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Abstract

Clinical data and basic research indicate that the structural and functional alterations that
characterize the evolution of cardiac disease towards heart failure may be, at least in part,
reversed. This paradigm shift is due to the accumulation of evidence indicating that, in peculiar
settings, cardiomyocytes may be replenished. Moving from the consideration that cardiomyocytes
are rapidly withdrawn from the cell cycle after birth, independent laboratories have tested the
hypothesis that cardiac resident stem/progenitor cells resided in mammalian hearts and were
important for myocardial repair. After almost two decades of intensive investigation, several (but
partially overlapping) cardiac resident stem/progenitor cell populations have been identified.
These primitive cells are characterized by mesenchymal features, unique properties that
distinguish them from mesodermal progenitors residing in other tissues, and heterogeneous
embryological origins (that include the neural crest and the epicardium). A further layer of
complexity is related to the nature, in vivo localization and properties of mesodermal progenitors
residing in adult tissues. Intriguingly, these latter, whose possible perivascular pericyte/mural cell
origin has been shown, have been identified in human hearts too. However, their exact anatomical
localization, pathophysiological role, and their relationship with cardiac stem/progenitor cells is
emerging only recently. Therefore, aim of this review is to discuss the different origin, the distinct
nature, and the complementary effect of cardiac stem cells and pericytes supporting regenerative

strategies based on the combined use of both myogenic and angiogenic factors.
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1) Introduction

The concept of the heart as a terminally differentiated organ was extensively debated
between the end of 1800 and the beginning of the last century, until the seminal work of Karsner,
Saphir and Todd strongly supported this view, by showing, with quantitative pathology
approaches on histological sections, that the adult heart increases its size by hypertrophy only?.
One of the strongest arguments supporting this thesis was the difficulty of pathologists to find
mitotic figures in adult human hearts!. However, in subsequent years, this static notion was
challenged, employing a plethora of different techniques, such as stereology?, H-thymidine
labeling?, bromodeoxyuridine labeling*, immunofluorescence and confocal microscopy?, and, most
recently, mass spectrometry of 1“C incorporation into cardiomyocyte DNA®. As a result, nowadays
the possibility that cardiomyocytes can divide is not anymore regarded to as a heresy. However,
both the magnitude of this phenomenon and the origin of the proliferating cardiomyocytes are at
the center of a heated debate, where evidence in support of their generation from either adult
cardiomyocytes or cardiac stem cells have been reported in the literature (reviewed Cesselli et al.

in this isssue).

In nature, the clearest examples of myocardial regeneration, that yield a complete restitutio
ad integrum of the injured organ, occur in teleost fishes” and urodele amphibians®. Additionally,
recent reports have shown that neonatal mice too have a transient potential to regenerate cardiac
injury that vanishes 1 week after birth?. Although this result has the potential to reveal the
mechanisms that distinguish myocardial scarring from regeneration, other reports have either
refuted this finding!® or demonstrated that the extent of regeneration depends upon the type and
size of damage!!. At first, the main mechanism of myocardial regeneration was considered to be,
in these models, the activation of cardiomyocyte proliferation!? 13, However, in recent years, a
more complex picture has emerged, that involves: a cardiomyocyte de-differentiation program,
mediated by miR99/100 and Let-7a/c'* or stimulated by the neuregulin/ErbB2 axis®, the
infiltration of macrophages with a unique polarization phenotype?®, epicardium-derived factors?’,

a specific extracellular matrix!8, and, possibly, stem cells!7- 1920,

The natural history of cardiac pathology is characterized by a series of molecular, cellular,

histologic, conformational, metabolic and functional changes, which have been collectively named
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cardiac remodeling. This latter term, indeed, describes a large spectrum of pathologic
modifications (including: cardiomyocyte hypertrophy??, cardiomyocyte death??, cardiomyocyte de-
differentiation?3, alterations of both calcium dynamics?* and myofilament calcium sensitivity?>,
profound modifications of myocardial metabolism?é, and cardiac fibrosis??), that constitute the
common pathophysiologic mechanism leading a wide range of cardiac diseases of different

etiology towards overt heart failure.

In addition, vascular, perivascular and stromal cells participate in cardiac remodeling and
repair. During the development of hypertrophy, capillary endothelial cells also dynamically
undergo a phenotypic change to support contractile function of the myocardium?2é 29,
Morphometry analyses of hypertrophied hearts in animal models showed that capillary
microvasculature and myocytes grow proportionally to the increase of heart mass3® 31, suggesting
that an insufficient growth of capillaries could cause myocardial ischemia in pathologically

hypertrophied hearts3? 33,

Perivascular mesenchymal cells, alias pericytes, are abundant in the cardiac muscle but their
function in cardiac remodeling has not yet been well documented. Recent evidence suggests that
cardiac pericytes may contribute to cardiomyogenesis®*. Clonal analysis, lineage tracing studies
and in vitro differentiation experiments showed that coronary smooth muscle cells derive from
pericytes in the adult heart3 3. However, whether pericytes represent a homogeneous
population remains a matter of debate. A recent study reported that immunosorted CD146*/CD34
perivascular cells from fetal and adult myocardium share some phenotypic and developmental
similarities with skeletal muscle pericytes, yet exhibit different antigenic, myogenic, and
angiogenic properties, thus suggesting the heterogeneity of pericytes derived from diverse

anatomical locations (vide infra)3.

Although for many years the remodeling process was thought to be irreversible¥’, an
increasing body of literature is indicating that a fraction of patients in optimal medical and device
treatment undergo profound modifications of the ventricular shape, shifting the pressure-volume
relationships of their ventricle to the left. Intriguingly, reverse remodeling predicts prognosis in
patients affected by idiopathic dilated cardiomyopathy and is related to the duration of heart

failure®; consistently, reverse remodeling is very pronounced in infants®. In some instances,
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these macroscopic functional benefits have even been coupled with the reversal of more subtle,
cellular and molecular alterations, such as cardiomyocyte hypertrophy or the re-expression of
fetal cardiac genes®. Importantly, according to different investigators, cell therapy can promote
reverse remodeling*! 42, Furthermore, for specific pathologic conditions (e.g. acute lymphocytic
myocarditis, peripartum cardiomyopathy“° and Takotsubo cardiomyopathy*3), the spontaneous
recovery from heart failure symptoms and a nearly complete normalization of left ventricular
function and structure were described, suggesting that, under favorable circumstances (especially
after acute, not chronic injury) myocardial recovery can occur®. Intrigued by this observation,
some investigators verified if, when cardiac injury spares cardiac resident stem cells and (at least
in part) tissue architecture, these cells are both necessary and sufficient to promote myocardial

regeneration®*,

In line, by extensively investigating, since the early 2000s, the possible ability of stem cell
therapy to promote myocardial repair, together with the mechanism of action of donated cells, a
novel field of studies, aimed at promoting cardiac regeneration, was created®. Indeed, the
observed ability of primitive cells to stimulate cardiomyocyte proliferation started a new paradigm
shift, which now considers feasible to unlock the proliferative potential of the heart. Prompted by
these pioneering studies, several new approaches are now under investigation, that include: the
combined use of progenitors cells of different origin and complementary mechanisms of action*®,
the use of exogenous microRNA#’, the use of these latter within exosomes?*8, the direct
reprogramming of fibroblasts to cardiomyocytes*’ or the identification of factors, such as
thymosin 34°°, the neuregulin Erbb2 axis!> or the Hippo/Yap pathway®! able to stimulate myocyte

proliferation.

Given these premises, aim of this review is to discuss the different origin, the distinct nature,
and the complementary effect of cardiac stem cells and pericytes supporting regenerative

strategies based on the combined use of both myogenic and angiogenic factors

2) The elusive nature of cardiac stem/progenitor cells.
Stimulated by evidence in support of cardiac myocyte proliferation following acute
myocardial infarction®, we and other authors started to chase after primitive cells in adult

mammalian hearts. The rationale for this was that mature cardiomyocytes are withdrawn from the
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cell cycle few days after birth®2, while primitive, motile cells, able to differentiate in
cardiomyocytes could also account for the observed chimerism of cardiac myocytes in male
recipient of donated female hearts®3 >4. By pursuing this task, Hierlihy and colleagues first
described the existence of a cardiac side population (SP), able to differentiate both into
hematopoietic cells and cardiomyocytes>. Immediately thereafter, the presence of primitive,
cardiac resident cells was given employing a single or few antigenic markers. Specifically, cells with
stem/progenitor cell characteristics that expressed either the stem cell factor receptor c-Kit>¢ or
the stem cell antigen-1 (Sca-1)°7 were initially identified. Subsequently, independent investigators
confirmed the existence of cells with stem/progenitor properties in the postnatal mammalian
heart, by evaluating cells expressing the developmental lineage marker Islet-1%8, employing a
selective culture system that promotes the expansion of cells as self-adhesive, floating, clusters
(i.e. cardiospheres)? or culturing plastic adherent cardiac cells with mesenchymal stem cell
features (MSC, see discussion later)¢°. Although it was shown that, within the cardiac SP, Sca-
1*CD31" cells were the most cardiomyogenic ones®?, that both c-Kit* and Scal* cells were present
within mouse cardiospheres®?, that Scal was expressed by most cardiac MSC, while cKit was
expressed only by a minor fraction of the same cells®, that human cKit* cells coexpressed MSC
antigens®?, and that Scal expression may be required for c-Kit* cell function®?, conflicting reports

on the relationship between the different primitive cell populations can be found in the literature.

To clarify the relationship between the different cell types, gene expression analyses were
conducted by independent investigators. By comparing freshly isolated, cardiac derived, c-Kit*,
Scal* cells, and SP cells with cardiomyocytes of mouse origin employing cDNA microarrays, Dey
and collaborators observed that Scal* cells and SP cells displayed the highest similarity in gene
expression with cardiomyocytes, while c-Kit* cells showed the lowest correlation with all the other
cell types®*. The latter population appeared to be a distinct, more primitive cell type, which was,
however, distinct from bone marrow (BM) derived c-Kit* cells and BM-MSC%. Additionally, by
comparing c-Kit* cells of cardiac and hematopoietic origin, it was shown that cardiac cKit" cells are
enriched in endothelial cell specific and angiogenesis related genes, including Wt1%*. Investigating
the differences among MSC derived from heart, BM and kidney, Pelekanos and collaborators
showed that, despite a high degree of correlation, strong biases in gene and protein expression
were observed (e.g. increased expression of Mef2C, Tbx4, Fgf10, and, to a less extent, Isl1in

cardiac MSC), that could account for organ specific functions®®. Similar results were obtained by
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Rossini and collaborators, who showed that MSC obtained from the heart and the bone marrow
differed in their gene, miRNA, and protein expression profiles, where c-Kit, GATA4, GATAG, KLF5,
and myosin light chain-2a were more expressed in cardiac MSC®. Importantly, a common feature
of MSC cells obtained from the different tissues is the expression of =66% of the genes comprised
within the pluripotency network (plurinet)¢°. Analyzing SP and Scal expressing cells by single cell
guantitative RT-PCR, Noseda and collaborators showed that Pdgfra coexpression identifies cells
enriched for the cardiogenic factors Gata4/6, Mef2a/c, Tbx5/20 and Hand2, but mostly negative
for Hand1, Isl1, and Nkx2-5, suggesting a similarity between these cells and the developing cardiac
mesoderm®. Notably, these features were maintained even in clonal cultures of cardiac SP cells®®.
Intriguingly, when Gaetani and collaborators compared the gene expression profile of cultured
human cardiac progenitor cells that were isolated employing either cKit or Scal and propagated
either as monolayer cultures or as spheroid suspension cultures, they observed a very high degree
of similarity among the different cell types. Notably, gene expression variability was mostly related
to individual donor differences and to culture conditions (i.e. adhesion versus suspension culture).
Last, we compared the gene expression profile of human multipotent cells with MSC features
isolated from different tissues, including the heart®’. Importantly, these latter were additionally
characterized by cKit positivity®®. Although in this early report we showed a high degree of
transcriptional similarity among cells obtained from heart, liver and bone marrow?’, in a
subsequent work that employed the cap analysis of gene expression (CAGE) technique, we
showed that the expression profile of cardiac cells could be clearly distinguished from that of bone

marrow or adipose tissue derived cellsé?.

Despite a general agreement on the notion that adult cardiac resident primitive cells have a
transcriptional identity that is distinct from mesenchymal cells residing in other adult tissues, less
clear is the embryonic origin and the developmental potential of cardiac stem/progenitor cells
residing in adult organs. Isl1* cells may be originated from the cardiac progenitor fields during
embryogenesis. However, postnatal Isl1 expressing cells were found to be mainly differentiated
cells in parasympathetic ganglions, in the great arteries, in the outflow tract and in the sinoatrial
pacemaker’®. More complex is the origin of cKit expressing cells, which, could be remnants of the
cardiogenic fields’* 72 or, according to Hatzistergos and collaborators, would derive from the
cardiac neural crest’s. A third possible source of cKit expressing cells is the proepicardium (vide

infra). Some lines of evidence support this possibility, such as: the localization of cKit* cells in
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epicardial regions, both in mice’ and in normal human hearts’>, and the reported co-expression
of cKit with both Wt1 and Tbx187¢. Last, cKit gene expression may be also induced by the
Oncostatin M mediated de-differentiation of cardiomyocytes?3. Lineage negative SP Scal* cells,
instead, do not derive from either neural crest, hematopoietic cells or cardiomyocytes, but rather
from Nkx2-5 or Isl1 expressing cells. However, they may have a proepicardial origin as well, since
fate mapping studies suggested their derivation from cells expressing the embryonic epicardial
genes cGATA5 and Wt1%. A proepicardial origin has been also claimed for cardiac MSC, following
lineage tracing analysis experiments in mice’’. Similar results were also obtained when we
analyzed the transcriptome of human cardiac progenitor cells, comparing it with the most
comprehensive transcription start site-based atlas obtained from the majority of mammalian cells
and tissues. With this approach, we observed that cardiac progenitors show a high degree of

similarity to mesothelial cells®?.

In line, epithelial to mesenchymal transition (EMT) of epicardial cells is a potential
mechanism able to generate cells with progenitor features from the mesothelium. EMT describes
the conversion of fixed cells, firmly anchored to neighboring cells (i.e. epithelial cells) into motile,
matrix-degrading, mesenchymal cells 78. This process, that plays a central role in embryogenesis,
wound healing, stem cell homeostasis, and cancerogenesis’?, is driven by the expression of master
regulators, including SNAIL, TWIST, and zinc-finger E-box-binding (ZEB) transcription factors, that
inhibit the expression of epithelial genes (e.g. E-Cadherin) and promote the expression of
mesenchymal genes (e.g. N-Cadherin)8. EMT is controlled by signaling pathways that are triggered
by extracellular stimuli, such as TGF3 family members, which represent one of the strongest
inductors of this process®. In development, EMT and its opposite mesenchymal to epithelial
transition -MET- play a central role in the formation of the epicardium. Specifically, epicardial
progenitors would arise from the splanchnic mesoderm likely via MET8?, Conversely,
concomitantly with the coverage of myocardial surface by proepicardial cells to form the
epicardium, subsets of these cells acquire migratory and invasive properties via EMT and invade
the myocardium as epicardial derived cells (EPDC). These latter are heterogeneous and comprise
distinct subpopulations expressing semaphorin 3D (Sema3D), scleraxis (SCX), WT1 and Thx18. WT1
and Tbx18 expressing cells contribute to smooth smooth muscle cells, pericytes, and fibroblasts,
but rarely give rise to endothelial cells, while SCX and Sema3D expressing cells also contribute to

the endothelial and endocardial lineage®? 83, Importantly, Wt1 and Tbx18 would exert opposite
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roles, where Wt1 inhibits and Tbx18 promotes EMT84. In the human heart, TGFJ signaling and EMT
are required for the formation of cardiospheres from cell monolayers®, moreover epicardial cells
exposed in vitro to TGF can undergo EMT and upregulate the expression of cKit8. Intriguingly,
following acute myocardial infarction the epicardium becomes activated, and promotes
myocardial healing®® 87, however, in humans, chronic ischemic heart disease is associated with

structural and molecular modifications of the epicardial layersé.

Altogether these results indicate that the adult mammalian heart hosts one or few primitive
cell populations, with overlapping mesenchymal characteristics, which are clearly distinguished

from stem/progenitor cells residing in other tissues.

3) Pericytes, mesenchymal stromal cells and cardiac stem cells

Studies conducted in the late ‘60s and in the mid ‘90s showed that osteogenic, multipotent,
fibroblast colony forming units (CFU-F) can be found both in the bone marrow and in the
connective tissue of many organs, including the heart8 8%, Following these early studies, different
authors had the ambition to pin down the in vivo identity of these mesodermal progenitors.
Bianco and Cossu were among the first ones to hypothesize a perivascular/mural origin for these
cells, considering the localization of alkaline phosphatase positive stromal cells in the bone
marrow and the osteo-chondrogenic potential of perivascular cells isolated from both the retina
and postnatal arterial walls®. Intriguingly, clonogenic assays and cell fate tracking experiments
suggested the existence of a close relationship between angiogenic cells and mesodermal
progenitors, supporting their possible origin from the mesoangioblast, a cell type that was initially
identified in the embryonic dorsal aorta, and whose origin has been recognized in a subpopulation
of the hemogenic endothelium?? 92, Moving from this hypothesis, it was first described that bone
marrow osteoprogenitor cells had a perivascular localization and could be prospectively enriched
employing CD146, an antigen shared with pericytes/mural cells?3. In analogy, a myogenic
population, distinct from satellite cells, was identified that expressed pericyte markers (including
NG2, alkaline phosphatase and PDGFR[) and resided in the skeletal muscle?. These results were
later generalized by identifying in situ and prospectively sorting cells with a pericyte phenotype
(i.e. CD146hieh CD34 CD45), demonstrating their clonogenicity, multipotency, and the
coexpression of MSC markers such as NG2 and PDGFR[°. To corroborate this finding,

vascular/perivascular cells expressing the MSC markers CD146, CD73, CD90, CD105, CD271, and
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NG2 have been identified in several tissues in vivo?. However, both the possibilities that pericyte
subsets act as bona fide MSC and that pericytes are a uniform population of cells that can be
cultured as MSC have been questioned. Specifically, in line with results obtained by us®® and
others®® 77 on mesodermal progenitors isolated from different sources, recent data indicate that
CD146 expressing cells isolated from different human tissues are clearly distinct from the bone
marrow derived ones, both from a potency and transcriptional standpoint®”: %8, As a further piece
of evidence supporting the heterogeneity of the pericytes, it has been shown that CD146 cannot
be considered a universal marker of this cell population, since it is expressed by endothelial cells
too, but it is absent on CD34" adventitial pericytes. These latter are localized in the external layer
of large vessels nearby the vasa vasorum, express some MSC markers (i.e. CD44, CD73, CD90, and
CD105), and generate clonogenic multipotent progenitors, but are phenotypically distinct from
microvascular pericytes (i.e. adventitial pericytes do not express CD146, NG2, and PDGFR[3)??> 100,
Moreover, in the spinal cord and skeletal muscle, different pericyte subtypes have been
described0%. 192, Specifically, in the skeletal muscle type 1 pericytes are Nestin'NG2*, while type 2
pericytes are Nestin"NG2*. Both type 1 and type 2 pericytes express PDGFR[3 and CD146, but only
type1l pericytes express PDGFRa'%2. In young mice, muscular type 2 pericytes have myogenic
potential while type 1 pericytes appear quiescent. In aged animals, however, type 2 pericytes
show diminished myogenic capacity while type 1 pericytes produce collagen®?. For these reasons,
the term MSC does not identify a cell type with identical differentiation capacities, therefore it
should be abandoned when referring to extramedullary mesodermal progenitors. Intriguingly,
according to Sacchetti and collaborators?’, tissue-specific mesodermal progenitors could be
recruited to a mural fate, suggesting that pericytes would serve as local stem/progenitor cells.
Importantly, mechanical cues can instruct mesodermal progenitors in vitro to differentiate
towards neural, muscle or osteogenic fates, therefore it is tempting to speculate that physical
forces may modulate the differentiation of these cells in vivo too%, However, this hypothesis was
recently challenged, employing lineage tracing experiments of cells expressing the transcription
factor Thx18, that, according to the authors, would label most pericytes more specifically than
PDGFRB1%4. Although cells that express Thx18 (albeit at extremely low levels) are multipotent in
vitro, those that derive from Tbx18 expressing cells in vivo maintain their cell identity during aging
and do not contribute, for example, to cardiomyocyte turnover in the heart!®*. Moreover, in
pressure overloaded hearts, only a minority of pericytes derived from Thx18 expressing cells

would contribute to fibrosis'®4. However, PDGFRa. has been associated with widespread organ

10
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fibrosis, suggesting that PDGFRa* cells may also have a role in skeletal muscle and cardiac fibrosis
105 Type 1 pericytes and fibro-adipogenic progenitors express this receptor, and like pericytes,
fibro-adipogenic progenitors line the skeletal muscle vasculature, suggesting that their roles might
overlap?. The contribution of perivascular PDGFRa* cells to cardiac fibrosis has not been

determined yet.

Pericyte anatomy and biology have been extensively studied over the years. These cells, that
were first described to be anatomically localized within the vascular basement membrane of
microvessels, have now been identified in the adventitial region of large vessels too (reviewed in
106,107) pericytes contribute to basement membrane secretion, possibly as a consequence of their
interaction with endothelial cells'%. Furthermore, pericyte contractility regulates endothelial cell
proliferation, via contact inhibition of endothelial cell growth and activating chemomechanical
signaling®®, while pericyte coverage promotes vessel stabilization, preventing oedema or
hemorrhagic complications?. Adventitial pericytes have been associated with vascular
remodelling and neointima formation° and more recently recognized for their healing potential
in preclinical studies of peripheral and myocardial ischemia % 111, Last, pericytes would originate

cardiac smooth muscle cells in a Notch3 dependent fashion?¢.

An intriguing and still open question regards the relationship between cardiac pericytes and
cardiac progenitor cells. Several lines of evidence indicate, at least, a close resemblance between
the two cell types. Specifically, a common epicardial origin with pericytes has been described for a
subset of Sca1 positive cells®, cardiac MSC¢, and, possibly, human cardiac progenitors®’.
Moreover, both cardiac MSC® and human cardiac progenitors* coexpress some pericyte markers
(e.g. NG2 and PDGFRp) and share with fetal cardiac pericytes the expression of pluripotency
genes®, Last, although cardiac pericytes expanded in vitro from fetal, neonatal and adult hearts
have been reported not to express the stem cell marker cKit3* 33, a vascular and perivascular
localization has also been described for subsets of cKit2® 112 and Sca1°7 113 expressing cells. These
differences could reflect the existence of distinct cell types in vivo that are possibly recruited to a
perivascular localization, as suggested by ?7. However, a modification of the properties of the cells

could have been also induced by protocols for their in vitro expansion.

11
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Therefore, since pericytes may regulate crucial processes required for the preservation of a
normal cardiac structure and function (e.g. angiogenesis, blood flow, vessel stability, maturation,
and vascular permeability, as well as production of trophic factors), we recently experimented
their possible use for the treatment of acute myocardial infarction!!l. Specifically, pericytes
derived from a large vessel (e.g. saphenous vein leftovers collected at time of coronary artery

bypass grafting surgery) were implanted in infarcted mouse hearts.

4) Cardiac regeneration from a clinical perspective.
The notion that the heart possesses some degree of renewal potential has opened the avenue to
restorative therapies especially for the increasing number of patients with heart failure (HF). In the
US, adults with the disease could reach 8 million by 2030, up from 5.7 million in 2012, while the
cost of treatment could more than double, from $31 billion to $70 billion. The mainstays of novel

regenerative treatment of ischemic HF consists of boosting cardiopoiesis and angiogenesis.

Cardiopoietic cell therapy has been introduced by the two seminal trials, the Scipio and the
Caduceus. The Scipio reported initial encouraging results in humans, but several reporting bias
have reduced the validity of the study!!4. The randomized CADUCEUS clinical trial showed a single
administration of cardiosphere-derived cells significantly reduces the size of the scar that had
resulted from a large heart attack, and concomitantly increases the muscle mass at the affected
arealiS, 116.

Several companies have now engaged into the cardiopoiesis arena. Capricor, a
biotechnology company focused on the discovery, development, and commercialization of
biological cardiovascular therapeutics, has conducted a Phase I/l HOPE clinical study based on
CAP-1002 (allogeneic cardiosphere-derived cells, CDCs), whose results are expected to be released
during 2017. The same company has developed CAP-2003 exosomes derived from CAP-1002 CDCs.
The exosome technology is being developed under a license agreement with the Cedars-Sinai
Medical Center. In October 2016, Capricor was launched a new research program on CAP-2003

exosome therapy for treating patients with hypoplastic left heart syndrome.

The CHART-1 trial from Celyad'"’, a Belgian biotechnology company, represents the world’s
first Phase lll trial for a pre-programmed cellular therapy targeting HF. It involves taking cells from

a patient’s bone marrow and through a proprietary process re-programming those cells so that
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they become heart precursor cells with the aim of replicating the normal process of cardiac
development in the embryo and healing the failing heart. The cells are then injected back into the
patient’s heart through a minimally invasive procedure, with the goal of repairing damaged tissue
and improving heart function, clinical outcomes and quality of life. This Phase Il trial follows the
successful outcome of the Phase Il trial'!8. A report presented at the European Society of
Cardiology Congress in 2016 showed there was no difference in deaths or worsening of heart
failure between patients given Celyad’s C-Cure and those given a sham procedure. The product
did, however, benefit a subset of patients — those with severely enlarged hearts — so Celyad is
refocusing on this subpopulation. But designing such a new trial requires a large investment from
potential partners, which may be dissuaded to join the research due to the mixed signals about

other cardiac stem cell trials.

Mesoblast has recently launched two trials based on allogeneic precursor cells.
NCT02032004 (DREAM HF-1) is Double-blind, Randomized, Sham-procedure-controlled, Parallel-
Group Efficacy and Safety Study of Allogeneic Mesenchymal Precursor Cells (Rexlemestrocel-L) in
chronic HF due to LV Systolic Dysfunction (Ischemic or Nonischemic). In the first quarter of 2017,
Mesoblast will release interim results on about 300 patients from this phase 3 study of 600
people. The Mesoblast NCT01781390 is Safety Study of Allogeneic Mesenchymal Precursor Cell

Infusion in MyoCardial Infarction (AMICI) currently ongoing but not recluting patients.

Proangiogenic gene and cell therapies aim to stabilize the infarct scar and reduce its
extension, by modulating the extracellular matrix remodeling, promoting cardiomyocyte salvage in
the area at risk, and awakening the hibernated myocardium. Furthermore, the improvement in
myocardial perfusion is expected to treat angina and improve exercise tolerance. The majority of
studies used angiogenic -endothelial and hematopoietic- progenitor cells as an adjuvant therapy
to optimally-treated reperfused myocardial infarction (Ml) or chronic coronary artery disease
(CAD), reporting mixed results!1%122, Only a few studies have focused on developing a cell
treatment for patients with non-revascularizable CAD. Seminal trials using hematopoietic CD133*
and CD34"* cells in refractory angina have provided initial evidence of feasibility with reported
attenuation of angina'?®12> and improvement of SPECT perfusion score!?, However, one study
showed that cell mobilization caused cardiac enzyme elevations, suggestive of non-ST segment M,

in ~5% of patients, which instills safety concerns23. Angiogenesis gene therapy has been

13



781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840

revitalized by the advent of significant improvements in vector technology?’. Nevertheless, the

incapacity of single growth factors to promote mature vessels represents a persistent limitation.

The combination of cardiopoietic and angiogenic progenitor cells could additively implement
current regenerative strategies. However, there are few studies investigating combinatory cell
therapy approaches. A recent report by Williams et al 122 combining human cardiac
stem/progenitor cells (CSC) and bone marrow MSC in a swine model of MI showed that each cell
therapy reduces Ml size relative to placebo, with the Ml size reduction being 2-fold greater in
combination versus either cell therapy alone. These results are similar to those published by us
using CSC and adventitial pericytes. In a study conducted in mice with non-reperfused MI, we
showed that human adventitial pericytes and cKit* CSCs in combination work better to reduce
infarct size and collateralization. Moreover, while pericytes acted mainly by promoting
angiogenesis, CSCs were superior in stimulating cardiomyocyte proliferation . However, while
Williams and colleagues showed that dual cell therapy substantially improved LV chamber
compliance and contractility over the single cell treatments, we did not observe further
improvements in cardiac function over single cell therapy. Moreover, as opposed to Williams’
report (that identified a large effect on cell engraftment with the combined cell therapy), we were
not able to demonstrate any improvement on this parameter. A possible difference between the
two studies, that may account for the observed discrepancies, is the timing of cell administration.
In fact, while we injected cells immediately after the coronary artery occlusion, Williams
performed cell implantation 14 days after infarction. Despite these differences, we are confident
that combination cell therapy approaches that employ stem cells obtained from surgical samples
that are discarded during the procedures may represent one of the best opportunities for cardiac
repair. Regarding the mechanism of action of the combined cell therapy, a cross-talk between
pericytes and cardiac progenitors could also be documented, since implanted cells were able to
promote the recruitment of both cKit* cells in vivo and Sca1* cells in vitro*. Furthermore, an
interaction between saphenous vein-derived pericytes and cultured human cardiac progenitors
was shown in vitro, being the crosstalk between the two cell types able to modify their secretome
and promote the synergistic release of SDF-1a*¢. However, the molecular mechanism that is
responsible for progenitor cell recruitment is under investigation. Concerning cardiopoiesis, CSC
were able to increase the frequency of cardiomyocytes incorporating the thymidine analogue EdU

and reduced cardiomyocyte hypertrophy. The mechanisms promoting this beneficial effect are still
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partially unknown. In fact, although, as anticipated, we observed low levels of cell engraftment
and direct differentiation of the implanted cells towards the cardiomyocyte lineage, the
secretome of both cell types has powerful biologic effects and may hide important and novel

therapeutic factors.

5) Conclusion
Optimized medical treatment and novel interventions have shown that cardiac remodeling may
be, at least partially, reversed, suggesting that the heart has an inherent capacity for restoring its
structure and function. Moving from these premises and supported by experimental results
achieved both with cell therapy and in regenerating animal models, an entire field of investigation
developed, that aims at identifying the best modalities to unlock the potential for myocardial
regeneration. Almost two decades of investigation on cardiac resident primitive cells have
delineated a complex picture, where the heart hosts one or few primitive cell populations, with
overlapping mesenchymal characteristics, which are clearly distinguished from stem/progenitor
cells residing in other tissues, whose embryological origin includes the cardiac neural crest and the
epicardium. Mesodermal progenitors have been identified in several adult tissues and have, at
least, a common perivascular localization with pericytes (and could be associated both with
capillaries or with the adventitia of large vessels). Recent data indicate that tissue resident
mesodermal progenitors/pericytes have distinguishing, organ specific, and possibly
complementary properties. Preclinical data and clinical experimentation have demonstrated not
only the feasibility, but also the potential benefit of cell therapy. Most importantly, the
combination of cardiopoietic and angiogenic progenitor cells has been shown to promote the
recruitment of cardiac resident progenitors, an increase in collateralization, and cardiomyocyte
proliferation. The mechanisms responsible for this positive effect have not been completely
elucidated, but their investigation has the potential to indicate novel methods to promote cardiac

regeneration.
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Figure Legend

Figure 1. Localization of cells expressing putative stem/progenitor markers in adult mammalian
hearts. Cartoon depicting the localization of putative stem cells or their derivative in the adults.
Insets show a schematic view of the tissue histology of the relative dashed squares (A - C)
superimposed to the picture. A: examples of the two subsets of Isl1 expressing cells that were
identified in the adult heart’® 12%, The left panel shows a cluster of Isl1 positive cells that is
negative for cardiomyocyte markers, but may express neuronal ones. The rightmost panel shows a
cluster of Isl1 expressing cells positive to cardiomyocyte markers. Isl1 is depicted in green, nuclei
are shown in blue, cardiomyocyte cytoplasm is shown in pink with red striations, extracellular
matrix is shown in cyan. B: cartoon showing an activated epicardium re-expressing the epicardial
developmental markers Wt1 and Tbhx18, as well as cKit’é. WT1 and TBX18 are shown as pink and
green dots in epicardial cell nuclei, respectively. cKit is shown as orange labeling of two epicardial
cells. Nuclei are shown in blue, cardiomyocyte cytoplasm is shown in pink, extracellular matrix is
shown in cyan. C: scheme showing the localization of cKit and Scal expressing cells in the
myocardium. cKit expressing cells (labeled in orange) are shown to be localized in the
endothelium, within the vessel wall, and in the intersitium. Scal positive endothelial and
interstitial cells are shown in green. Adventitial and microvascular pericytes are shown in cyan and
indicated by arrows. A close relationship between microvascular and advential pericytes and

cardiac resident stem/progenitors is shown.
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