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We consider the problem of a rigid body, subject to
a unilateral constraint, in the presence of Coulomb
friction. We regularize the problem by assuming
compliance (with both stiffness and damping) at the
point of contact, for a general class of normal reaction
forces. Using a rigorous mathematical approach,
we recover impact without collision (IWC) in both
the inconsistent and the indeterminate Painlevé
paradoxes, in the latter case giving an exact formula
for conditions that separate IWC and lift-off. We solve
the problem for arbitrary values of the compliance
damping and give explicit asymptotic expressions in
the limiting cases of small and large damping, all for a
large class of rigid bodies.

1. Introduction
In mechanics, in problems with unilateral constraints
in the presence of friction, the rigid-body assumption
can result in the governing equations having multiple
solutions (the indeterminate case) or no solutions (the
inconsistent case). The classical example of Painlevé
[1–3], consisting of a slender rod slipping1 along a rough
surface (figure 1), is the simplest and most studied
example of these phenomena, now known collectively
as Painlevé paradoxes [5–8]. Such paradoxes can occur at
physically realistic parameter values in many important
engineering systems [9–15].
1We prefer to avoid describing this phase of the motion as sliding because
we will be using ideas from piecewise smooth systems [4], where sliding
has exactly the opposite meaning.

2017 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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Figure 1. The classical Painlevé problem.

When a system has no consistent solution, it cannot remain in that state. Lecornu [16] proposed
a jump in vertical velocity to escape an inconsistent, horizontal velocity, state. This jump has
been called impact without collision (IWC) [17], tangential impact [18] or dynamic jamming [13].
Experimental evidence of IWC is given in [15]. IWC can be incorporated into the rigid-body
formulation [19,20] by considering the equations of motion in terms of the normal impulse, rather
than time.

Génot & Brogliato [17] considered the dynamics around a critical point, corresponding to zero
vertical acceleration of the end of the rod. They proved that, when starting in a consistent state,
the rod must stop slipping before reaching the critical point. In particular, paradoxical situations
cannot be reached after a period of slipping.

One way to address the Painlevé paradox is to regularize the rigid-body formalism. Physically,
this often corresponds to assuming some sort of compliance at the contact point A, typically
thought of as a spring, with stiffness (and sometimes damping) that tends to the rigid body
model in a suitable limit. Mathematically, very little rigorous work has been done on how
IWC and Painlevé paradoxes can be regularized. Dupont & Yamajako [21] treated the problem
as a slow–fast system, as we will do. They explored the fast time-scale dynamics, which is
unstable for the Painlevé paradoxes. Song et al. [22] established conditions under which these
dynamics can be stabilized. Le Suan An [23] considered a system with bilateral constraints and
showed qualitatively the presence of a regularized IWC as a jump in vertical velocity from a
compliance model with diverging stiffness. Zhao et al. [24] considered the example in figure 1
and regularized the equations by assuming a compliance that consisted of an undamped spring.
They estimated, as a function of the stiffness, the orders of magnitude of the time taken in each
phase of the (regularized) IWC. Another type of regularization was considered by Neimark &
Smirnova [25], who assumed that the normal and tangential reactions took (different) finite times
to adjust.

In this paper, we present the first rigorous analysis of the regularized rigid-body formalism,
in the presence of compliance with both stiffness and damping. We recover IWC in both the
inconsistent and the indeterminate cases, and in the latter case, we present a formula for
conditions that separate IWC and lift-off. We solve the problem for arbitrary values of the
compliance damping and give explicit asymptotic expressions in the limiting cases of small and
large damping. Our results apply directly to a general class of rigid bodies. Our approach is
similar to that used in [26,27] to understand the forward problem in piecewise smooth (PWS)
systems in the presence of a twofold.

The paper is organized as follows. In §2, we introduce the problem, outline some of the main
results known to date and include compliance. In §3, we give a summary of our main results,
theorems 3.1 and 3.2, before presenting their derivation in §§4 and 5. We discuss our results in §6
and outline our conclusion in §7.
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2. Classical Painlevé problem
Consider a rigid rod AB, slipping on a rough horizontal surface, as depicted in figure 1.

The rod has mass m, length 2l, the moment of inertia of the rod about its centre of mass S is
given by I and its centre of mass coincides with its centre of gravity. The point S has coordinates
(X, Y) relative to an inertial frame of reference (x, y) fixed in the rough surface. The rod makes an
angle θ with respect to the horizontal, with θ increasing in a clockwise direction. At A, the rod
experiences a contact force (−FT, FN), which opposes the motion. The dynamics of the rod is then
governed by the following equations:

mẌ = −FT,

mŸ = −mg + FN

and Iθ̈ = −l(cos θFN − sin θFT),

⎫⎪⎪⎬
⎪⎪⎭ (2.1)

where g is the acceleration due to gravity, plus the unilateral constraint y ≥ 0.
The coordinates (X, Y) and (x, y) are related geometrically as follows:

x = X + l cos θ and y = Y − l sin θ . (2.2)

We now adopt the scalings (X, Y) = l(X̃, Ỹ), (x, y) = l(x̃, ỹ), (FT, FN) = mg(F̃T, F̃N), t = 1/ωt̃,
α = ml2/I, where ω2 = g/l. For a uniform rod, I = 1

3 ml2, and so α = 3 in this case.
Then for general α, (2.1) and (2.2) can be combined to become, on dropping the tildes,

ẍ = −θ̇2 cos θ + α sin θ cos θFN − (1 + α sin2 θ )FT,

ÿ = −1 + θ̇2 sin θ + (1 + α cos2 θ )FN − α sin θ cos θFT

and θ̈ = −α(cos θFN − sin θFT).

⎫⎪⎪⎬
⎪⎪⎭ (2.3)

To proceed, we need to determine the relationship between FN and FT. We assume Coulomb
friction between the rod and the surface. Hence, when ẋ �= 0, we set

FT = μ sign(ẋ)FN , (2.4)

where μ is the coefficient of friction. By substituting (2.4) into (2.3), we obtain two sets of
governing equations for the motion, depending on the sign of ẋ, as follows:

ẋ = v, v̇ = a(θ , φ) + q±(θ )FN, ẏ = w,

ẇ = b(θ , φ) + p±(θ )FN , θ̇ = φ and φ̇ = c±(θ )FN ,

}
(2.5)

where the variables v, w, φ denote velocities in the x, y, θ directions, respectively, and

a(θ , φ) = −φ2 cos θ , q±(θ ) = α sin θ cos θ ∓ μ(1 + α sin2 θ ),

b(θ , φ) = −1 + φ2 sin θ , p±(θ ) = 1 + α cos2 θ ∓ μα sin θ cos θ

and c±(θ ) = −α(cos θ ∓ μ sin θ )

⎫⎪⎪⎬
⎪⎪⎭ (2.6)

for the configuration in figure 1. The suffices ± correspond to ẋ = v ≷ 0, respectively.
Suppose FN is known. Then system (2.5) is a Filippov system [4]. Hence, we obtain a well-

defined forward flow when ẋ = v = 0 and

a(θ , φ) + q+(θ )FN < 0 < a(θ , φ) + q−(θ )FN, (2.7)

where v̇ in (2.5)± for v ≷ 0 both oppose v = 0, by using the Filippov vector-field [4]. Simple
computations give the following:
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Proposition 2.1. The Filippov vector-field, within the subset of the switching manifold Σ : ẋ = v = 0
where (2.7) holds, is given by

ẏ = w, ẇ = b(θ , φ) + Sw(θ )FN ,

θ̇ = φ and φ̇ = Sφ(θ )FN,

}
(2.8)

where

Sw(θ ) = q−(θ )
q−(θ ) − q+(θ )

p+(θ ) − q+(θ )
q−(θ ) − q+(θ )

p−(θ ) = 1 + α

1 + α sin2 θ

and Sφ(θ ) = q−(θ )
q−(θ ) − q+(θ )

c+(θ ) − q+(θ )
q−(θ ) − q+(θ )

c−(θ ) = − α cos θ

1 + α sin2 θ
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.9)

Remark 2.2. Our results hold for mechanical systems with different q±, p± and c± in (2.6) and
even dependency on several angles θ ∈ T

d, e.g. the two-link mechanism of Zhao et al. [15]. As
expected, Sw and Sφ in (2.9) are independent of μ, even for general q±, p± and c±.

To solve (2.5) and (2.8), we need to determine FN . The constraint-based method leads to the
Painlevé paradox. The compliance-based method is the subject of this paper.

(a) Constraint-based method
In order that the constraint y = 0 be maintained, ÿ(= ẇ) and FN form a complementarity pair
given by

ẇ ≥ 0, FN ≥ 0, FN · ẇ = 0. (2.10)

Note that FN ≥ 0 since the rough surface can only push, not pull, the rod. Then for general motion
of the rod, FN and y satisfy the complementarity conditions

0 ≤ FN ⊥ y ≥ 0. (2.11)

In other words, at most one of FN and y can be positive.
For the system shown in figure 1, the Painlevé paradox occurs when v > 0 and θ ∈ (0, π/2),

provided p+(θ ) < 0, as follows. From the fourth equation in (2.5), we can see that b is the free
acceleration of the end of the rod. Therefore, if b > 0, lift-off is always possible when y = 0, w = 0.
But if b < 0, in equilibrium we would expect a forcing term FN to maintain the rod on y = 0. From
ẇ = 0, we obtain

FN = − b
p+

(2.12)

since v > 0. If p+ > 0, which is always true for θ ∈ (π/2, π ), then FN ≥ 0, in line with (2.11). But if
p+ < 0, which can happen if θ ∈ (0, π/2), then FN < 0 in (2.12). Then, FN is in an inconsistent (or
non-existent) mode. On the other hand, if b > 0 and p+ < 0, then FN > 0 in (2.12). At the same time,
lift-off is also possible from y = 0 and hence FN is in an indeterminate (or non-unique) mode. It is
straightforward to show that p+(θ ) < 0 requires

μ > μP(α) ≡ 2
α

√
1 + α. (2.13)

Then, the Painlevé paradox can occur for θ ∈ (θ1, θ2), where

θ1(μ, α) = arctan 1
2 (μα −

√
μ2α2 − 4(1 + α))

and θ2(μ, α) = arctan 1
2 (μα +

√
μ2α2 − 4(1 + α)).

⎫⎪⎬
⎪⎭ (2.14)

For a uniform rod with α = 3, we have μP(3) = 4/3. For α = 3 and μ = 1.4, the dynamics can
be summarized2 in the (θ , φ)-plane, as in figure 2. Along θ = θ1, θ2, we have p+(θ ) = 0. These lines
intersect the curve b(θ , φ) = 0 at four points: φ±

1,2 = ±√csc θ1,2. Génot & Brogliato [17] showed that
the point P : (θ , φ) = (θ1,

√
csc θ1) is the most important and analysed the local dynamics around

2Compare with fig. 2 of Génot & Brogliato [17], where the authors plot the unscaled angular velocity ωφ versus θ , for the case
g = 9.8 ms−2, l = 1 m.
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Figure 2. The (θ ,φ)-plane for the classical Painlevé problem of figure 1, forα = 3 andμ = 1.4. The point P has coordinates
(θ1,

√
csc θ1), where θ1 is given in (2.14). In the first quadrant centred on P, we have b> 0, p+ < 0, so the dynamics

is indeterminate (non-unique). In the second quadrant, b> 0, p+ > 0 and the rod lifts off the rough surface. In the
third quadrant, b< 0, p+ > 0 and the rod moves (slips) along the surface. Here, Génot & Brogliato [17] showed that the
dynamics cannot cross p+ = 0 unless also b= 0. In the fourth quadrant, b< 0, p+ < 0 and the dynamics is inconsistent
(non-existent). Even though the constraint y = 0 is satisfied, there exists no positive value of FN, contradicting (2.11).

it. The rigid body equations (2.1) are unable to resolve the dynamics in the third and fourth
quadrants. So, we regularize these equations using compliance.

(b) Compliance-based method
We assume that there is compliance at the point A between the rod and the surface, when they
are in contact (figure 1). Following [21,28], we assume that there are small excursions into y < 0.
Then we require that the nonnegative normal force FN(y, w) is a PWS function of (y, w):

FN(y, w) = [f (y, w)] ≡
{

0 for y > 0
max{f (y, w), 0} for y ≤ 0,

(2.15)

where the operation [·] is defined by the last equality and f (y, w) is assumed to be a smooth
function of (y, w) satisfying ∂yf < 0, ∂wf < 0. The quantities −∂yf (0, 0) and −∂wf (0, 0) represent a
(scaled) spring constant and damping coefficient, respectively. We are interested in the case when
the compliance is very large, so we introduce a small parameter ε as follows:

∂yf (0, 0) = −ε−2 and ∂wf (0, 0) = −ε−1δ. (2.16)

This choice of scaling [21,28] ensures that the critical damping coefficient (δcrit = 2 in the classical
Painlevé problem) is independent of ε. Our analysis can handle any f of the form f (y, w) =
ε−1h(ε−1y, w) with

h(ŷ, w) = −ŷ − δw + O((ŷ + w)2). (2.17)

But, to obtain our quantitative results, we truncate (2.17) and consider the linear function

h(ŷ, w) = −ŷ − δw, (2.18)

so that
FN(y, w) = ε−1[−ε−1y − δw]. (2.19)

In what follows, the first equation in (2.5) will play no role, so we drop it from now on. Then
we combine the remaining five equations in (2.5) with (2.15) and (2.16) to give the following set
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of governing equations that we will use in the sequel:

ẏ = w, ẇ = b(θ , φ) + p±(θ )ε−1[−ε−1y − δw],

θ̇ = φ, φ̇ = c±(θ )ε−1[−ε−1y − δw]

and v̇ = a(θ , φ) + q±(θ )ε−1[−ε−1y − δw],

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.20)

For ε > 0, this is a well-defined Filippov system. The slipping region (2.7) and the Filippov
vector-field (2.8) are obtained by replacing FN in these expressions with the square bracket
ε−1[−ε−1y − δw] (see also lemma 4.10).

3. Main results
We now present the main results of our paper, theorems 3.1 and 3.2. Theorem 3.1 shows that,
if the rod starts in the fourth quadrant of figure 2, it undergoes (regularized) IWC for a time of
O(ε ln ε−1). The same theorem also gives expressions for the resulting vertical velocity of the rod
in terms of the compliance damping and initial horizontal velocity and orientation of the rod.

Theorem 3.1. Consider an initial condition

(y, w, θ , φ, v) = (0,O(ε), θ0, φ0, v0), v0 > 0, (3.1)

within the region of inconsistency (non-existence) where

p+(θ0) < 0, b(θ0, φ0) < 0, (3.2)

and q+(θ0) < 0, q−(θ0) > 0, a �= 0. Then the forward flow of (3.1) under (2.20) returns to {(y, w, θ , φ, v)
|y = 0} after a time O(ε ln ε−1) with

w = e(δ, θ0)v0 + o(1), θ = θ0 + o(1),

and φ = φ0 +
{
− c+(θ0)

q+(θ0)
+ Sφ(θ0)

Sw(θ0)

(
e(δ, θ0) + p+(θ0)

q+(θ0)

)}
v0 + o(1), v = o(1),

⎫⎪⎬
⎪⎭ (3.3)

as ε → 0. During this time y =O(ε), w =O(1) so that FN =O(ε−1). The function e(δ, θ0), given in (4.30),
is smooth and monotonic in δ and has the following asymptotic expansions:

e(δ, θ0) = p−(θ0) − p+(θ0)
q−(θ0)p+(θ0) − q+(θ0)p−(θ0)

δ−2(1 + O(δ−2 ln δ−1)) for δ � 1 (3.4)

and

e(δ, θ0) =
√

p+(θ0)(p−(θ0) − p+(θ0))
q+(θ0)(q−(θ0) − q+(θ0))

×
(

1 −
√

Sw(θ0)
2

(
π − arctan

(√
−Sw(θ0)

p+(θ0)

))
δ + O(δ2)

)
for δ � 1. (3.5)

Theorem 3.2 is similar to theorem 3.1, but now the rod starts in the first quadrant of figure 2.
This theorem also gives an exact formula for initial conditions that separate (regularized) IWC
and lift-off.

Theorem 3.2. Consider an initial condition

(y, w, θ , φ, v) = (0, εw10, θ0, φ0, v0) and w10 < w1∗ ≡ −λ−(θ0)
b(θ0, φ0)
p+(θ0)

< 0, (3.6)

with λ− defined in (4.6), within the region of indeterminacy (non-uniqueness) where

p+(θ0) < 0 and b(θ0, φ0) > 0, (3.7)
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ŷ

g u

slip
ping co

mpres
sio

n

sticking

lif
t-

of
f

F̂N > 0

F̂N = 0

(b)

Figure 3. The limit ε → 0 shown using (a) the (w, ŷ, v)-variables and (b) a projection onto the (w, ŷ)-plane. The slipping
compression phase, shown in red, where ŷ, w and v > 0 all decrease, is described geometrically by an unstable manifold
γ u (4.5) of a critical set C, given in (4.4). It ends on the switching manifold Σ . The subsequent sticking phase (in blue) is
described by Filippov [4]. It ends along Γ0. From there, the lift-off phase (in green) occurs and we return to ŷ = 0. In both
figures, the grey region is where F̂N > 0.

and q+(θ0) < 0, q−(θ0) > 0, a �= 0. Then the conclusions of theorem 3.1, including expressions (3.3)–(3.5),
still hold true as ε → 0. For w10 > w1∗ lift-off occurs directly after a time O(ε) with w =O(ε). During this
period, y =O(ε2), so FN =O(1).

Remark 3.3. These two theorems have not appeared before in the literature. In the rigid-body
limit (ε → 0), we recover IWC in both cases. Previous authors have not carried out the ‘very
difficult’ calculation [28], performed numerical calculations [6,21] or given a range of estimates
for the time of (regularized) IWC in the absence of damping [24]. We give exact and asymptotic
expressions for key quantities as well as providing a geometric interpretation of our results, for
a large class of rigid bodies, in the presence of a large class of normal forces, as well as giving
a precise estimate for the time of (regularized) IWC, all in the presence of both stiffness and
damping. Note that we are not attempting to describe all the dynamics around P. There is a canard
connecting the third quadrant with the first, and the analysis of it is exceedingly complicated [29]
due to fast oscillatory terms. Instead, we follow [24] and consider that the rod dynamics starts in
a configuration with p+(θ0) < 0.

4. Proof of theorem 3.1: impact without collision in the inconsistent case
The proof of theorem 3.1 is divided into three phases, illustrated in figure 3. These phases are a
generalization of the phases of IWC in its rigid-body formulation [15].

— Slipping compression (§4b): During this phase, y, w and v all decrease. The dynamics
follow an unstable manifold γ u of a set of critical points C, given in (4.4) below, as
ε → 0. Along γ u the normal force FN =O(ε−1) and v will therefore quickly decrease to 0.
Mathematically, this part is complicated by the fact that the initial condition (3.1) belongs
to the critical set C as ε → 0.

— Sticking (§4c): Since FN =O(ε−1) and q+q− < 0, the rod will stick with v ≡ 0. During this
phase, ÿ = ẇ > 0 and eventually sticking ends with FN = 0 as ε → 0.

— Lift-off (§4d): In the final phase FN = 0, lift-off occurs and the system eventually returns
to y = 0.

(a) Slow–fast setting: initial scaling
Before we consider the first phase of IWC, we apply the scaling

y = εŷ, (4.1)
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also used in [21,28], which brings the two terms in (2.19) to the same order. Now let

F̂N(ŷ, w) ≡ εFN(εŷ, w) = [−ŷ − δw]. (4.2)

Equations (2.20) then read

ŷ′ = w, w′ = εb(θ , φ) + p±(θ )F̂N(ŷ, w),

θ ′ = εφ, φ′ = c±(θ )F̂N(ŷ, w)

and v′ = εa(θ , φ) + q±(θ )F̂N(ŷ, w),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.3)

with respect to the fast time τ = ε−1t, where ()′ = d/dτ . This is a slow–fast system in non-standard
form [28]. Only θ is truly slow whereas (ŷ, w, φ, v) are all fast. But the set of critical points

C = {(ŷ, w, θ , φ, v)|ŷ = 0, w = 0}, (4.4)

for ε = 0 is just three-dimensional. System (4.3) is PWS [26,27]. We now show that (4.3)+ contains
stable and unstable manifolds γ s,u when the equivalent rigid-body equations exhibit a Painlevé
paradox, when p+(θ0) < 0. The saddle structure of C within the fourth quadrant has been
recognized before [21–23].

Proposition 4.1. Consider system (4.3)+ with ε = 0. Then for p+(θ0) < 0, there exist smooth stable and
unstable sets γ s,u(θ0, φ0, v0), respectively, of (ŷ, w, θ , φ, v) = (0, 0, θ0, φ0, v0) ∈ C contained within F̂N ≥ 0
given by

γ s,u(θ0, φ0, v0) =
{

(ŷ, w, θ , φ, v)| w = λ∓ŷ, θ = θ0, φ = φ0 − c+(θ0)λ−1
∓ [1 + δλ∓]ŷ,

v = v0 + q+(θ0)
p+(θ0)

λ∓(θ0)ŷ, ŷ ≤ 0
}

, (4.5)

with λ∓(θ0) ≶ 0 given in (4.6).

Proof. Consider the smooth system, (4.3)F̂N=−ŷ−δw, obtained from (4.3) by setting F̂N = −ŷ − δw
with ε = 0. The linearization of (4.3)F̂N=−ŷ−δw about a point in C with ε = 0 then only has two
non-zero eigenvalues:

λ±(θ ) = − δp+(θ )
2

± 1
2

√
δ2p+(θ )2 − 4p+(θ ), (4.6)

satisfying
λ2

± = −p+(θ )(1 + δλ±). (4.7)

For p+(θ ) < 0, we have λ− < 0 < λ+. The eigenvectors associated with λ± are v± =
(1, λ±, 0, (c+/p+(θ ))λ±, (q+/p+(θ ))λ±)T. Therefore, the smooth system (4.3)F̂N=−ŷ−δw,ε=0 has a
(stable and unstable) manifold γ s,u tangent to v∓ at (ŷ, w, θ , φ, v) = (0, 0, θ0, φ0, v0). But then for
ŷ ≤ 0, we have F̂N(ŷ, λ±ŷ) = −(1 + δλ±)ŷ = (λ2±/p+(θ ))ŷ ≥ 0, by (4.7). Hence, the restrictions of γ s,u

in (4.5) to ŷ ≤ 0 are (stable and unstable) sets of C for the PWS system (4.3)F̂N=[−ŷ−δw],ε=0. �

Remark 4.2. For the smooth system (4.3)F̂N=−ŷ−δw, the critical manifold C perturbs by
Fenichel’s theory [30–32] to a smooth slow manifold Cε , being C∞ O(ε)-close to C for 0 < ε � 1.
A simple calculation shows that Cε : ŷ = ε(b(θ , φ)/p+(θ ))(1 + O(ε)), w =O(ε2). Since b(θ , φ) < 0 in
this case, Cε ⊂ {ŷ > 0} for ε sufficiently small. Therefore, the manifold Cε is only invariant for the
smooth system (4.3)F̂N=−ŷ−δw. It is an artefact for the PWS system (4.3)F̂N=[−ŷ−δw] since the square
bracket vanishes for ŷ > 0, by (2.15).

Remark 4.3. Our arguments are geometrical and rely on hyperbolic methods of dynamical
systems theory only. Therefore, the results remain unchanged qualitatively if we replace the
piecewise linear F̂N in (4.2) with the nonlinear version F̂N(ŷ, w) = [h(ŷ, w)], where h(ŷ, w) = −ŷ −
δw + O((ŷ + w)2) as in (2.17), having (2.18) as its linearization about ŷ = w = 0. We would obtain
again a saddle-type critical set C with nonlinear (stable and unstable) manifolds γ s,u.

Following the initial scaling (4.1) of this section, we now consider the three phases of IWC.
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(b) Slipping compression
The first phase of the regularized IWC: slipping compression ends on the switching manifold

Σ = {(ŷ, w, θ , φ, v)|v = 0}, (4.8)

shown in figure 3a. Proposition 4.4 describes the intersection of the forward flow of initial
conditions (3.1) with Σ .

Proposition 4.4. The forward flow of the initial conditions (3.1) under (4.3) intersects Σ in

γ u ∩ Σ + o(1) ≡
{

(ŷ, w, θ , φ, v) ∈ Σ | ŷ = − p+(θ0)
q+(θ0)λ+(θ0)

v0 + o(1), w = −p+(θ0)
q+(θ0)

v0 + o(1),

θ = θ0 + o(1), φ = φ0 − c+(θ0)
q+(θ0)

v0 + o(1)
}

, (4.9)

as ε → 0.

Remark 4.5. The o(1)-term in (4.9) is O(εc) for any c ∈ (0, 1) (see also lemma 4.8).

(i) Proof of proposition 4.4

We prove proposition 4.4 using Fenichel’s normal form theory [33]. But since (4.3)F̂N=[−ŷ−δw] with
v > 0 is PWS, care must be taken. There are at least two ways to proceed. One way is to consider
the smooth system (4.3)F̂N=−ŷ−δw, then rectify Cε by straightening out its stable and unstable
manifolds. Then, (4.3)F̂N=−ŷ−δw will be a standard slow–fast system to which Fenichel’s normal
form theory applies. Subsequently, one would then have to ensure that conclusions based on the
smooth (4.3)F̂N=−ŷ−δw also extend to the PWS system (4.3)F̂N=[−ŷ−δw]. One way to do this is to
consider the following scaling

κ1 : ŷ = r1ŷ1, w = r1w1, ε = r1, (4.10)

zooming in on C at ŷ = 0, w = 0. In terms of the original variables, y = ε2ŷ1, w = εw1. Both the
scalings (ŷ, w) and (ŷ1, w1) have appeared in the literature [6,21,28].

In this paper, we follow another approach (basically reversing the process described above)
which works more directly with the PWS system. Therefore, in §4b(ii), we study the scaling (4.10)
first. We will show that the (ŷ1, w1)-system contains important geometry of the PWS system
(significant, for example, for the separation of initial conditions in theorem 3.2). Then in §4b(iii),
we connect the ‘small’ (ŷ =O(ε), w =O(ε)) described by (4.10) with the ‘large’ (ŷ =O(1), w =O(1))
in (4.3) by considering coordinates described by the following transformation:

κ2 : ŷ = −r2, w = r2w2, ε = r2ε2. (4.11)

For y1 < 0, we have the following coordinate change κ21 between κ1 and κ2:

κ21 : r2 = −r1y1, w2 = −w1y−1
1 , ε2 = −y−1

1 . (4.12)

The coordinates in κ2 (4.11) appear as a directional chart obtained by setting ȳ = −1 in the blowup
transformation (r, ¯̂y, w̄, ε̄) �→ (ŷ, w, ε) given by3

ŷ = r ¯̂y, w = rw̄, ε = rε̄, r ≥ 0, ( ¯̂y, w̄, ε̄) ∈ S2 = {( ¯̂y, w̄, ε̄)| ¯̂y2 + w̄2 + ε̄2 = 1}. (4.13)

3More accurately, the chart ȳ = −1 corresponds to

r = r1

√
1 + ε2

1 + w2
1, ¯̂y = − 1√

1 + ε2
1 + w2

1

, w̄ = w1√
1 + ε2

1 + w2
1

and ε̄ = ε1√
1 + ε2

1 + w2
1

,

with ¯̂y2 + w̄2 + ε̄2 = 1. See [34] for further details on directional and scaling charts.
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w1

C1

g1
u

g1
s

F̂ N ,1 > 0
IWC

ŷ1

Figure 4. Phase portrait (4.15)ε=0 for b< 0. Theorem 3.1 considers initial conditions on the w1-axis. The critical set C1
of (4.15)F̂N,1=−ŷ1−δw1 ,ε=0 is an artefact of the PWS system. The grey region is now where F̂N,1 > 0. Orbit segments outside
this region are parabolas. Dashed lines indicate backward orbits, from initial conditions on thew1-axis. A similar figure appears
in [6].

The blowup is chosen so that the zoom in (4.10) coincides with the scaling chart obtained by setting
ε̄ = 1. The blowup transformation blows up C to C̄ : r = 0, ( ¯̂y, w̄, ε̄) ∈ S2 a space (θ , φ, v) ∈ R

3 of
spheres.4

The main advantage of our approach is that in chart κ2 we can focus on C̄ ∩ {¯̂y−1w̄ > −δ−1,
¯̂y < 0} (or simply w2 < δ−1 in (4.11)) of C̄, the grey area in figure 3, where

r−1F̂N(ŷ, w) = [−¯̂y − δw̄] = −¯̂y(1 + δ ¯̂y−1w̄) > 0, (4.14)

and the system will be smooth. This enables us to apply Fenichel’s normal form theory [33] there.
All the necessary patching for the PWS system is done independently in the scaling chart κ1.

(ii) Chart κ1
Let F̂N,1(ŷ1, w1) = ε−1F̂N(εŷ1, εw1) = [−ŷ1 − δw1]. Then applying chart κ1 in (4.10) to the non-
standard slow–fast system (4.3) gives the following equations:

ŷ′
1 = w1, w′

1 = b(θ , φ) + p+(θ )F̂N,1(ŷ1, w1),

θ ′ = εφ, φ′ = εc+(θ )F̂N,1(ŷ1, w1)

and v′ = ε(a(θ , φ) + q+(θ )F̂N,1(ŷ1, w1)).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.15)

The above equation is a slow–fast system in standard form: (ŷ1, w1) are fast variables,
whereas (θ , φ, v) are slow variables. By assumption (3.2) of theorem 3.1, b < 0, p+ < 0 and so,
since F̂N,1(ŷ1, w1) ≥ 0, we have w′

1 < 0 in (4.15). Hence, there exists no critical set for the PWS
system (4.15)ε=0. (The critical set C1 = {(ŷ1, w1, θ , φ, v)|ŷ1 = b(θ , φ)/p+(θ ), w1 = 0} of the smooth
system (4.15)F̂N,1=−ŷ1−δw1,ε=0 lies within ŷ1 > 0. It is therefore an artefact of the PWS system, as
illustrated in figure 4 (recall also remark 4.2).)

The unstable manifold γ u
1 of C1 in the smooth system (4.15)F̂N,1=−ŷ1−δw1

is given by w1 =
λ+(θ0)(ŷ1 − b(θ0, φ0)/p+(θ0)) and its restriction

γ u
1 (θ0, φ0, v0) =

{
(ŷ1, w1, θ0, φ0, v0)| w1 = λ+(θ0)

(
ŷ1 − b(θ0, φ0)

p+(θ0)

)
, ŷ1 ≤ 0

}
, (4.16)

4Note that (4.13) is not a blowup transformation in the sense of Krupa & Szmolyan [35], where geometric blowup is applied
in conjunction with desingularization to study loss of hyperbolicity in slow–fast systems. We will not desingularize the
vector-field here.
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to the subset ŷ1 ≤ 0, w1 ≤ 0 where F̂N,1 ≥ 0, is locally invariant for the PWS system
(4.15)F̂N,1=[−ŷ1−δw1]. In chart κ1, initial conditions (3.1) now become

(ŷ1, w1, θ , φ, v) = (0,O(1), θ0, φ0, v0). (4.17)

Lemma 4.6. Consider Λ1 = {(ŷ1, w1, θ , φ, v)|ŷ1 = −ν−1} with ν > 0 small. Then, the forward flow of
(4.17) under (4.15) intersects Λ1 in

z1(ε) ≡ (−ν−1, w1c(ν) + O(ε), θ0 + O(ε), φ0 + O(ε), v0 + O(ε)), (4.18)

where w1c(ν) = −λ+ν−1(1 + o(1)), ν → 0.

Proof. Consider the layer problem (4.15)ε=0. Since b < 0, initial conditions (4.17) with w1 > 0
return to ŷ1 = 0 with w1 < 0, see figure 4. Therefore, we consider w1(0) ≤ 0 subsequently. From
λ− < 0 < λ+, it then follows that the solution remains within F̂N,1 > 0 for τ > 0 for ε = 0. The
problem is therefore linear. The remaining details of the proof are straightforward and hence
omitted. �

For ε > 0, the variables (φ, v) will vary by O(1)-amount as ŷ1, w1 → −∞. But the variables (φ, v)
are fast in (4.3) and slow in (4.15). To describe this transition, we change to chart κ2.

(iii) Chart κ2
Writing the non-standard slow–fast PWS system (4.3)F̂N=[−ŷ−δw] in chart κ2, given by (4.11), gives
the following smooth (as anticipated by (4.14)) system:

ε′
2 = ε2w2, w′

2 = ε2b(θ , φ) + p+(θ )(1 − δw2) + w2
2,

θ ′ = εφ, φ′ = c+(θ )r2(1 − δw2),

v′ = εa(θ , φ) + q+(θ )r2(1 − δw2) and r′
2 = −r2w2,

⎫⎪⎪⎬
⎪⎪⎭ (4.19)

on the box U2 = {(ε2, w2, θ , φ, v, r2)|ε2 ∈ [0, ν], w2 ∈ [−λ+ − ρ, −λ+ + ρ], r2 ∈ [0, ν]}, for ρ > 0
sufficiently small (so that w2 < δ−1) and ν as above. Notice that z1(ε) from (4.18) in chart κ2
becomes

z2(ε) ≡ κ21(z1(ε)) : r2 = εν−1, w2 = w1cν + O(ε), ε2 = ν, (4.20)

using (4.12). Clearly, z2(ε) ∈ κ21(Λ1) ⊂ U2, κ21(Λ1) being the face of the box U2 with ε2 = ν. For
simplicity, we will write subsets such as {(ε2, w2, θ , φ, v, r2) ∈ U2| · · · } by {U2| · · · }.

Lemma 4.7. The set M2 = {U2| r2 = 0, ε2 = 0, w2 = −λ+} is a set of critical points of (4.19).
Linearization around M2 gives only three non-zero eigenvalues −λ+ < 0, λ− − λ+ < 0, λ+ > 0, and so M2
is of saddle-type. The stable manifold is Ws(M2) = {U2|r2 = 0} while the unstable manifold is Wu(M2) =
{U2|ε2 = 0, w2 = −λ+}. In particular, the one-dimensional unstable manifold γ u

2 (θ0, φ0, v0) ⊂ Wu(M2) of
the base point (ε2, w2, θ , φ, v, r2) = (0, 0, θ0, φ0, v0, 0) ∈ M2 is given by

γ u
2 (θ0, φ0, v0) =

{
U2| w2 = −λ+(θ0), θ = θ0, φ = φ0 − c+(θ0)

p+(θ0)
λ+(θ0)r2,

v = v0 − q+(θ0)
p+(θ0)

λ+(θ0)r2, r2 ≥ 0, ε2 = 0
}

. (4.21)

Proof. The first two statements follow from straightforward calculation. For γ u
2 (θ0, φ0, v0), we

restrict to the invariant set ε2 = 0, w2 = −λ+ and solve the resulting reduced system. �

Notice that the set γ u
2 (θ0, φ0, v0) is just γ u(θ0, φ0, v0) in (4.5) written in chart κ2 for ε2 = 0.

Furthermore, note that z2(0) ⊂ Ws(M2). In the subsequent lemma, we follow z2(ε) ⊂ {ε2 = ν} up
until r2 = ν, with ν sufficiently small, by applying Fenichel’s normal form theory.
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Lemma 4.8. Let c ∈ (0, 1) and set Λ2 = {U2|r2 = ν}. Then as ε → 0, for ν and ρ sufficiently small, the
forward flow of z2(ε) in (4.20) intersects Λ2 in{

Λ2| w2 = −λ+ + O(εc), θ = θ0 + O(ε ln ε−1), φ = φ0 − c+(θ0)
p+(θ0)

λ+(θ0)ν + O(εc),

v = v0 − q+(θ0)
p+(θ0)

λ+(θ0)ν + O(εc)
}

. (4.22)

Proof. By Fenichel’s normal form theory, we can straighten out stable and unstable fibres.

Lemma 4.9. For ν and ρ sufficiently small, then within U2 there exists a smooth transformation
(ε2, w2, φ, v, r2) �→ (φ̃, ṽ) satisfying

φ̃ = φ + c+(θ )
p+(θ )

λ+(θ )r2 + O(r2(w2 + λ+))

and ṽ = v + q+(θ )
p+(θ )

λ+(θ )r2 + O(r2(w2 + λ+) + ε),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.23)

which transforms (4.19) into

ε′
2 = ε2w2, w′

2 = ε2b(θ , φ̃) + p+(θ )(1 − δw2) + w2
2 + O(ε),

θ ′ = εφ̃, φ̃′ = 0,

ṽ′ = 0 and r′
2 = −r2w2.

⎫⎪⎪⎬
⎪⎪⎭ (4.24)

Proof. Replace r2 by νr2 in (4.19) and consider ν small. Using ε = ε2r2, this brings the system
into a classical slow–fast system for 0 < ν � 1, where (ε2, w2, r2) are fast variables while (θ , φ, v) are
slow. In particular, ε2 = r2 = 0, w2 = −λ+ is a saddle-type slow manifold for ν small. The system
is therefore amenable to Fenichel’s normal form theory [33]. The result then follows by returning
to the original r2 and using φ = φ̃ + O(r2) together with r2ε2 = ε in the w2 equation. �

To prove lemma 4.8, we then integrate the normal form (4.24) with initial conditions z2(ε)
from (4.20) from (a reset) time τ = 0 up to τ = T, defined implicitly by r2(T) = ν. Clearly, θ (T) =
θ0 + O(εT), φ̃(T) = φ̃0 and ṽ(T) = ṽ0. Then, from (4.12), Gronwall’s inequality and the fact that
1 − λ−λ−1

+ > 1, we find

T = λ−1
+ ln ε−1(1 + o(1))

and w2(T) = −λ+(1 + O(e−λ+T + e(λ−−λ+)T + ε))

= −λ+ + O(εc(1−λ−λ−1
+ ) + εc) = −λ+ + O(εc),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.25)

for c ∈ (0, 1). Then, we obtain the expressions for θ = θ (T), φ = φ(T) and v = v(T) in (4.22)
from (4.23) in terms of the original variables. �

(iv) Completing the proof of proposition 4.4

To complete the proof of proposition 4.4, we then return to (4.3) using (4.11) and integrate initial
conditions (4.22) within {ŷ = −r2 = −ν}, up to the switching manifold Σ = {v = 0}, using regular
perturbation theory and the implicit function theorem. This gives (4.9), which completes the proof
of proposition 4.4.

(c) Sticking
After the slipping compression phase of the previous section, the rod then sticks on Σ , with
(ŷ, w, θ , φ) given by (4.9). This is a corollary of the following lemma.
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Lemma 4.10. Suppose a �= 0, q+ < 0, q− > 0. Consider the (negative) function

F (θ , φ) =

⎧⎪⎪⎨
⎪⎪⎩

a(θ , φ)
q+(θ )

if a > 0,

a(θ , φ)
q−(θ )

if a < 0.

Then there exists a set of visible folds at

Γε ≡ {(ŷ, w, θ , φ, v) ∈ Σ | ŷ + δw = εF (θ , φ)}, (4.26)

of the Filippov system (4.3), dividing the switching manifold Σ : v = 0 into (stable) sticking: Σs ≡
{(ŷ, w, θ , φ, v) ∈ Σ | ŷ + δw < εF (θ , φ)}, and crossing upwards (downwards) for a > 0 (a < 0): Σc ≡
{(ŷ, w, θ , φ, v) ∈ Σ | ŷ + δw > εF (θ , φ)}.

Proof. Simple computations, following [4]; see also proposition 2.1. �

The forward motion of (4.9) within Σs ⊂ Σ for ε � 1 is therefore subsequently described by
the Filippov vector-field (2.8) in proposition 2.1,

ŷ′ = w, w′ = εb(θ , φ) + Sw(θ )[−ŷ − δw],

θ ′ = εφ and φ′ = Sφ(θ )[−ŷ − δw],

}
(4.27)

here written in terms of ŷ and the fast time τ , until sticking ends at the visible fold Γε . Note this
always occurs for 0 < ε � 1 since ŷ′′ = w′ > 0, for [−ŷ − δw] > 0.

We first focus on ε = 0. From (4.27), θ = θ0, a constant, and

ŷ′ = w,

w′ = Sw(θ )[−ŷ − δw]

and φ′ = Sφ(θ )[−ŷ − δw].

⎫⎪⎪⎬
⎪⎪⎭ (4.28)

We now integrate (4.28), using (4.9) for ε = 0 as initial conditions, given by

(ŷ(0), w(0), φ(0)) =
(

− p+(θ0)
q+(θ0)λ+(θ0)

v0, −p+(θ0)
q+(θ0)

v0, φ0 − c+(θ0)
q+(θ0)

v0

)
, (4.29)

up until the section Γ0 : ŷ + δw = 0 shown in figure 3a, where sticking ceases for ε = 0, by
lemma 4.10 and (4.26)ε=0. We then obtain a function e(δ, θ0) > 0 in the following proposition,
which relates the horizontal velocity at the start of the slipping compression phase v0 (3.1) with
the values of (ŷ, w, φ) on Γ0, at the end of the sticking phase.

Proposition 4.11. There exists a smooth function e(δ, θ0) > 0 and a time τs > 0 such that
(ŷ(τs), w(τs), φ(τs)) ∈ Γ0 with

ŷ(τs) = −δe(δ, θ0)v0,

w(τs) = e(δ, θ0)v0

and φ(τs) = φ0 +
{
− c+(θ0)

q+(θ0)
+ Sφ(θ0)

Sw(θ0)

(
e(δ, θ0) + p+(θ0)

q+(θ0)

)}
v0,

where (ŷ(τ ), w(τ ), φ(τ )) is the solution of (4.28) with initial conditions (4.29). The function e(δ, θ0) is
monotonic in δ: ∂δe(δ, θ0) < 0, and satisfies (3.4) and (3.5) for δ � 1 and δ � 1, respectively.

Proof. The existence of τs is obvious. Linearity in v0 follows from (4.29) and the linearity of (4.28)
within F̂N > 0. Since ˙̂y = w, we have e > 0. The φ equation follows since φ′ = w′Sφ(θ )/Sw(θ ). The
monotonicity of e as a function δ is the consequence of simple arguments in the (w, ŷ)-plane
using (4.28) and the fact that w(0) in (4.29) is independent of δ while ŷ(0) = ŷ0(δ) decreases
(since λ+ is an increasing function of δ). To obtain the asymptotics, we first solve (4.28) with
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δ �= 2/
√

Sw(θ0). Simple calculations show that

e(δ, θ0) = ξ+
ξ−

(λ+ − ξ−)
p+

q+λ+
eξ+τs , (4.30)

suppressing the dependency on θ0 on the right-hand side, where ξ± = −δSw/2 ± 1
2

√
δ2S2

w − 4Sw

and τs is the least positive solution of e(ξ+−ξ−)τs = ξ2−(λ+ − ξ+)/ξ2+(λ+ − ξ−). For δ � 1, the
eigenvalues ξ± are real and negative. Hence, τs = 1/(ξ+ − ξ−) ln(ξ2−(λ+ − ξ+)/ξ2+(λ+ − ξ−)). Now
using ξ+ = −Swδ(1 + O(δ−2), ξ− = Sw/ξ− = −δ−1(1 + O(δ−1), and λ+ = −p+δ(1 + O(δ−2)), we
obtain ξ+τs =O(δ−2 ln δ−1), and hence

e(δ, θ0) = −Sw − p+
q+Sw

δ−2(1 + O(δ−2 ln δ−1)), (4.31)

as δ → ∞. For δ � 1, ξ± are complex conjugated with negative real part. This gives τs =
(2i/(ξ+ − ξ−))(χ − πn), χ = arg((λ+ − ξ+)ξ2−) > 0, n = �χ/π�. Using the asymptotics of ξ± and λ+,
we obtain τs = (π − arctan(

√−Sw/p+))/
√

Sw − 1
2 δ(1 + O(δ)), and then

e(δ, θ0) = −
√

p+(p+ − Sw)
q+

(
1 −

√
Sw

2

(
π − arctan

(√
−Sw

p+

))
δ + O(δ2)

)
, (4.32)

as δ → 0+. Simple algebraic manipulations of (4.31) and (4.32) using (2.9) give the expressions
in (3.4) and (3.5). �

Remark 4.12. The critical value δ = δcrit(θ0) ≡ 2/
√

Sw(θ0) gives a double root of the characteristic
equation. For the classical Painlevé problem, δcrit(π/2) = 2, as expected (see §2b).

For 0 < ε � 1, sticking ends along the visible fold at Γε . We therefore perturb from ε = 0 as
follows:

Proposition 4.13. The forward flow of (4.9) under the Filippov vector-field (4.27) intersects the set of
visible folds Γε o(1)-close to the intersection of (4.9)ε=0 with Γ0 described in proposition 4.11.

Proof. Since the ε = 0 system is transverse to Γ0, we can apply regular perturbation theory and
the implicit function theorem to perturb τs continuously to τs + o(1). The result then follows. �

(d) Lift-off
Beyond Γε we have F̂N ≡ 0 and lift-off occurs. For ε = 0, we have ŷ′ = w and w′ = θ ′ = φ′ = v′ = 0.
By proposition 4.13 and regular perturbation theory, we obtain the desired result in theorem 3.1.
In terms of the original (slow) time t, it follows that the time of IWC is of order O(ε ln ε−1)
(recall (4.25)). As ε → 0, IWC occurs instantaneously.

5. Proof of theorem 3.2: impact without collision in the indeterminate case
Here, by assumption (3.7), we have b > 0. Therefore, we have, using p+ < 0, that C1 = {ŷ1 =
b/p+, w1 = 0} ⊂ {ŷ1 < 0} is a critical set of (4.15)ε=0; see also figure 5. The stable manifold of
C1 ∩ {θ = θ0, φ = φ0, v = v0} within ŷ ≤ 0 is

γ s
1 (θ0, φ0, v0) =

{
(ŷ1, w1, θ0, φ0, v0)| w1 = λ−(θ0)

(
ŷ1 − b(θ0, φ0)

p+(θ0)

)
, ŷ1 ≤ 0

}
, (5.1)

recall (4.5), with λ− defined in (4.6). γ s
1 therefore intersects the w1-axis in

γ s
1 ∩ {ŷ1 = 0} : w1 = w1∗ ≡ −λ−(θ0)

b(θ0, φ0)
p+(θ0)

< 0, (5.2)

and divides the negative w1-axis into (i) initial conditions that lift off directly (w10 > w1∗, dotted
cyan in figure 5) and (ii) initial conditions that undergo IWC before returning to ŷ = 0 (w10 < w1∗,
purple in figure 5). (A canard phenomenon occurs around w10 = w1∗ for 0 < ε � 1, where the
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g1
u g1

s

w1

C1

IWC

lift off

w1*

ŷ1

Figure 5. Phase portrait (4.15)ε=0 for b> 0 (theorem 3.2 in §5). Here, C1 = {ŷ1 = b/p+, w1 = 0} is a saddle-type critical
manifold for the PWS system,γ u

1 is given by (4.16),γ
s
1 by (5.1) andw1∗ by (5.2). As in figure 4, the grey region is where F̂N,1 > 0.

Orbit segments outside this region are parabolas. Dashed lines indicate backward orbits, from initial conditions on thew1-axis.
A similar figure appears in [6].

0.10

0.08

0.06

0.04

0.02

0
0.9 1.0 1.1 1.2 1.3 10–2 1

dq0

q1 q2

q0 = 1.0

q0 = 1.2

e (0, q0)

102

0.10

0.08

0.06

0.04

0.02

0

(b)(a)

Figure 6. (a) Graph of e(0, θ0) from (6.2), where θ1,2 are given by (2.14). (b) Graph of e(δ, θ0) for θ0 = 1 and θ0 = 1.2, where
the dashed lines correspond to the approximations obtained from (3.4) and (3.5). For both figures,α = 3 andμ = 1.4.

solution follows a saddle-type slow manifold for an extended period of time.) In theorem 3.2, we
consider w10 < w1∗. The remainder of the proof of theorem 3.2 on IWC in the indeterminate case
then follows the proof of theorem 3.1.

6. Discussion
The quantity e(δ, θ0) in theorems 3.1 and 3.2 relates the initial horizontal velocity v0 of the rod to
the resulting vertical velocity at the end of IWC. It is like a ‘horizontal coefficient of restitution’.
The leading order expression of e(δ, θ0) in (3.4) for δ � 1 is independent of μ, in general. Using the
expressions for q± and p± in (2.6), together with (4.31), we find for large δ that

e(δ, θ0) = α

2(1 + α)
sin(2θ0)δ−2(1 + O(δ−2 ln δ−1)), θ0 ∈ (θ1, θ2). (6.1)

The limit δ → ∞ is not uniform in θ ∈ (θ1, θ2).
The expression for δ � 1 is more complicated and does depend upon μ, in general. Using (2.6)

and (4.32), for δ = 0, we have

e(0, θ0) =
√

(1 + α cos2 θ0 − μα sin θ0 cos θ0)

(α sin θ0 cos θ0 − μ(1 + α sin2 θ0))

α sin θ0 cos θ0

(1 + α sin2 θ0)
. (6.2)

We plot e(0, θ0) in figure 6a for α = 3 and μ = 1.4. Figure 6b shows the graph of e(δ, 1) and e(δ, 1.2)
along with the approximations (dashed lines) in (3.4) and (3.5).
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Figure 7. (a) Dynamics of the Painlevé rod described by the Filippov system (2.5) forμ = α = 3, δ = 1 and ε = 10−3 in the
indeterminate case. The purple and cyan rods are separated at t = 0 by a distance of 10−3. At around t = 0.5, impact with the
compliant surface occurs. The purple rod experiences IWC, whereas the cyan rod lifts off directly. (b) Projection onto the (w, ŷ)-
plane. The blue sticking orbit and the green lift-off orbit from figure 3b are also shown. The numerical and theoretical results
are indistinguishable. (c,d)w and v as functions of time near t = 0.5 for both rods.

In the inconsistent case, described by theorem 3.1, the initial conditions (3.1) are very similar
to those assumed by [24]. Interestingly, by applying the approach in §4b backwards in time,
it follows that the backward flow of (3.1) for b < 0 (dashed lines in figure 4, illustrating the
κ1 dynamics) follows γ s, the stable manifold of C for ε = 0, as ε → 0. Hence, by (4.3)ε=0, the
horizontal velocity v (and therefore also the energy) increases unboundedly. This ‘backward
blowup’ occurs on the fast time-scale τ . As a consequence, it is impossible to set up the
conditions (3.1) in an experiment without using some form of controller (as was done in [15]
for the two-link manipulator system).

The indeterminate case, described by theorem 3.2, is characterized by an extreme exponential
splitting in phase space, due to the stable manifold of C1 in the κ1 system. For example, the cyan
orbit in figure 5 lifts off directly with w =O(ε). But on the other side of the stable manifold, the
purple orbit undergoes IWC and then lifts off with w =O(1). The initial conditions in theorem 3.2
correspond to orbits that are almost grazing (ẏ = w =O(ε), ÿ = ẇ = b > 0) the compliant surface
at y = 0. In figure 7, we illustrate this further by computing the full Filippov system (2.5)ε=10−3

for two rods (purple and cyan as in figure 5) initially distant by an amount of 10−3 above the
compliant surface (y ≈ 0.1, see also t = 0 in figure 7a). We set μ = α = 3, δ = 1. Figure 7a shows the
configuration of the rods at different times t = 0, t = 0.25, t = 0.5 and t = 1. Up until t = 0.5, the two
rods are indistinguishable. At t = 0.5, grazing (ẏ = w ≈ −10−3) with the compliant surface y = 0
occurs where θ ≈ 0.9463, φ ≈ 1.6654, and v ≈ 1.00 (so b ≈ 1.2500 and p+ ≈ −2.243). The purple rod
then undergoes IWC, occurring on the fast time-scale τ , and therefore subsequently lifts off from
y = 0 with w =O(1). In comparison, the cyan rod lifts off with w ≈ 10−3. At t = 1, the two rods are
clearly separated. Figure 7b shows the projection of the numerical solution in figure 7a onto the
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(w, ŷ)-plane, together with the theoretical predictions of figure 3b. Note that the numerical and
analytical solutions are indistinguishable, in both the sticking and lift-off regimes. The cyan orbit
lifts off directly. The purple orbit, being on the other side of the stable manifold of C1, follows
the unstable manifold (γu, shown in red) until sticking occurs. Then when F̂N = 0 at ŷ + δŵ = 0
(dashed line), lift-off occurs almost vertically in the (w, ŷ)-plane. Figure 7c,d shows the vertical
velocity w and horizontal velocity v, respectively, for both orbits over the same time interval
as figure 7b; note the sharp transition for the purple orbit around t = 0.5, as it undergoes IWC.
In figure 7c, we include two dashed lines w = ev0 and w = −(p+/q+)v0, corresponding to our
analytical results (3.3) and (4.9), which also hold for the indeterminate case (from theorem 3.2), in
excellent agreement with the numerical results.

7. Conclusion
We have considered the problem of a rigid body, subject to a unilateral constraint, in the presence
of Coulomb friction. Our approach was to regularize the problem by assuming a compliance with
stiffness and damping at the point of contact. This leads to a slow–fast system, where the small
parameter ε is the inverse of the square root of the stiffness.

Like other authors, we found that the fast time-scale dynamics is unstable. Dupont &
Yamajako [21] established conditions in which these dynamics can be stabilized. By contrast,
McClamroch [28] established under what conditions the unstable fast time-scale dynamics could
be controlled by the slow time-scale dynamics. Other authors have used the initial scaling (4.1),
together with the scaling κ1 to numerically compute stability boundaries [21,28] or phase plane
diagrams [6].

The main achievement of this paper is to rigorously derive these, and other, results that
have eluded others in simpler settings. For example, the work of Zhao et al. [24] assumes no
damping in the compliance and uses formal methods to provide estimates of the times spent in the
three phases of IWC. They suggest that their analysis can ‘· · · roughly explain why the Painlevé
paradox can result in [IWC]’. By contrast, we assumed that the compliance has both stiffness and
damping, analysed the problem rigorously, derived exact and asymptotic expressions for many
important quantities in the problem and showed exactly how and why the Painlevé paradox can
result in IWC. There are no existing results comparable to (3.3)–(3.5) for any value of δ.

Our results are presented for arbitrary values of the compliance damping, and we are able to
give explicit asymptotic expressions in the limiting cases of small and large damping, all for a
large class of rigid bodies, including the case of the classical Painlevé example in figure 1.

Given a general class of rigid body and a general class of normal reaction, we have been able
to derive an explicit connection between the initial horizontal velocity of the body and its lift-
off vertical velocity, for arbitrary values of the compliance damping, as a function of the initial
orientation of the body.
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