicardial origin has been also claimed for cardiac MSC, following
lineage tracing analysis experiments in mice⁷⁷. Similar results were also obtained when we
analyzed the transcriptome of human cardiac progenitor cells, comparing it with the most
comprehensive transcription start site-based atlas obtained from the majority of mammalian cells
and tissues. With this approach, we observed that cardiac progenitors show a high degree of
similarity to mesothelial cells⁶⁹.

In line, epithelial to mesenchymal transition (EMT) of epicardial cells is a potential mechanism able to generate cells with progenitor features from the mesothelium. EMT describes the conversion of fixed cells, firmly anchored to neighboring cells (i.e. epithelial cells) into motile, matrix-degrading, mesenchymal cells ⁷⁸. This process, that plays a central role in embryogenesis, wound healing, stem cell homeostasis, and cancerogenesis⁷⁹, is driven by the expression of master regulators, including SNAIL, TWIST, and zinc-finger E-box-binding (ZEB) transcription factors, that inhibit the expression of epithelial genes (e.g. E-Cadherin) and promote the expression of mesenchymal genes (e.g. N-Cadherin)⁸⁰. EMT is controlled by signaling pathways that are triggered by extracellular stimuli, such as TGF β family members, which represent one of the strongest inductors of this process⁸⁰. In development, EMT and its opposite mesenchymal to epithelial transition -MET- play a central role in the formation of the epicardium. Specifically, epicardial progenitors would arise from the splanchnic mesoderm likely via MET⁸¹. Conversely, concomitantly with the coverage of myocardial surface by proepicardial cells to form the epicardium, subsets of these cells acquire migratory and invasive properties via EMT and invade the myocardium as epicardial derived cells (EPDC). These latter are heterogeneous and comprise distinct subpopulations expressing semaphorin 3D (Sema3D), scleraxis (SCX), WT1 and Tbx18. WT1 and Tbx18 expressing cells contribute to smooth smooth muscle cells, pericytes, and fibroblasts, but rarely give rise to endothelial cells, while SCX and Sema3D expressing cells also contribute to the endothelial and endocardial lineage^{82, 83}. Importantly, Wt1 and Tbx18 would exert opposite

roles, where Wt1 inhibits and Tbx18 promotes EMT⁸⁴. In the human heart, TGFβ signaling and EMT are required for the formation of cardiospheres from cell monolayers⁸⁵, moreover epicardial cells exposed *in vitro* to TGFβ can undergo EMT and upregulate the expression of cKit⁸⁶. Intriguingly, following acute myocardial infarction the epicardium becomes activated, and promotes myocardial healing^{50, 87}, however, in humans, chronic ischemic heart disease is associated with structural and molecular modifications of the epicardial layer⁸⁶.

Altogether these results indicate that the adult mammalian heart hosts one or few primitive cell populations, with overlapping mesenchymal characteristics, which are clearly distinguished from stem/progenitor cells residing in other tissues.

3) Pericytes, mesenchymal stromal cells and cardiac stem cells

Studies conducted in the late '60s and in the mid '90s showed that osteogenic, multipotent, fibroblast colony forming units (CFU-F) can be found both in the bone marrow and in the connective tissue of many organs, including the heart^{88, 89}. Following these early studies, different authors had the ambition to pin down the *in vivo* identity of these mesodermal progenitors. Bianco and Cossu were among the first ones to hypothesize a perivascular/mural origin for these cells, considering the localization of alkaline phosphatase positive stromal cells in the bone marrow and the osteo-chondrogenic potential of perivascular cells isolated from both the retina and postnatal arterial walls⁹⁰. Intriguingly, clonogenic assays and cell fate tracking experiments suggested the existence of a close relationship between angiogenic cells and mesodermal progenitors, supporting their possible origin from the mesoangioblast, a cell type that was initially identified in the embryonic dorsal aorta, and whose origin has been recognized in a subpopulation of the hemogenic endothelium^{91, 92}. Moving from this hypothesis, it was first described that bone marrow osteoprogenitor cells had a perivascular localization and could be prospectively enriched employing CD146, an antigen shared with pericytes/mural cells⁹³. In analogy, a myogenic population, distinct from satellite cells, was identified that expressed pericyte markers (including NG2, alkaline phosphatase and PDGFR β) and resided in the skeletal muscle⁹⁴. These results were later generalized by identifying in situ and prospectively sorting cells with a pericyte phenotype (i.e. CD146^{high} CD34⁻ CD45⁻), demonstrating their clonogenicity, multipotency, and the coexpression of MSC markers such as NG2 and PDGFRβ⁹⁵. To corroborate this finding, vascular/perivascular cells expressing the MSC markers CD146, CD73, CD90, CD105, CD271, and

NG2 have been identified in several tissues in vivo⁹⁶. However, both the possibilities that pericyte subsets act as bona fide MSC and that pericytes are a uniform population of cells that can be cultured as MSC have been questioned. Specifically, in line with results obtained by us⁶⁹ and others^{65, 77} on mesodermal progenitors isolated from different sources, recent data indicate that CD146 expressing cells isolated from different human tissues are clearly distinct from the bone marrow derived ones, both from a potency and transcriptional standpoint^{97, 98}. As a further piece of evidence supporting the heterogeneity of the pericytes, it has been shown that CD146 cannot be considered a universal marker of this cell population, since it is expressed by endothelial cells too, but it is absent on CD34⁺ adventitial pericytes. These latter are localized in the external layer of large vessels nearby the vasa vasorum, express some MSC markers (i.e. CD44, CD73, CD90, and CD105), and generate clonogenic multipotent progenitors, but are phenotypically distinct from microvascular pericytes (i.e. adventitial pericytes do not express CD146, NG2, and PDGFRβ)^{99, 100}. Moreover, in the spinal cord and skeletal muscle, different pericyte subtypes have been described^{101, 102}. Specifically, in the skeletal muscle type 1 pericytes are Nestin NG2⁺, while type 2 pericytes are Nestin⁺NG2⁺. Both type 1 and type 2 pericytes express PDGFR^β and CD146, but only type1 pericytes express PDGFR α^{102} . In young mice, muscular type 2 pericytes have myogenic potential while type 1 pericytes appear quiescent. In aged animals, however, type 2 pericytes show diminished myogenic capacity while type 1 pericytes produce collagen¹⁰². For these reasons, the term MSC does not identify a cell type with identical differentiation capacities, therefore it should be abandoned when referring to extramedullary mesodermal progenitors. Intriguingly, according to Sacchetti and collaborators⁹⁷, tissue-specific mesodermal progenitors could be recruited to a mural fate, suggesting that pericytes would serve as local stem/progenitor cells. Importantly, mechanical cues can instruct mesodermal progenitors in vitro to differentiate towards neural, muscle or osteogenic fates, therefore it is tempting to speculate that physical forces may modulate the differentiation of these cells in vivo too¹⁰³. However, this hypothesis was recently challenged, employing lineage tracing experiments of cells expressing the transcription factor Tbx18, that, according to the authors, would label most pericytes more specifically than PDGFR β^{104} . Although cells that express Tbx18 (albeit at extremely low levels) are multipotent in vitro, those that derive from Tbx18 expressing cells in vivo maintain their cell identity during aging and do not contribute, for example, to cardiomyocyte turnover in the heart¹⁰⁴. Moreover, in pressure overloaded hearts, only a minority of pericytes derived from Tbx18 expressing cells would contribute to fibrosis¹⁰⁴. However, PDGFR α has been associated with widespread organ

fibrosis, suggesting that PDGFR α^+ cells may also have a role in skeletal muscle and cardiac fibrosis ¹⁰⁵. Type 1 pericytes and fibro-adipogenic progenitors express this receptor, and like pericytes, fibro-adipogenic progenitors line the skeletal muscle vasculature, suggesting that their roles might overlap⁹⁸. The contribution of perivascular PDGFR α^+ cells to cardiac fibrosis has not been determined yet.

Pericyte anatomy and biology have been extensively studied over the years. These cells, that were first described to be anatomically localized within the vascular basement membrane of microvessels, have now been identified in the adventitial region of large vessels too (reviewed in ^{106, 107}). Pericytes contribute to basement membrane secretion, possibly as a consequence of their interaction with endothelial cells¹⁰⁶. Furthermore, pericyte contractility regulates endothelial cell proliferation, via contact inhibition of endothelial cell growth and activating chemomechanical signaling¹⁰⁸, while pericyte coverage promotes vessel stabilization, preventing oedema or hemorrhagic complications¹⁰⁹. Adventitial pericytes have been associated with vascular remodelling and neointima formation¹¹⁰ and more recently recognized for their healing potential in preclinical studies of peripheral and myocardial ischemia ^{99, 111}. Last, pericytes would originate cardiac smooth muscle cells in a Notch3 dependent fashion³⁶.

An intriguing and still open question regards the relationship between cardiac pericytes and cardiac progenitor cells. Several lines of evidence indicate, at least, a close resemblance between the two cell types. Specifically, a common epicardial origin with pericytes has been described for a subset of Sca1 positive cells⁶⁶, cardiac MSC⁶⁰, and, possibly, human cardiac progenitors⁶⁷. Moreover, both cardiac MSC⁶⁰ and human cardiac progenitors⁴⁶ coexpress some pericyte markers (e.g. NG2 and PDGFRβ) and share with fetal cardiac pericytes the expression of pluripotency genes³⁵. Last, although cardiac pericytes expanded *in vitro* from fetal, neonatal and adult hearts have been reported not to express the stem cell marker cKit^{34, 35}, a vascular and perivascular localization has also been described for subsets of cKit^{20, 112} and Sca1^{57, 113} expressing cells. These differences could reflect the existence of distinct cell types *in vivo* that are possibly recruited to a perivascular localization, as suggested by ⁹⁷. However, a modification of the properties of the cells could have been also induced by protocols for their *in vitro* expansion.

normal cardiac structure and function (e.g. angiogenesis, blood flow, vessel stability, maturation, and vascular permeability, as well as production of trophic factors), we recently experimented their possible use for the treatment of acute myocardial infarction¹¹¹. Specifically, pericytes derived from a large vessel (e.g. saphenous vein leftovers collected at time of coronary artery bypass grafting surgery) were implanted in infarcted mouse hearts. 4) Cardiac regeneration from a clinical perspective. The notion that the heart possesses some degree of renewal potential has opened the avenue to restorative therapies especially for the increasing number of patients with heart failure (HF). In the US, adults with the disease could reach 8 million by 2030, up from 5.7 million in 2012, while the cost of treatment could more than double, from \$31 billion to \$70 billion. The mainstays of novel regenerative treatment of ischemic HF consists of boosting cardiopoiesis and angiogenesis. Cardiopoietic cell therapy has been introduced by the two seminal trials, the Scipio and the Caduceus. The Scipio reported initial encouraging results in humans, but several reporting bias

have reduced the validity of the study¹¹⁴. The randomized CADUCEUS clinical trial showed a single administration of cardiosphere-derived cells significantly reduces the size of the scar that had resulted from a large heart attack, and concomitantly increases the muscle mass at the affected area^{115, 116}

Therefore, since pericytes may regulate crucial processes required for the preservation of a

Several companies have now engaged into the cardiopoiesis arena. Capricor, a biotechnology company focused on the discovery, development, and commercialization of biological cardiovascular therapeutics, has conducted a Phase I/II HOPE clinical study based on CAP-1002 (allogeneic cardiosphere-derived cells, CDCs), whose results are expected to be released during 2017. The same company has developed CAP-2003 exosomes derived from CAP-1002 CDCs. The exosome technology is being developed under a license agreement with the Cedars-Sinai Medical Center. In October 2016, Capricor was launched a new research program on CAP-2003 exosome therapy for treating patients with hypoplastic left heart syndrome.

The CHART-1 trial from Celyad¹¹⁷, a Belgian biotechnology company, represents the world's first Phase III trial for a pre-programmed cellular therapy targeting HF. It involves taking cells from a patient's bone marrow and through a proprietary process re-programming those cells so that

they become heart precursor cells with the aim of replicating the normal process of cardiac development in the embryo and healing the failing heart. The cells are then injected back into the patient's heart through a minimally invasive procedure, with the goal of repairing damaged tissue and improving heart function, clinical outcomes and quality of life. This Phase III trial follows the successful outcome of the Phase II trial¹¹⁸. A report presented at the European Society of Cardiology Congress in 2016 showed there was no difference in deaths or worsening of heart failure between patients given Celyad's C-Cure and those given a sham procedure. The product did, however, benefit a subset of patients — those with severely enlarged hearts — so Celyad is refocusing on this subpopulation. But designing such a new trial requires a large investment from potential partners, which may be dissuaded to join the research due to the mixed signals about other cardiac stem cell trials.

Mesoblast has recently launched two trials based on allogeneic precursor cells. NCT02032004 (DREAM HF-1) is Double-blind, Randomized, Sham-procedure-controlled, Parallel-Group Efficacy and Safety Study of Allogeneic Mesenchymal Precursor Cells (Rexlemestrocel-L) in chronic HF due to LV Systolic Dysfunction (Ischemic or Nonischemic). In the first quarter of 2017, Mesoblast will release interim results on about 300 patients from this phase 3 study of 600 people. The Mesoblast NCT01781390 is Safety Study of Allogeneic Mesenchymal Precursor Cell Infusion in MyoCardial Infarction (AMICI) currently ongoing but not recluting patients.

Proangiogenic gene and cell therapies aim to stabilize the infarct scar and reduce its extension, by modulating the extracellular matrix remodeling, promoting cardiomyocyte salvage in the area at risk, and awakening the hibernated myocardium. Furthermore, the improvement in myocardial perfusion is expected to treat angina and improve exercise tolerance. The majority of studies used angiogenic -endothelial and hematopoietic- progenitor cells as an adjuvant therapy to optimally-treated reperfused myocardial infarction (MI) or chronic coronary artery disease (CAD), reporting mixed results¹¹⁹⁻¹²². Only a few studies have focused on developing a cell treatment for patients with non-revascularizable CAD. Seminal trials using hematopoietic CD133⁺ and CD34⁺ cells in refractory angina have provided initial evidence of feasibility with reported attenuation of angina¹²³⁻¹²⁵ and improvement of SPECT perfusion score¹²⁶. However, one study showed that cell mobilization caused cardiac enzyme elevations, suggestive of non-ST segment MI, in ~5% of patients, which instills safety concerns¹²³. Angiogenesis gene therapy has been

revitalized by the advent of significant improvements in vector technology¹²⁷. Nevertheless, the incapacity of single growth factors to promote mature vessels represents a persistent limitation.

The combination of cardiopoietic and angiogenic progenitor cells could additively implement current regenerative strategies. However, there are few studies investigating combinatory cell therapy approaches. A recent report by Williams et al ¹²⁸ combining human cardiac stem/progenitor cells (CSC) and bone marrow MSC in a swine model of MI showed that each cell therapy reduces MI size relative to placebo, with the MI size reduction being 2-fold greater in combination versus either cell therapy alone. These results are similar to those published by us using CSC and adventitial pericytes. In a study conducted in mice with non-reperfused MI, we showed that human adventitial pericytes and cKit⁺ CSCs in combination work better to reduce infarct size and collateralization. Moreover, while pericytes acted mainly by promoting angiogenesis, CSCs were superior in stimulating cardiomyocyte proliferation ⁴⁶. However, while Williams and colleagues showed that dual cell therapy substantially improved LV chamber compliance and contractility over the single cell treatments, we did not observe further improvements in cardiac function over single cell therapy. Moreover, as opposed to Williams' report (that identified a large effect on cell engraftment with the combined cell therapy), we were not able to demonstrate any improvement on this parameter. A possible difference between the two studies, that may account for the observed discrepancies, is the timing of cell administration. In fact, while we injected cells immediately after the coronary artery occlusion, Williams performed cell implantation 14 days after infarction. Despite these differences, we are confident that combination cell therapy approaches that employ stem cells obtained from surgical samples that are discarded during the procedures may represent one of the best opportunities for cardiac repair. Regarding the mechanism of action of the combined cell therapy, a cross-talk between pericytes and cardiac progenitors could also be documented, since implanted cells were able to promote the recruitment of both cKit⁺ cells in vivo and Sca1⁺ cells in vitro⁴⁶. Furthermore, an interaction between saphenous vein-derived pericytes and cultured human cardiac progenitors was shown in vitro, being the crosstalk between the two cell types able to modify their secretome and promote the synergistic release of SDF-1 α^{46} . However, the molecular mechanism that is responsible for progenitor cell recruitment is under investigation. Concerning cardiopoiesis, CSC were able to increase the frequency of cardiomyocytes incorporating the thymidine analogue EdU and reduced cardiomyocyte hypertrophy. The mechanisms promoting this beneficial effect are still

partially unknown. In fact, although, as anticipated, we observed low levels of cell engraftment and direct differentiation of the implanted cells towards the cardiomyocyte lineage, the secretome of both cell types has powerful biologic effects and may hide important and novel therapeutic factors.

5) Conclusion

Optimized medical treatment and novel interventions have shown that cardiac remodeling may be, at least partially, reversed, suggesting that the heart has an inherent capacity for restoring its structure and function. Moving from these premises and supported by experimental results achieved both with cell therapy and in regenerating animal models, an entire field of investigation developed, that aims at identifying the best modalities to unlock the potential for myocardial regeneration. Almost two decades of investigation on cardiac resident primitive cells have delineated a complex picture, where the heart hosts one or few primitive cell populations, with overlapping mesenchymal characteristics, which are clearly distinguished from stem/progenitor cells residing in other tissues, whose embryological origin includes the cardiac neural crest and the epicardium. Mesodermal progenitors have been identified in several adult tissues and have, at least, a common perivascular localization with pericytes (and could be associated both with capillaries or with the adventitia of large vessels). Recent data indicate that tissue resident mesodermal progenitors/pericytes have distinguishing, organ specific, and possibly complementary properties. Preclinical data and clinical experimentation have demonstrated not only the feasibility, but also the potential benefit of cell therapy. Most importantly, the combination of cardiopoietic and angiogenic progenitor cells has been shown to promote the recruitment of cardiac resident progenitors, an increase in collateralization, and cardiomyocyte proliferation. The mechanisms responsible for this positive effect have not been completely elucidated, but their investigation has the potential to indicate novel methods to promote cardiac regeneration.

Figure Legend

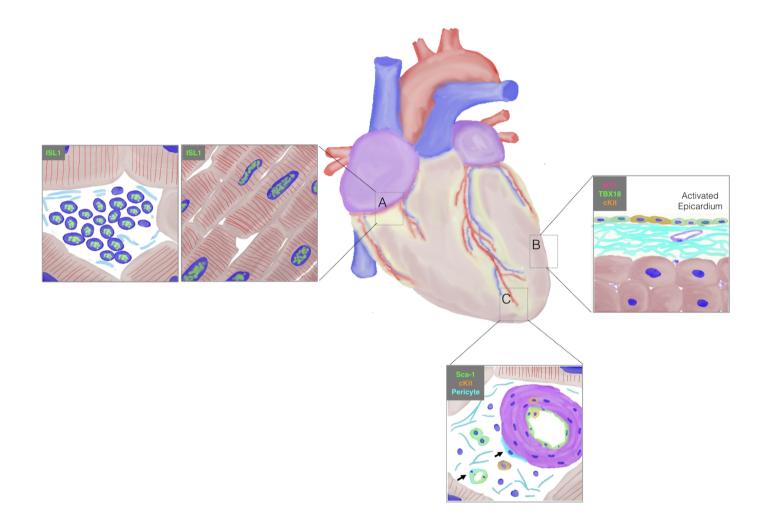
Figure 1. Localization of cells expressing putative stem/progenitor markers in adult mammalian hearts. Cartoon depicting the localization of putative stem cells or their derivative in the adults. Insets show a schematic view of the tissue histology of the relative dashed squares (A - C) superimposed to the picture. A: examples of the two subsets of Isl1 expressing cells that were identified in the adult heart^{70, 129}. The left panel shows a cluster of Isl1 positive cells that is negative for cardiomyocyte markers, but may express neuronal ones. The rightmost panel shows a cluster of Isl1 expressing cells positive to cardiomyocyte markers. Isl1 is depicted in green, nuclei are shown in blue, cardiomyocyte cytoplasm is shown in pink with red striations, extracellular matrix is shown in cyan. B: cartoon showing an activated epicardium re-expressing the epicardial developmental markers Wt1 and Tbx18, as well as $cKit^{76}$. WT1 and TBX18 are shown as pink and green dots in epicardial cell nuclei, respectively. cKit is shown as orange labeling of two epicardial cells. Nuclei are shown in blue, cardiomyocyte cytoplasm is shown in pink, extracellular matrix is shown in cyan. C: scheme showing the localization of cKit and Sca1 expressing cells in the myocardium. cKit expressing cells (labeled in orange) are shown to be localized in the endothelium, within the vessel wall, and in the intersitium. Sca1 positive endothelial and interstitial cells are shown in green. Adventitial and microvascular pericytes are shown in cyan and indicated by arrows. A close relationship between microvascular and advential pericytes and cardiac resident stem/progenitors is shown.

961		
962		
963		References
964 965		
965 966	1.	Karsner HT, Saphir O, Todd TW. The state of the cardiac muscle in hypertrophy and
967	•	atrophy. Am J Pathol. 1925;1:351-372 351
968	2.	Linzbach AJ. Heart failure from the point of view of quantitative anatomy. Am J Cardiol.
969	0	1960;5:370-382
970	3.	Rumyantsev PP, Kassem AM. Cumulative indices of DNA synthesizing myocytes in different
971		compartments of the working myocardium and conductive system of the rat's heart
972		muscle following extensive left ventricle infarction. Virchows Arch B Cell Pathol.
973 974		1976;20:329-342
974 975	4.	Kajstura J, Zhang X, Reiss K, Szoke E, Li P, Lagrasta C, Cheng W, Darzynkiewicz Z, Olivetti G,
976		Anversa P. Myocyte cellular hyperplasia and myocyte cellular hypertrophy contribute to
977		chronic ventricular remodeling in coronary artery narrowing-induced cardiomyopathy in
978	_	rats. Circ Res. 1994;74:383-400
979	5.	Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, Nadal-Ginard B, Silvestri F,
980		Leri A, Beltrami CA, Anversa P. Evidence that human cardiac myocytes divide after
981		myocardial infarction. N Engl J Med. 2001;344:1750-1757
982	6.	Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J,
983		Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J. Evidence for cardiomyocyte renewal in
984 985		humans. Science. 2009;324:98-102
985 986	7.	Zhang R, Han P, Yang H, Ouyang K, Lee D, Lin YF, Ocorr K, Kang G, Chen J, Stainier DY, Yelon
987		D, Chi NC. In vivo cardiac reprogramming contributes to zebrafish heart regeneration.
988		Nature. 2013;498:497-501
989	8.	Bettencourt-Dias M, Mittnacht S, Brockes JP. Heterogeneous proliferative potential in
990		regenerative adult newt cardiomyocytes. J Cell Sci. 2003;116:4001-4009
991	9.	Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA. Transient
992		regenerative potential of the neonatal mouse heart. Science. 2011;331:1078-1080
993	10.	Andersen DC, Ganesalingam S, Jensen CH, Sheikh SP. Do neonatal mouse hearts regenerate
994 995		following heart apex resection? Stem Cell Reports. 2014;2:406-413
996	11.	Darehzereshki A, Rubin N, Gamba L, Kim J, Fraser J, Huang Y, Billings J, Mohammadzadeh R,
997		Wood J, Warburton D, Kaartinen V, Lien CL. Differential regenerative capacity of neonatal
998		mouse hearts after cryoinjury. Dev Biol. 2015;399:91-99
999	12.	Jopling C, Sleep E, Raya M, Marti M, Raya A, Izpisua Belmonte JC. Zebrafish heart
1000		regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature.
1001		2010;464:606-609
1002	13.	Bader D, Oberpriller JO. Repair and reorganization of minced cardiac muscle in the adult
1003 1004		newt (notophthalmus viridescens). J Morphol. 1978;155:349-357
1004	14.	Aguirre A, Montserrat N, Zacchigna S, Nivet E, Hishida T, Krause MN, Kurian L, Ocampo A,
1006		Vazquez-Ferrer E, Rodriguez-Esteban C, Kumar S, Moresco JJ, Yates JR, 3rd, Campistol JM,
1007		Sancho-Martinez I, Giacca M, Izpisua Belmonte JC. In vivo activation of a conserved
1008		microrna program induces mammalian heart regeneration. Cell Stem Cell. 2014;15:589-604
1009	15.	D'Uva G, Aharonov A, Lauriola M, Kain D, Yahalom-Ronen Y, Carvalho S, Weisinger K,
1010		Bassat E, Rajchman D, Yifa O, Lysenko M, Konfino T, Hegesh J, Brenner O, Neeman M,
1011		Yarden Y, Leor J, Sarig R, Harvey RP, Tzahor E. Erbb2 triggers mammalian heart
1012 1013		regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat Cell Biol.
1013		2015;17:627-638
1014	16.	Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, Sadek HA, Olson EN.
1016		Macrophages are required for neonatal heart regeneration. J Clin Invest. 2014;124:1382-
1017		1392
1018		
1019		17
1020		

1021		
1022		
1023	17.	Kennedy-Lydon T, Rosenthal N. Cardiac regeneration: Epicardial mediated repair. Proc Biol
1024	17.	Sci. 2015;282:20152147
1025	18.	Chen WC, Wang Z, Missinato MA, Park DW, Long DW, Liu HJ, Zeng X, Yates NA, Kim K,
1026	10.	Wang Y. Decellularized zebrafish cardiac extracellular matrix induces mammalian heart
1027 1028		regeneration. Sci Adv. 2016;2:e1600844
1028	19.	Jesty SA, Steffey MA, Lee FK, Breitbach M, Hesse M, Reining S, Lee JC, Doran RM, Nikitin
1020	17.	AY, Fleischmann BK, Kotlikoff MI. C-kit+ precursors support postinfarction myogenesis in
1031		
1032	20	the neonatal, but not adult, heart. Proc Natl Acad Sci U S A. 2012;109:13380-13385
1033	20.	Fransioli J, Bailey B, Gude NA, Cottage CT, Muraski JA, Emmanuel G, Wu W, Alvarez R,
1034		Rubio M, Ottolenghi S, Schaefer E, Sussman MA. Evolution of the c-kit-positive cell
1035	04	response to pathological challenge in the myocardium. <i>Stem Cells</i> . 2008;26:1315-1324
1036	21.	Weeks KL, McMullen JR. The athlete's heart vs. The failing heart: Can signaling explain the
1037	~~	two distinct outcomes? Physiology (Bethesda). 2011;26:97-105
1038 1039	22.	Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di Loreto C, Beltrami
1039		CA, Krajewski S, Reed JC, Anversa P. Apoptosis in the failing human heart. N Engl J Med.
1041		1997;336:1131-1141
1042	23.	Kubin T, Poling J, Kostin S, Gajawada P, Hein S, Rees W, Wietelmann A, Tanaka M, Lorchner
1043		H, Schimanski S, Szibor M, Warnecke H, Braun T. Oncostatin m is a major mediator of
1044		cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell. 2011;9:420-432
1045	24.	Luo M, Anderson ME. Mechanisms of altered ca(2)(+) handling in heart failure. <i>Circ Res</i> .
1046		2013;113:690-708
1047	25.	Chung JH, Biesiadecki BJ, Ziolo MT, Davis JP, Janssen PM. Myofilament calcium sensitivity:
1048 1049		Role in regulation of in vivo cardiac contraction and relaxation. Front Physiol. 2016;7:562
1049	26.	Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure: Implications beyond
1051		atp production. Circ Res. 2013;113:709-724
1052	27.	Rockey DC, Bell PD, Hill JA. Fibrosisa common pathway to organ injury and failure. N Engl
1053		J Med. 2015;373:96
1054	28.	van Berlo JH, Maillet M, Molkentin JD. Signaling effectors underlying pathologic growth
1055		and remodeling of the heart. <i>J Clin Invest</i> . 2013;123:37-45
1056	29.	Souders CA, Bowers SL, Baudino TA. Cardiac fibroblast: The renaissance cell. Circ Res.
1057		2009;105:1164-1176
1058 1059	30.	Anversa P, Levicky V, Beghi C, McDonald SL, Kikkawa Y. Morphometry of exercise-induced
1060		right ventricular hypertrophy in the rat. Circ Res. 1983;52:57-64
1061	31.	Anversa P, Capasso JM. Loss of intermediate-sized coronary arteries and capillary
1062		proliferation after left ventricular failure in rats. Am J Physiol. 1991;260:H1552-1560
1063	32.	Beltrami CA, Finato N, Rocco M, Feruglio GA, Puricelli C, Cigola E, Quaini F, Sonnenblick EH,
1064		Olivetti G, Anversa P. Structural basis of end-stage failure in ischemic cardiomyopathy in
1065		humans. Circulation. 1994;89:151-163
1066	33.	Spinetti G, Kraenkel N, Emanueli C, Madeddu P. Diabetes and vessel wall remodelling:
1067 1068		From mechanistic insights to regenerative therapies. Cardiovasc Res. 2008;78:265-273
1069	34.	Chen WC, Baily JE, Corselli M, Diaz ME, Sun B, Xiang G, Gray GA, Huard J, Peault B. Human
1070		myocardial pericytes: Multipotent mesodermal precursors exhibiting cardiac specificity.
1071		Stem Cells. 2015;33:557-573
1072	35.	Avolio E, Rodriguez-Arabaolaza I, Spencer HL, Riu F, Mangialardi G, Slater SC, Rowlinson J,
1073		Alvino VV, Idowu OO, Soyombo S, Oikawa A, Swim MM, Kong CH, Cheng H, Jia H, Ghorbel
1074		MT, Hancox JC, Orchard CH, Angelini G, Emanueli C, Caputo M, Madeddu P. Expansion and
1075		characterization of neonatal cardiac pericytes provides a novel cellular option for tissue
1076		engineering in congenital heart disease. J Am Heart Assoc. 2015;4:e002043
1077 1078		
1078		18
1080		

1081			
1081			
1083			
1084	36.	Volz KS, Jacobs AH, Chen HI, Poduri A, McKay AS, Riordan DP, Kofler N, Kitajewski J,	
1085		Weissman I, Red-Horse K. Pericytes are progenitors for coronary artery smooth muscle.	
1086		Elife. 2015;4	
1087	37.	Mann DL. Mechanisms and models in heart failure: A combinatorial approach. Circulation	n.
1088		1999;100:999-1008	
1089	38.	Merlo M, Pyxaras SA, Pinamonti B, Barbati G, Di Lenarda A, Sinagra G. Prevalence and	
1090		prognostic significance of left ventricular reverse remodeling in dilated cardiomyopathy	
1091		receiving tailored medical treatment. J Am Coll Cardiol. 2011;57:1468-1476	
1092	39.	Silvetti MS, Di Carlo D, Ammirati A, Placidi S, Di Mambro C, Rava L, Drago F. Left ventricu	lar
1093	37.	-	Idi
1094		pacing in neonates and infants with isolated congenital complete or advanced	
1095		atrioventricular block: Short- and medium-term outcome. <i>Europace</i> . 2015;17:603-610	
1096	40.	Mann DL, Barger PM, Burkhoff D. Myocardial recovery and the failing heart: Myth, magic	2,
1097		or molecular target? J Am Coll Cardiol. 2012;60:2465-2472	
1098	41.	Koitabashi N, Kass DA. Reverse remodeling in heart failuremechanisms and therapeutic	2
1099		opportunities. Nat Rev Cardiol. 2011;9:147-157	
1100	42.	Tseliou E, Reich H, de Couto G, Terrovitis J, Sun B, Liu W, Marban E. Cardiospheres revers	se
1101		adverse remodeling in chronic rat myocardial infarction: Roles of soluble endoglin and tg	gf-
1102 1103		beta signaling. Basic Res Cardiol. 2014;109:443	
1103	43.	Komamura K, Fukui M, Iwasaku T, Hirotani S, Masuyama T. Takotsubo cardiomyopathy:	
1105		Pathophysiology, diagnosis and treatment. World J Cardiol. 2014;6:602-609	
1106	44.	Ellison GM, Vicinanza C, Smith AJ, Aquila I, Leone A, Waring CD, Henning BJ, Stirparo GG,	
1107		Papait R, Scarfo M, Agosti V, Viglietto G, Condorelli G, Indolfi C, Ottolenghi S, Torella D,	
1108		Nadal-Ginard B. Adult c-kit(pos) cardiac stem cells are necessary and sufficient for	
1109		functional cardiac regeneration and repair. <i>Cell</i> . 2013;154:827-842	
1110	45.		
1111	45.	Schneider MD. Heartbreak hotel: A convergence in cardiac regeneration. <i>Development</i> .	
1112			
1113	46.	Avolio E, Meloni M, Spencer HL, Riu F, Katare R, Mangialardi G, Oikawa A, Rodriguez-	
1114		Arabaolaza I, Dang Z, Mitchell K, Reni C, Alvino VV, Rowlinson J, Livi U, Cesselli D, Angelin	1
1115		G, Emanueli C, Beltrami AP, Madeddu P. Combined intramyocardial delivery of human	
1116		pericytes and cardiac stem cells additively improves the healing of mouse infarcted hear	ts
1117		through stimulation of vascular and muscular repair. Circ Res. 2015;116:e81-94	
1118 1119	47.	Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, Giacca M. Functional	
1120		screening identifies mirnas inducing cardiac regeneration. Nature. 2012;492:376-381	
1120	48.	Khan M, Nickoloff E, Abramova T, Johnson J, Verma SK, Krishnamurthy P, Mackie AR,	
1122		Vaughan E, Garikipati VN, Benedict C, Ramirez V, Lambers E, Ito A, Gao E, Misener S,	
1123		Luongo T, Elrod J, Qin G, Houser SR, Koch WJ, Kishore R. Embryonic stem cell-derived	
1124		exosomes promote endogenous repair mechanisms and enhance cardiac function	
1125		following myocardial infarction. Circ Res. 2015;117:52-64	
1126	49.	Fu JD, Stone NR, Liu L, Spencer CI, Qian L, Hayashi Y, Delgado-Olguin P, Ding S, Bruneau E	BG.
1127		Srivastava D. Direct reprogramming of human fibroblasts toward a cardiomyocyte-like	,,
1128		state. Stem Cell Reports. 2013;1:235-247	
1129	50.	Smart N, Bollini S, Dube KN, Vieira JM, Zhou B, Davidson S, Yellon D, Riegler J, Price AN,	
1130	50.		
1131		Lythgoe MF, Pu WT, Riley PR. De novo cardiomyocytes from within the activated adult	
1132	- /	heart after injury. <i>Nature</i> . 2011;474:640-644	
1133	51.	Heallen T, Morikawa Y, Leach J, Tao G, Willerson JT, Johnson RL, Martin JF. Hippo signalir	וg
1134		impedes adult heart regeneration. <i>Development</i> . 2013;140:4683-4690	
1135 1136			
1136			
1137			
1139			19
1140			
-			

1141 1142		
1142		
1143	52.	MacLellan WR, Garcia A, Oh H, Frenkel P, Jordan MC, Roos KP, Schneider MD. Overlapping
1145		roles of pocket proteins in the myocardium are unmasked by germ line deletion of p130
1146		plus heart-specific deletion of rb. Mol Cell Biol. 2005;25:2486-2497
1147	53.	Quaini F, Urbanek K, Beltrami AP, Finato N, Beltrami CA, Nadal-Ginard B, Kajstura J, Leri A,
1148		Anversa P. Chimerism of the transplanted heart. N Engl J Med. 2002;346:5-15
1149	54.	Muller P, Pfeiffer P, Koglin J, Schafers HJ, Seeland U, Janzen I, Urbschat S, Bohm M.
1150	011	Cardiomyocytes of noncardiac origin in myocardial biopsies of human transplanted hearts.
1151		Circulation. 2002;106:31-35
1152	EE	
1153	55.	Hierlihy AM, Seale P, Lobe CG, Rudnicki MA, Megeney LA. The post-natal heart contains a
1154	F (myocardial stem cell population. FEBS Lett. 2002;530:239-243
1155	56.	Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M,
1156		Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P. Adult cardiac stem cells
1157		are multipotent and support myocardial regeneration. Cell. 2003;114:763-776
1158	57.	Oh BH, Bradfute SB, Gallardo TD, Nakamura H, Gaussin V, Mishina Y, Pocius J, Michael LH,
1159		Behringer RR, Garry DJ, Entman ML, Schneider C. Cardiac progenitor cells from adult
1160		myocardium: Homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A.
1161		2003;100:12313-12318
1162 1163	58.	Laugwitz KL, Moretti A, Lam J, Gruber P, Chen Y, Woodard S, Lin LZ, Cai CL, Lu MM, Reth M,
1164		Platoshyn O, Yuan JX, Evans S, Chien KR. Postnatal isl1+ cardioblasts enter fully
1165		differentiated cardiomyocyte lineages. <i>Nature</i> . 2005;433:647-653
1166	59.	Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, Salio M, Battaglia M,
1167	57.	Latronico MV, Coletta M, Vivarelli E, Frati L, Cossu G, Giacomello A. Isolation and expansion
1168		of adult cardiac stem cells from human and murine heart. <i>Circ Res</i> . 2004;95:911-921
1169	40	
1170	60.	Pelekanos RA, Li J, Gongora M, Chandrakanthan V, Scown J, Suhaimi N, Brooke G,
1171		Christensen ME, Doan T, Rice AM, Osborne GW, Grimmond SM, Harvey RP, Atkinson K,
1172		Little MH. Comprehensive transcriptome and immunophenotype analysis of renal and
1173		cardiac msc-like populations supports strong congruence with bone marrow msc despite
1174		maintenance of distinct identities. Stem Cell Res. 2012;8:58-73
1175	61.	Pfister O, Mouquet F, Jain M, Summer R, Helmes M, Fine A, Colucci WS, Liao R. Cd31- but
1176		not cd31+ cardiac side population cells exhibit functional cardiomyogenic differentiation.
1177		Circ Res. 2005;97:52-61
1178	62.	D'Amario D, Leone AM, Narducci ML, Smaldone C, Lecis D, Inzani F, Luciani M, Siracusano
1179		A, La Neve F, Manchi M, Pelargonio G, Perna F, Bruno P, Massetti M, Pitocco D, Cappetta D,
1180 1181		Esposito G, Urbanek K, De Angelis A, Rossi F, Piacentini R, Angelini G, Puma DD, Grassi C,
1182		De Paolis E, Capoluongo E, Silvestri V, Merlino B, Marano R, Crea F. Human cardiac
1183		progenitor cells with regenerative potential can be isolated and characterized from 3d-
1184		electro-anatomic guided endomyocardial biopsies. Int J Cardiol. 2017
1185	63.	Bailey B, Fransioli J, Gude NA, Alvarez R, Jr., Zhang X, Gustafsson AB, Sussman MA. Sca-1
1186	00.	knockout impairs myocardial and cardiac progenitor cell function. <i>Circ Res</i> . 2012;111:750-
1187		760
1188	6.4	
1189	64.	Dey D, Han L, Bauer M, Sanada F, Oikonomopoulos A, Hosoda T, Unno K, De Almeida P, Leri
1190		A, Wu JC. Dissecting the molecular relationship among various cardiogenic progenitor cells.
1191		Circ Res. 2013;112:1253-1262
1192	65.	Rossini A, Frati C, Lagrasta C, Graiani G, Scopece A, Cavalli S, Musso E, Baccarin M, Di Segni
1193		M, Fagnoni F, Germani A, Quaini E, Mayr M, Xu Q, Barbuti A, DiFrancesco D, Pompilio G,
1194		Quaini F, Gaetano C, Capogrossi MC. Human cardiac and bone marrow stromal cells exhibit
1195		distinctive properties related to their origin. Cardiovasc Res. 2011;89:650-660
1196		
1197		
1198 1199		20
1200		20
1200		


1201		
1202		
1203	66.	Noseda M, Harada M, McSweeney S, Leja T, Belian E, Stuckey DJ, Abreu Paiva MS, Habib J,
1204	00.	Macaulay I, de Smith AJ, al-Beidh F, Sampson R, Lumbers RT, Rao P, Harding SE, Blakemore
1205		
1206		AI, Jacobsen SE, Barahona M, Schneider MD. Pdgfralpha demarcates the cardiogenic
1207		clonogenic sca1+ stem/progenitor cell in adult murine myocardium. Nat Commun.
1208		2015;6:6930
1209	67.	Beltrami AP, Cesselli D, Bergamin N, Marcon P, Rigo S, Puppato E, D'Aurizio F, Verardo R,
1210		Piazza S, Pignatelli A, Poz A, Baccarani U, Damiani D, Fanin R, Mariuzzi L, Finato N, Masolini
1211		P, Burelli S, Belluzzi O, Schneider C, Beltrami CA. Multipotent cells can be generated in vitro
1212		from several adult human organs (heart, liver and bone marrow). Blood. 2007;110:3438-
1213		3446
1214	68.	
1215	00.	Cesselli D, Beltrami AP, D'Aurizio F, Marcon P, Bergamin N, Toffoletto B, Pandolfi M,
1216		Puppato E, Marino L, Signore S, Livi U, Verardo R, Piazza S, Marchionni L, Fiorini C,
1217		Schneider C, Hosoda T, Rota M, Kajstura J, Anversa P, Beltrami CA, Leri A. Effects of age and
1218		heart failure on human cardiac stem cell function. Am J Pathol. 2011;179:349-366
1219	69.	Verardo R, Piazza S, Klaric E, Ciani Y, Bussadori G, Marzinotto S, Mariuzzi L, Cesselli D,
1220		Beltrami AP, Mano M, Itoh M, Kawaji H, Lassmann T, Carninci P, Hayashizaki Y, Forrest AR,
1221		Fantom C, Beltrami CA, Schneider C. Specific mesothelial signature marks the
1222		heterogeneity of mesenchymal stem cells from high-grade serous ovarian cancer. Stem
1223		Cells. 2014;32:2998-3011
1224	70.	Weinberger F, Mehrkens D, Friedrich FW, Stubbendorff M, Hua X, Muller JC, Schrepfer S,
1225	70.	
1226		Evans SM, Carrier L, Eschenhagen T. Localization of islet-1-positive cells in the healthy and
1227		infarcted adult murine heart. Circ Res. 2012;110:1303-1310
1228 1229	71.	Wu SM, Fujiwara Y, Cibulsky SM, Clapham DE, Lien CL, Schultheiss TM, Orkin SH.
1229		Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the
1231		mammalian heart. <i>Cell</i> . 2006;127:1137-1150
1232	72.	Tallini YN, Greene KS, Craven M, Spealman A, Breitbach M, Smith J, Fisher PJ, Steffey M,
1233		Hesse M, Doran RM, Woods A, Singh B, Yen A, Fleischmann BK, Kotlikoff MI. C-kit
1234		expression identifies cardiovascular precursors in the neonatal heart. Proc Natl Acad Sci U S
1235		A. 2009;106:1808-1813
1236	73.	Hatzistergos KE, Takeuchi LM, Saur D, Seidler B, Dymecki SM, Mai JJ, White IA, Balkan W,
1237	70.	Kanashiro-Takeuchi RM, Schally AV, Hare JM. Ckit+ cardiac progenitors of neural crest
1238		
1239		origin. Proc Natl Acad Sci U S A. 2015;112:13051-13056
1240	74.	van Wijk B, Gunst QD, Moorman AF, van den Hoff MJ. Cardiac regeneration from activated
1241		epicardium. PLoS One. 2012;7:e44692
1242	75.	Castaldo C, Di Meglio F, Nurzynska D, Romano G, Maiello C, Bancone C, Muller P, Bohm M,
1243		Cotrufo M, Montagnani S. Cd117-positive cells in adult human heart are localized in the
1244		subepicardium, and their activation is associated with laminin-1 and alpha6 integrin
1245		expression. Stem Cells. 2008;26:1723-1731
1246	76.	Limana F, Bertolami C, Mangoni A, Di Carlo A, Avitabile D, Mocini D, Iannelli P, De Mori R,
1247		Marchetti C, Pozzoli O, Gentili C, Zacheo A, Germani A, Capogrossi MC. Myocardial
1248		
1249		infarction induces embryonic reprogramming of epicardial c-kit(+) cells: Role of the
1250		pericardial fluid. J Mol Cell Cardiol. 2009
1251	77.	Chong JJ, Chandrakanthan V, Xaymardan M, Asli NS, Li J, Ahmed I, Heffernan C, Menon MK,
1252		Scarlett CJ, Rashidianfar A, Biben C, Zoellner H, Colvin EK, Pimanda JE, Biankin AV, Zhou B,
1253		Pu WT, Prall OW, Harvey RP. Adult cardiac-resident msc-like stem cells with a proepicardial
1254		origin. Cell Stem Cell. 2011;9:527-540
1255	78.	Germani A, Foglio E, Capogrossi MC, Russo MA, Limana F. Generation of cardiac progenitor
1256		cells through epicardial to mesenchymal transition. J Mol Med (Berl). 2015;93:735-748
1257		
1258		
1259		21
1260		

1261		
1262		
1263	79.	Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC,
1264	//.	Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA. The epithelial-
1265		mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704-
1266		715
1267	80	
1268 1269	80.	Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition.
1209	04	Nat Rev Mol Cell Biol. 2014;15:178-196
1270	81.	Kovacic JC, Mercader N, Torres M, Boehm M, Fuster V. Epithelial-to-mesenchymal and
1272		endothelial-to-mesenchymal transition: From cardiovascular development to disease.
1273	0.0	Circulation. 2012;125:1795-1808
1274	82.	Katz TC, Singh MK, Degenhardt K, Rivera-Feliciano J, Johnson RL, Epstein JA, Tabin CJ.
1275		Distinct compartments of the proepicardial organ give rise to coronary vascular endothelial
1276		cells. Dev Cell. 2012;22:639-650
1277	83.	Cai CL, Martin JC, Sun Y, Cui L, Wang L, Ouyang K, Yang L, Bu L, Liang X, Zhang X, Stallcup
1278		WB, Denton CP, McCulloch A, Chen J, Evans SM. A myocardial lineage derives from tbx18
1279		epicardial cells. Nature. 2008;454:104-108
1280	84.	Takeichi M, Nimura K, Mori M, Nakagami H, Kaneda Y. The transcription factors tbx18 and
1281 1282		wt1 control the epicardial epithelial-mesenchymal transition through bi-directional
1283		regulation of slug in murine primary epicardial cells. PLoS One. 2013;8:e57829
1284	85.	Forte E, Miraldi F, Chimenti I, Angelini F, Zeuner A, Giacomello A, Mercola M, Messina E.
1285		Tgfbeta-dependent epithelial-to-mesenchymal transition is required to generate
1286		cardiospheres from human adult heart biopsies. Stem Cells Dev. 2012;21:3081-3090
1287	86.	Di Meglio F, Castaldo C, Nurzynska D, Romano V, Miraglia R, Bancone C, Langella G, Vosa C,
1288		Montagnani S. Epithelial-mesenchymal transition of epicardial mesothelium is a source of
1289		cardiac cd117-positive stem cells in adult human heart. J Mol Cell Cardiol. 2010;49:719-727
1290	87.	Ramjee V, Li D, Manderfield LJ, Liu F, Engleka KA, Aghajanian H, Rodell CB, Lu W, Ho V,
1291		Wang T, Li L, Singh A, Cibi DM, Burdick JA, Singh MK, Jain R, Epstein JA. Epicardial yap/taz
1292 1293		orchestrate an immunosuppressive response following myocardial infarction. J Clin Invest.
1293		2017;127:899-911
1295	88.	Young HE, Mancini ML, Wright RP, Smith JC, Black AC, Jr., Reagan CR, Lucas PA.
1296		Mesenchymal stem cells reside within the connective tissues of many organs. Dev Dyn.
1297		1995;202:137-144
1298	89.	Friedenstein AJ, Piatetzky S, II, Petrakova KV. Osteogenesis in transplants of bone marrow
1299	071	cells. J Embryol Exp Morphol. 1966;16:381-390
1300	90.	Bianco P, Cossu G. Uno, nessuno e centomila: Searching for the identity of mesodermal
1301	70.	progenitors. Exp Cell Res. 1999;251:257-263
1302 1303	91.	Minasi MG, Riminucci M, De Angelis L, Borello U, Berarducci B, Innocenzi A, Caprioli A,
1303	/1.	Sirabella D, Baiocchi M, De Maria R, Boratto R, Jaffredo T, Broccoli V, Bianco P, Cossu G.
1305		The meso-angioblast: A multipotent, self-renewing cell that originates from the dorsal
1306		aorta and differentiates into most mesodermal tissues. Development. 2002;129:2773-2783
1307	92.	Azzoni E, Conti V, Campana L, Dellavalle A, Adams RH, Cossu G, Brunelli S. Hemogenic
1308	72.	endothelium generates mesoangioblasts that contribute to several mesodermal lineages in
1309		
1310	02	vivo. Development. 2014;141:1821-1834
1311	93.	Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, Tagliafico E, Ferrari S,
1312		Robey PG, Riminucci M, Bianco P. Self-renewing osteoprogenitors in bone marrow
1313 1314	04	sinusoids can organize a hematopoietic microenvironment. <i>Cell</i> . 2007;131:324-336
1314	94.	Dellavalle A, Sampaolesi M, Tonlorenzi R, Tagliafico E, Sacchetti B, Perani L, Innocenzi A,
1316		Galvez BG, Messina G, Morosetti R, Li S, Belicchi M, Peretti G, Chamberlain JS, Wright WE,
1317		
1318		
1319		22
1320		

1321		
1322		
1323		Torrente Y, Ferrari S, Bianco P, Cossu G. Pericytes of human skeletal muscle are myogenic
1324		precursors distinct from satellite cells. <i>Nat Cell Biol</i> . 2007;9:255-267
1325	95.	Crisan M, Yap S, Casteilla L, Chen CW, Corselli M, Park TS, Andriolo G, Sun B, Zheng B,
1326	75.	Zhang L, Norotte C, Teng PN, Traas J, Schugar R, Deasy BM, Badylak S, Buhring HJ,
1327 1328		Giacobino JP, Lazzari L, Huard J, Peault B. A perivascular origin for mesenchymal stem cells
1328		in multiple human organs. Cell Stem Cell. 2008;3:301-313
1330	96.	Lv FJ, Tuan RS, Cheung KM, Leung VY. Concise review: The surface markers and identity of
1331	90.	
1332	07	human mesenchymal stem cells. Stem Cells. 2014;32:1408-1419
1333	97.	Sacchetti B, Funari A, Remoli C, Giannicola G, Kogler G, Liedtke S, Cossu G, Serafini M,
1334		Sampaolesi M, Tagliafico E, Tenedini E, Saggio I, Robey PG, Riminucci M, Bianco P. No
1335		identical "mesenchymal stem cells" at different times and sites: Human committed
1336		progenitors of distinct origin and differentiation potential are incorporated as adventitial
1337	~~	cells in microvessels. Stem Cell Reports. 2016;6:897-913
1338 1339	98.	Joe AW, Yi L, Natarajan A, Le Grand F, So L, Wang J, Rudnicki MA, Rossi FM. Muscle injury
1340		activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol.
1341		2010;12:153-163
1342	99.	Campagnolo P, Cesselli D, Zen AAH, Beltrami AP, Krankel N, Katare R, Angelini G, Emanueli
1343		C, Madeddu P. Human adult vena saphena contains perivascular progenitor cells endowed
1344		with clonogenic and proangiogenic potential. <i>Circulation</i> . 2010;121:1735-U1112
1345	100.	Corselli M, Chen CW, Sun B, Yap S, Rubin JP, Peault B. The tunica adventitia of human
1346		arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev. 2012;21:1299-
1347		1308
1348 1349	101.	Goritz C, Dias DO, Tomilin N, Barbacid M, Shupliakov O, Frisen J. A pericyte origin of spinal
1350		cord scar tissue. Science. 2011;333:238-242
1351	102.	Birbrair A, Zhang T, Wang ZM, Messi ML, Enikolopov GN, Mintz A, Delbono O. Role of
1352		pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev.
1353		2013;22:2298-2314
1354	103.	Pesce M, Messina E, Chimenti I, Beltrami AP. Cardiac mechanoperception: A life-long story
1355		from early beats to aging and failure. Stem Cells Dev. 2016
1356	104.	Guimaraes-Camboa N, Cattaneo P, Sun Y, Moore-Morris T, Gu Y, Dalton ND, Rockenstein E,
1357 1358		Masliah E, Peterson KL, Stallcup WB, Chen J, Evans SM. Pericytes of multiple organs do not
1356		behave as mesenchymal stem cells in vivo. Cell Stem Cell. 2017;20:345-359 e345
1360	105.	Olson LE, Soriano P. Increased pdgfralpha activation disrupts connective tissue
1361		development and drives systemic fibrosis. Dev Cell. 2009;16:303-313
1362	106.	Armulik A, Genove G, Betsholtz C. Pericytes: Developmental, physiological, and
1363		pathological perspectives, problems, and promises. Dev Cell. 2011;21:193-215
1364	107.	Avolio E, Madeddu P. Discovering cardiac pericyte biology: From physiopathological
1365		mechanisms to potential therapeutic applications in ischemic heart disease. Vascul
1366		Pharmacol. 2016;86:53-63
1367 1368	108.	Durham JT, Surks HK, Dulmovits BM, Herman IM. Pericyte contractility controls endothelial
1369		cell cycle progression and sprouting: Insights into angiogenic switch mechanics. Am J
1370		Physiol Cell Physiol. 2014;307:C878-892
1371	109.	Anastasia A, Deinhardt K, Wang S, Martin L, Nichol D, Irmady K, Trinh J, Parada L, Rafii S,
1372		Hempstead BL, Kermani P. Trkb signaling in pericytes is required for cardiac microvessel
1373		stabilization. PLoS One. 2014;9:e87406
1374	110.	Hu Y, Zhang Z, Torsney E, Afzal AR, Davison F, Metzler B, Xu Q. Abundant progenitor cells in
1375		the adventitia contribute to atherosclerosis of vein grafts in apoe-deficient mice. J Clin
1376 1377		Invest. 2004;113:1258-1265
1377		
1379		23
1380		

1381		
1382		
1383	111.	Katare R, Riu F, Mitchell K, Gubernator M, Campagnolo P, Cui Y, Fortunato O, Avolio E,
1384		Cesselli D, Beltrami AP, Angelini G, Emanueli C, Madeddu P. Transplantation of human
1385		pericyte progenitor cells improves the repair of infarcted heart through activation of an
1386		angiogenic program involving micro-rna-132. <i>Circ Res</i> . 2011;109:894-906
1387 1388	112.	Bearzi C, Leri A, Lo Monaco F, Rota M, Gonzalez A, Hosoda T, Pepe M, Qanud K, Ojaimi C,
1389	112.	Bardelli S, D'Amario D, D'Alessandro DA, Michler RE, Dimmeler S, Zeiher AM, Urbanek K,
1390		Hintze TH, Kajstura J, Anversa P. Identification of a coronary vascular progenitor cell in the
1391		human heart. Proc Natl Acad Sci U S A. 2009;106:15885-15890
1392	113.	
1393	115.	Uchida S, De Gaspari P, Kostin S, Jenniches K, Kilic A, Izumiya Y, Shiojima I, Grosse
1394		Kreymborg K, Renz H, Walsh K, Braun T. Sca1-derived cells are a source of myocardial
1395	111	renewal in the murine adult heart. Stem Cell Reports. 2013;1:397-410
1396	114. 115	The Lancet E. Expression of concern: The scipio trial. <i>Lancet</i> . 2014;383:1279
1397 1398	115.	Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, Czer LS, Marban L,
1399		Mendizabal A, Johnston PV, Russell SD, Schuleri KH, Lardo AC, Gerstenblith G, Marban E.
1400		Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction
1401	447	(caduceus): A prospective, randomised phase 1 trial. <i>Lancet</i> . 2012;379:895-904
1402	116.	Malliaras K, Makkar RR, Smith RR, Cheng K, Wu E, Bonow RO, Marban L, Mendizabal A,
1403		Cingolani E, Johnston PV, Gerstenblith G, Schuleri KH, Lardo AC, Marban E. Intracoronary
1404		cardiosphere-derived cells after myocardial infarction: Evidence of therapeutic
1405		regeneration in the final 1-year results of the caduceus trial (cardiosphere-derived
1406 1407		autologous stem cells to reverse ventricular dysfunction). J Am Coll Cardiol. 2014;63:110-
1407	447	122 Bertuneld L Deviser B. Shermen W. Devis T. Henry TD. Centh B. Metre M. Filippeter C.
1409	117.	Bartunek J, Davison B, Sherman W, Povsic T, Henry TD, Gersh B, Metra M, Filippatos G,
1410		Hajjar R, Behfar A, Homsy C, Cotter G, Wijns W, Tendera M, Terzic A. Congestive heart
1411		failure cardiopoietic regenerative therapy (chart-1) trial design. <i>Eur J Heart Fail.</i> 2016;18:160-168
1412	118.	Bartunek J, Behfar A, Dolatabadi D, Vanderheyden M, Ostojic M, Dens J, El Nakadi B,
1413	110.	Banovic M, Beleslin B, Vrolix M, Legrand V, Vrints C, Vanoverschelde JL, Crespo-Diaz R,
1414 1415		Homsy C, Tendera M, Waldman S, Wijns W, Terzic A. Cardiopoietic stem cell therapy in
1416		heart failure: The c-cure (cardiopoietic stem cell therapy in heart failure) multicenter
1417		randomized trial with lineage-specified biologics. J Am Coll Cardiol. 2013;61:2329-2338
1418	119.	de Jong R, Houtgraaf JH, Samiei S, Boersma E, Duckers HJ. Intracoronary stem cell infusion
1419	117.	after acute myocardial infarction: A meta-analysis and update on clinical trials. <i>Circ</i>
1420		Cardiovasc Interv. 2014;7:156-167
1421	120.	Afzal MR, Samanta A, Shah ZI, Jeevanantham V, Abdel-Latif A, Zuba-Surma EK, Dawn B.
1422 1423	120.	Adult bone marrow cell therapy for ischemic heart disease: Evidence and insights from
1424		randomized controlled trials. Circ Res. 2015;117:558-575
1425	121.	Martin-Rendon E. Meta-analyses of human cell-based cardiac regeneration therapies:
1426	121.	What can systematic reviews tell us about cell therapies for ischemic heart disease? Circ
1427		Res. 2016;118:1264-1272
1428	122.	Nowbar AN, Mielewczik M, Karavassilis M, Dehbi HM, Shun-Shin MJ, Jones S, Howard JP,
1429	122.	Cole GD, Francis DP, group Dw. Discrepancies in autologous bone marrow stem cell trials
1430		and enhancement of ejection fraction (damascene): Weighted regression and meta-
1431 1432		analysis. BMJ. 2014;348:g2688
1432	123.	Losordo DW, Henry TD, Davidson C, Sup Lee J, Costa MA, Bass T, Mendelsohn F, Fortuin FD,
1434	120.	Pepine CJ, Traverse JH, Amrani D, Ewenstein BM, Riedel N, Story K, Barker K, Povsic TJ,
1435		Harrington RA, Schatz RA, Investigators AC. Intramyocardial, autologous cd34+ cell therapy
1436		for refractory angina. Circ Res. 2011;109:428-436
1437		
1438		24
1439 1440		24
1440		

1441		
1442		
1443	124.	Henry TD, Schaer GL, Traverse JH, Povsic TJ, Davidson C, Lee JS, Costa MA, Bass T,
1444	127.	
1445		Mendelsohn F, Fortuin FD, Pepine CJ, Patel AN, Riedel N, Junge C, Hunt A, Kereiakes DJ,
1446		White C, Harrington RA, Schatz RA, Losordo DW, Act. Autologous cd34+ cell therapy for
1447		refractory angina: 2-year outcomes from the act34-cmi study. Cell Transplant.
1448		2016;25:1701-1711
1449	125.	Wojakowski W, Jadczyk T, Michalewska-Wludarczyk A, Parma Z, Markiewicz M, Rychlik W,
1450		Kostkiewicz M, Gruszczynska K, Blach A, Dzier Zak-Mietla M, Wanha W, Ciosek J, Ochala B,
1451		Rzeszutko L, Cybulski W, Partyka L, Zasada W, Wludarczyk W, Dworowy S, Kuczmik W,
1452		
1453		Smolka G, Pawlowski T, Ochala A, Tendera M. Effects of transendocardial delivery of bone
1454		marrow-derived cd133+ cells on left ventricle perfusion and function in patients with
1455		refractory angina: Final results of randomized, double-blinded, placebo-controlled regent-
1456		vsel trial. Circ Res. 2017;120:670-680
1457	126.	Jimenez-Quevedo P, Gonzalez-Ferrer JJ, Sabate M, Garcia-Moll X, Delgado-Bolton R,
1458		Llorente L, Bernardo E, Ortega-Pozzi A, Hernandez-Antolin R, Alfonso F, Gonzalo N, Escaned
1459		J, Banuelos C, Regueiro A, Marin P, Fernandez-Ortiz A, Neves BD, Del Trigo M, Fernandez C,
1460		Tejerina T, Redondo S, Garcia E, Macaya C. Selected cd133(+) progenitor cells to promote
1461		angiogenesis in patients with refractory angina: Final results of the progenitor randomized
1462		
1463	4.07	trial. Circ Res. 2014;115:950-960
1464	127.	Yla-Herttuala S, Bridges C, Katz MG, Korpisalo P. Angiogenic gene therapy in cardiovascular
1465		diseases: Dream or vision? Eur Heart J. 2017
1466	128.	Williams AR, Hatzistergos KE, Addicott B, McCall F, Carvalho D, Suncion V, Morales AR, Da
1467		Silva J, Sussman MA, Heldman AW, Hare JM. Enhanced effect of combining human cardiac
1468		stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore
1469		cardiac function after myocardial infarction. Circulation. 2013;127:213-223
1470	129.	Khattar P, Friedrich FW, Bonne G, Carrier L, Eschenhagen T, Evans SM, Schwartz K, Fiszman
1471	127.	MY, Vilquin JT. Distinction between two populations of islet-1-positive cells in hearts of
1472		
1473		different murine strains. Stem Cells Dev. 2011;20:1043-1052
1474		
1475		
1476		
1477		
1478		
1479		
1480		
1481		
1482		
1483		
1484		
1485		
1486		
1487		
1488		
1489		
1490		
1491 1492		
1492 1493		
1493		
1494		
1495		
1490		
1497		
1498		25
1500		23
1000		

