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Abstract. CNNs have massively improved performance in object detec-
tion in photographs. However research into object detection in artwork
remains limited. We show state-of-the-art performance on a challenging
dataset, People-Art, which contains people from photos, cartoons and
41 different artwork movements. We achieve this high performance by
fine-tuning a CNN for this task, thus also demonstrating that training
CNNs on photos results in overfitting for photos: only the first three or
four layers transfer from photos to artwork. Although the CNN’s perfor-
mance is the highest yet, it remains less than 60% AP, suggesting further
work is needed for the cross-depiction problem.

Keywords: CNNs, cross-depiction problem, object recognition

1 Introduction

Object detection has improved significantly in recent years, especially as a result
of the resurgence of convolutional neural networks (CNNs) and the increase in
performance and memory of GPUs. However, in spite of the successes in photo-
based recognition and detection, research into recognition within styles of images
other than natural images (photos) remains limited [1]. We refer to this as the
cross-depiction problem: detecting objects regardless of how they are depicted
(photographed, painted, drawn, etc.).

We believe that cross-depiction recognition is an interesting and open prob-
lem. It is interesting because it forces researchers to look beyond the surface
appearance of object classes. By analogy, just as a person retains their identity

Fig. 1. Detecting people across different depictive styles a challenge: here we show
some successful detections.
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no matter what clothes they wear, so an object retains its class identity no mat-
ter how it is depicted: a dog is a dog whether photographed, painted in oils, or
drawn with a stick in the sand.

Cross-depiction is a practical problem too: an example is an image search.
The world contains images in all sorts of depictions. Any recognition solution
that does not generalise across these depictions is of limited power. Yet most
current computer vision methods tacitly assume a photographic input, either by
design or training. Any model premised on a single depictive style e.g. photos
will lack sufficient descriptive power for cross-depiction recognition. Therefore,
an image search using methods will limit its results to photos and photo-like
depictions.

In our paper, we talk about natural images (photos) and non-natural im-
ages (artwork) as a linguistic convenience. We would argue that this is a false
dichotomy: the universe of all images includes images in all possible depictive
styles, and there is no particular reason to privilege any one style. Neverthe-
less, we acknowledge that the distribution of styles is not uniform: photos may
be more abundant and certainly are in computer vision datasets such as Ima-
geNet [2]. This creates problems for generalisation: training a detector on photos
alone constrains it not only in terms its ability to handle denotational varieties,
but projective and pose varieties too, as we discuss later.

We present a new dataset, People-Art, which contains photos, cartoons and
images from 41 different artwork movements. Unlike the Photo-Art dataset [3],
which had 50 classes, this dataset has a single class: people. We labelled people
since we observe that people occur far more frequently across the wide spec-
trum of depictive styles than other classes, thus allowing a far greater variety.
Detecting people within this dataset is a challenging task because of the huge
range of ways artists depict people: from Picasso’s cubism to Disney’s Sleeping
Beauty. The best performance on a pre-release of the dataset is 45% average
precision (AP), from a CNN that was neither trained nor fine-tuned for this
task. By fine-tuning a state-of-the-art CNN for this task [4], we achieved 58%
AP, a substantial improvement.

As well as achieving state-of-art performance on our People-Art dataset, we
make the following contributions, in order of strength:

1. We show that a simple tweak for the “Fast Region-based Convolutional Net-
work” method (Fast R-CNN) [4], changing the criteria for negative training
exemplars compared to default configuration, is key to higher performance
on artwork.

2. We show the extent to which fine-tuning a CNN on artwork improves perfor-
mance when detecting people in artwork on our dataset (Section 5.2) and the
Picasso dataset [5] (Section 5.4). We show that this alone is not a solution:
the performance is still less than 60% AP after fine tuning, suggesting the
need for futher work.

3. Consistent with earlier work [6], we show that the lower convolutional layers
of a CNN generalise to artwork: others benefit from fine-tuning (Section 5.1).

We begin by presenting related work and our People-Art dataset.
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Academicism AnalyticalRealism Art Deco Art Nouveau Biedermeier

cartoon classicism constructivism Cubism Cubo-Futurism

Divisionism Environmental Art fantastic realism feminist art High Renaissance

impressionism International
Gothic

Japonism lowbrow art magic realism

Mechanistic Cubism muralism Naturalism Neo-Baroque neo-figurative art

neo-rococo New European
Painting

Northern
Renaissance

outsider art photo

photorealism pop art poster art realism Proto-Renaissance realism

rococo shin-hanga socialist realism Suprematism symbolism

synthetism Tonalism ukiyo-e

Fig. 2. Our People-Art dataset contain images from 43 different styles of depiction:
here we show one example for depiction style.
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2 Related Work

We use a state-of-the-art CNN to improve performance on a cross-depiction
dataset, thereby contributing towards cross-depiction object recognition. We
first explore related work on deep learning for object detection and localisation
(largely in photos), followed by previous work on the cross-depiction problem.

2.1 Deep Learning for Object Detection and Localisation

Deep learning has been around for a few decades [7–9]. After a period of limited
use within computer vision, Krizhevsky et al. (2012) [10] demonstrated a vast
performance improvement for image classification over previous state-of-the-art
methods, using a deep CNN. As a result, the use of CNNs surged within computer
vision.

Early CNN based approaches for object localisation [11–14] used the same
sliding-window approach used by previous state-of-the-art detection systems [15,
16]. As CNNs became larger, and with an increased number of layers, this ap-
proach became intractable. However, Sermanet et al. (2014) [17] demonstrated
that few windows are required, provided the CNN is fully convolutional. Fur-
thermore, as the size of their receptive fields increased, CNNs either became or
were trained to be less sensitive to precise location and scale the input. As a
result, obtaining a precise bounding box using sliding window and non-maximal
suppression became difficult. One early approach attempted to solve this issue
by training a separate CNN for precise localisation [18].

Szegedy et al. (2013) [19] modified the architecture of Krizhevsky et al.
(2012) [10] for localisation by replacing the final layer of the CNN with a re-
gression layer. This layer produces a binary mask indicating whether a given
pixel lies within the bounding box of an object. Schulz and Behnke (2011) [20]
previously used a similar approach with a much smaller network for object seg-
mentation.

Girshick et al. (2014) [21] introduced “regions with CNN features” (R-CNN),
which surpassed previous approaches. The authors used selective search [22], a
hierarchical segmentation method, to generate region proposals: possible object
locations within an image. Next, a CNN obtains features from each region and
a support vector machine (SVM) classifies each region. In addition, they used
a regression model to improve the accuracy of the bounding box output by
learning bounding box adjustments for each class-agnostic region proposal. He et
al. (2015) [23] improved the run-time performance by introducing SPP-net, which
uses a spatial pyramid pooling (SPP) [24, 25] layer after the final convolutional
layer. The convolutional layers operate on the whole image, while the SPP layer
pools based on the region proposal to obtain a fixed length feature vector for
the fully connected layers.

Girshick (2015) [4] later introduced Fast R-CNN which improves upon R-CNN
and SPP-net and allows the CNN to output a location of the bounding box
(relative to the region proposal) directly, along with class detection score, thus
replacing the SVM. Furthermore, this work enables end-to-end training of the
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whole CNN for both detection and bounding box regression. We use this ap-
proach to achieve state-of-the-art performance on our People-Art dataset and
detail the method in Section 4.

To make Fast R-CNN even faster and less dependent on selective search [22],
Lenc and Vedaldi (2015) [26] used a static set of region proposals. Ren et al.
(2015) [27] instead used the output of the existing convolutional layers plus
additional convolutional layers to predict regions, resulting in a further increase
in accuracy and efficiency.

Redmon et al. (2015) [28] proposed “You Only Look Once” (YOLO), which
operates quicker though with less accuracy than other state-of-art approaches.
A single CNN operates on an entire image, divided in a grid of rectangular
cells, without region proposals. Each cell outputs bounding box predictions and
class probabilities; unlike previous work, this occurs simultaneously. Huang et al.
(2015) [29] proposed a similar system, introducing up-sampling layers to ensure
the model performs better with very small and overlapping objects.

2.2 Cross-Depiction Detection and Matching

Early work relating to non-photographic images focused on matching hand-
drawn sketches. Jacobs et al. (1995) [30] used wavelet decomposition of image
colour channels to allow matching between a rough colour image sketch and a
more detailed colour image. Funkhouser et al. (2003) [31] used a distance trans-
form of a binary line drawing, followed by fourier analysis of the distance trans-
forms at fixed radii from the centre of the drawing, to match 2D sketches and
3D projections, with limited performance. Hu and Collomosse (2013) [32] used
a modified version of Histograms of Oriented Gradients (HOG) [15] to extract
descriptors at interest-points in the image: for photographs, these are at Canny
edges [33] pixels; for sketches, these are sketch strokes. Wang et al. (2015) [34]
used a siamese CNN configuration to match sketches and 3D model projections,
optimising the CNN to minimise the distances between sketches and 3D model
projections of the same class.

Another cross-depiction matching approach, by Crowley et al. (2015) [35],
uses CNN generated features to match faces between photos and artwork. This
relies on the success of a general face detector [36], which succeeds on artwork
which is “largely photo-realistic in nature” but has not been verified on more
abstract artwork styles such as cubism.

Other work has sought to use self-similarity to detect patterns across dif-
ferent depictions such as Shechtman and Irani (2007) [37] and Chatfield et al.
(2009) [38] who used self-similarity descriptors formed by convolving small re-
gions within in image over a larger region. This approach is not suitable for
identifying (most) objects as a whole: for example, the results show effective
matching of people forming a very specific pose, not of matching people as an
object class in general.

Recent work has focused on cross-depiction object classification and de-
tection. Wu et al. (2014) [3] improved upon Felzenszwalb et al.’s Deformable
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Part-based Model (DPM) [16] to perform cross-depiction matching between pho-
tographs and “artwork”, (including “clip-art”, cartoons and paintings). Instead
of using root and part-based filters and a latent SVM, the authors learnt a
fully connected graph to better model object structure between depictions, us-
ing the structured support vector machine (SSVM) formulation of Cho et al.
(2013) [39]. In addition, each model has separate “attributes” for photographs
and “artwork”: at test-time, the detector uses the maximum response from ei-
ther of “attribute” set, to achieve depiction invariance. This work improved
performance for detecting objects in artwork, but depended on a high perform-
ing DPM to bootstrap the model. Our dataset is more challenging than the one
used, leading to a low accuracy using DPM and hence this is approach is also
not suitable.

Zissermann et al. (2014) [40] evaluate the performance of CNNs learnt on
photos for classifying objects in paintings, showing strong performance in spite
of the different domain. Their evaluation excludes people as a class, as people
appear frequently in their paintings without labels. Our People-Art dataset ad-
dresses this issue: all people are labelled and hence we provide a new benchmark.
We also believe our dataset contains more variety in terms of artwork styles and
presents a more challenging problem. Furthermore, we advance their findings:
we show the performance improvement when a CNN is fine-tuned for this task
rather than simply fine-tuned on photos.

3 The People-Art Dataset and its Challenges

Our People-Art dataset3 contains images divided into 43 depiction styles. Im-
ages from 41 of these styles came from WikiArt.org while the photos came from
PASCAL VOC 2012 [41] and the cartoons from google searches. We labelled peo-
ple since, according to our empirical observations, people are drawn or painted
more often than other objects. Consequently, this increases the total number of
individual instances and thus the range of depictive styles represented. Figure 2
shows one painting from each style represented in our People-Art dataset.

The 41 depictive styles from WikiArt.org are catagorised based on art move-
ments. These depiction styles cover the full range of projective and denotational
styles, as defined by Willats [42]. In addition, we propose that these styles cover
many poses, a factor which Willats did not consider.

We believe that our dataset is challenging for the following reasons:

range of denotational styles This is the style with which primitive marks
are made (brush strokes, pencil lines, etc.) [42]. We consider photos to be a
depictive style in its own right.

range of projective style This includes linear camera projection, orthogonal
projection, inverse perspective, and in fact a range of ad-hoc projections [42].
An extreme form is shown in cubism, in which it is common for the view of
a person from many different viewpoints to be drawn or painted on the 2D
canvas [5].

3 https://github.com/BathVisArtData/PeopleArt



Detecting People in Artwork with CNNs 7

range of poses Though pose is handled by previous computer vision algo-
rithms [16], we have observed that artwork, in general, exhibits a wider
variety of poses than photos.

overlapping, occluded and truncated people This occurs in artwork as in
photos, and perhaps to a greater extent.

4 CNN architecture

We use the same architecture as Fast R-CNN [4], which is built around a modified
version of the Caffe library [43]. The CNN has two inputs: an image and a set of
class-agnostic rectangular region proposals. Many algorithms exist for generating
region proposals; we use selective search [22] with the default configuration.

The first stage of the CNN operates on the entire image (having been resized
to a fixed dimension while preserving aspect ratio). This stage consists of convo-
lutional layers, rectified linear units (ReLUs) [10, 44], max-pooling layers and, in
some cases, local response normalisation layers [10]. The final layer is a region of
interest (ROI) pooling layer which is novel to Fast R-CNN: as well as the input
from the previous convolutional or ReLU layer, this layer receives another input,
a region proposal or ROI; the output is a fixed-length feature vector formed by

ImageNet

C1

C2

C3 C4 C5 FC6
FC7

1000 class softmax

People-Art

C1

C2

C3 C4 C5

ROI
pooling

FC6
FC7

two class softmax

bbox regressor

Transfer Fine tune Learn from
random

Fig. 3. We use a network pre-trained on ImageNet and fine-tuned on our People-Art
dataset (training and validation sets): we fix the weights for the first F layers, selected
by validation.
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max-pooling of the convolution features. In order to preserve information about
the global structure of the ROI, i.e. at a scale within an order of magnitude of
the ROI size, the max-pooling happens over a uniformly spaced rectangular grid,
size H×W . As a result, the layer outputs feature vector with CHW dimensions
where C is the number of channels of the previous convolutional layer.

This feature vector is the input to the second stage of the CNN, which is
fully connected. It consists of inner product and ReLU layers, as well as dropout
layers (training only) aimed at preventing overfitting [45]. The output for each
class is a score and a set of four co-ordinate which indicate the bounding box
co-ordinates relative to the ROI. We modified the final layer to output a score
and bounding box prediction for only one class: person.

We use the same approach for training as Fast R-CNN, which uses stochas-
tic gradient descent (SGD) with momentum [10], initialising the network with
weights from the pre-trained models, in our case, trained on ImageNet [2, 10].
We fix the weights of the first F convolutional layers to those in the pre-trained
model; this parameter is selected by validation. We experiment with different
criteria for the region proposals to use as training ROI, as detailed in Section
5.1. Since the final inner product layers have a different size output as we only
detect one class, we use random (Gaussian) initialisation. Figure 3 shows our
network architecture in detail.

We fine-tune the models (pre-trained on ImageNet) using our People-Art
dataset (training and validation sets). We test three different models: CaffeNet,
which is a reproduction of AlexNet [10] with some minor changes, Oxford VGG’s
“CNN M 1024” (VGG1024) [46] and Oxford VGG’s “Net D” (VGG16) [47].
Both CaffeNet and VGG1024 have five convolutional layers and local response
normalisation layers and vary slightly: in particular VGG1024 has more weights
and channels. VGG16 is much a larger network, with thirteen convolutional
layers and no local response normalisation. Except for the number of dimensions,
all three networks have the same ROI pooling layer and fully connected network
structure: each CNN’s fully connected network structure consists of two inner
product layers, each followed by ReLU and dropout layers (training only).

5 Experiments

For both validation and testing, our benchmark is average precision (AP): we
calculate this using the same method as PASCAL Visual Object Classes (VOC)
detection task [48]. A positive detection is one whose intersection over union
(IoU) overlap with a ground-truth bounding box is greater than 50%; duplicate
detections are considered false. Annotations marked as difficult are excluded.

5.1 ROI Selection and Layer Fixing for CNN Fine-Tuning

Although we used the default selective search settings to generate region pro-
posals, we experimented with different criteria to specify which region proposals
to use in training. The default configuration of Fast-RCNN [4] defines positive
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ROI be region proposals whose IoU overlap with a ground-truth bounding box
is at least 0.5, and defines negative ROI to be those whose overlap lies in the
interval [0.1, 0.5). The cutoff between positive and negative ROI matches the
definition of positive detection according the VOC detection task [48]. Girshick
(2015) states that the lower cut-off (0.1) for negative ROI appears to act as a
heuristic to mine hard examples [4, 16].

We experimented with two alternative configurations for fine tuning:

gap We discarded ROI whose IoU overlap with a ground-truth bounding box
lies in the interval [0.4, 0.6): we hypothesised that ROI lying in this interval
are ambiguous and hamper training performance.

all-neg We removed the lower bound for negative ROI. We hypothesised that
this would improve performance on our People-Art dataset for two reasons:
1. This results in the inclusion of ROI containing classes which appear

similar to people, for example animals with faces.
2. This permits the inclusion of more artwork examples, for example images

without any people present. We hypothesised that this would make the
CNN better able to discern between features caused by the presence of
people and features resulting from a particular depiction style.

We fixed all other hyper-parameters of the CNN except for F , the number of
convolutional layers whose weights we fix to those learnt from ImageNet, which
we select based validation performance.

Table 1 shows the validation performance for the different criteria, i.e. from
testing on the validation set after fine-tuning on the People-Art training set.
Removing the lower bound on negative ROI (all-neg) results in a significant in-
crease in performance, around a 9 percentage point increase in average precision

Table 1. Validation performance using different criteria for positive and negative ROI:
we use CNNs pre-trained on ImageNet, fine-tune on the training set and then test on
the validation set; we select the best configuration for each CNN (bold).

ROI IoU
CNN configuration negative positive fixed layers (F) AP

CaffeNet default [0.1, 0.5) ≥ 0.5 2 33.7%
CaffeNet gap [0.1, 0.4) ≥ 0.6 2 33.5%
CaffeNet all-neg [0.0,0.5) ≥ 0.5 0 42.5%
CaffeNet gap + all-neg [0.0, 0.4) ≥ 0.6 1 42.2%

VGG1024 default [0.1, 0.5) ≥ 0.5 1 38.4%
VGG1024 gap [0.1, 0.4) ≥ 0.6 3 35.8%

VGG1024 all-neg [0.0,0.5) ≥ 0.5 1 42.6%
VGG1024 gap + all-neg [0.0, 0.4) ≥ 0.6 1 42.0%

VGG16 default [0.1, 0.5) ≥ 0.5 1 43.9%
VGG16 gap [0.1, 0.4) ≥ 0.6 2 39.0%
VGG16 all-neg [0.0, 0.5) ≥ 0.5 3 50.0%
VGG16 gap + all-neg [0.0,0.4) ≥ 0.6 3 50.1%
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in the best performing case. Indeed, it appears that what is not a person is as
important as what is a person for training. Discarding ROI with an IoU overlap
in the interval [0.4, 0.6) yields mixed results: it was marginally beneficial in one
case, and detrimental in all others.

We note that the optimal number of convolutional layers for which to fix
weights to the pre-trained model, F , varies across the different training configu-
rations, even for the same CNN. The variation in performance could be explained
by stochastic variation caused by the use of SGD. The performance falls rapidly
for F ≥ 5; we therefore conclude that the first three or four convolutional layers
transfer well from photos to artwork. Fine-tuning these layers yields no signifi-
cant improvement nor detriment in performance. In this respect, we show similar
results to Yosinski et al. (2014) [6] for our task: i.e. the first three or four convo-
lutional layers are more transferable than later layers, in our case from photos
to artwork.

For all later experiments, including the performance benchmarks, we select
the configuration which maximises performance on the validation set (bold in
Table 1) and re-train (fine-tune) using the combined train and validation sets.

5.2 Performance Benchmarks on the People-Art Dataset

Table 2 shows how each CNN model and other methods perform on the People-
Art test set. The best performing CNN, VGG16, scores 58% AP, an improvement
of 13 percentage points on the best previous result 45% [28]. The results demon-
strate the benefits of fine-tuning the CNN (on the training and validation sets of
People-Art) for the task. We also conclude that training and fine-tuning a CNN
on photos yields a model which overfits to photographic images.

As noted in Section 4, Fast R-CNN (unlike YOLO) relies on an external
algorithm, here selective search [22], to generate region proposals. We used the
default settings, which are tuned to photos. Selective Search achieves a recall

Table 2. Performance of different methods on the test set of our People-Art dataset:
the best performance is achieved using a CNN (Fast R-CNN) fine-tuned on People-Art

datasets
method pre-train fine tuning average precision

Fast R-CNN (CaffeNet) ImageNet People-Art (train+val) 46%
Fast R-CNN (VGG1024) ImageNet People-Art (train+val) 51%
Fast R-CNN (VGG16) ImageNet People-Art (train+val) 59%

Fast R-CNN (CaffeNet) ImageNet VOC 2007 36%
Fast R-CNN (VGG1024) ImageNet VOC 2007 36%
Fast R-CNN (VGG16) ImageNet VOC 2007 43%

DPM [16] People-Art N/A 33%
YOLO [28] ImageNet VOC 2010 45%
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Fig. 5. False positive detections on background regions from the best performing CNN

Fig. 6. False positive detections due to poor localisation from the best performing CNN
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rate of 98% on the People-Art test set. As such, this does not appear to be a
limiting factor for the performance.

We attempted to fine-tune YOLO [28] on People-Art. The default configu-
ration results in an exploding gradient, perhaps due to the sparsity of regions
containing objects (only people in this case) compared to other datasets. We
expect that a brute-force search over the parameters or heuristic may solve this
problem in future work.

5.3 Detection Performance on People-Art

We used the tools of Hoiem et al. (2012) [49] to analyse the detection performance
of the best performing CNN. Since we only have a single class (person), detections
have three types based on their IoU with a ground truth labelling:

Cor correct i.e. IoU ≥ 0.5
Loc false positive caused by poor localisation, 0.1 ≤ IoU < 0.5
BG a background region, IoU < 0.1

Figure 4 shows the detection trend: the proportion of detection types as
the number of detections increases, i.e. from reducing the threshold. At higher
thresholds, the majority of incorrect detections are caused by poor localisation;
at lower thresholds, background regions dominate. In total, there are 1088 people
labelled in the test set, and that are not labelled difficult. The graph in Figure
4 shows a grey dashed line corresponding to this number detections and Figure
4 shows a separate pie chart for this threshold. This threshold corresponding to
this number of detections is significant: with perfect detection, there would be no
false positives or false negatives. This shows that poor localisation is the bigger
cause of false positives, though only slightly more so than background regions.

Figure 5 shows false positives caused by background regions. Some are caused
by mammals which is understandable given these, like people, have faces and
bodies. Others detections have less clear causes. Figure 6 show the false positives
caused by poor localisation. In some of the cases, the poor localisation is caused
by the presence of more than one person, which leads to the bounding box
covering multiple people. In other cases, the bounding box does not cover the
full extent of the person, i.e. it misses limbs or the lower torso. We believe that
this shows the extent to which the range of poses makes detecting people in
artwork a challenging problem.

5.4 Performance Benchmarks on the Picasso Dataset

In addition to the results on People-Art, we show results on the Picasso Dataset [5].
The dataset contains a set of Picasso paintings and labellings for people which
are based on the median of the labellings given by multiple human participants.
Table 3 shows how each CNN and other methods perform. As before, each CNN
performed better if it was fine-tuned on People-Art rather than VOC 2007 ;
moreover, DPM performs better than CNNs fine-tuned on VOC 2007 but worse
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Table 3. Performance of different methods on the Picasso dataset

method training fine tuning average precision

Fast R-CNN (CaffeNet) ImageNet People-Art 45%
Fast R-CNN (VGG1024) ImageNet People-Art 44%
Fast R-CNN (VGG16) ImageNet People-Art 44%

Fast R-CNN (CaffeNet) ImageNet VOC 2007 29%
Fast R-CNN (VGG1024) ImageNet VOC 2007 37%
Fast R-CNN (VGG16) ImageNet VOC 2007 33%

DPM [16] VOC 2007 N/A 38%
YOLO [28] ImageNet VOC 2012 53%

than those fine-tuned on People-Art. This confirms our earlier findings: CNNs
fine-tuned on photos overfit to photo. In addition, we show that our fine-tuning
results in a model which is not just better for People-Art but a dataset containing
artwork which we did not train on.

Interestingly, the best performing CNN is the smallest (CaffeNet), suggesting
that the CNNs may still be overfitting to less abstract artwork. Furthermore,
the best performing method is YOLO despite being fine-tuned on photos (VOC
2012 ). Selective Search achieved a recall rate of 99% on the Picasso Dataset, so
this is unlikely to be the reason that Fast R-CNN performs worse than YOLO.
We therefore believe that YOLO’s design is more robust to abstract forms of
art.

5.5 The Importance of Global Structure

Earlier work [3, 50, 51] suggests that structure is invariant across depictive styles,
and therefore useful for cross-depiction detection. As described in Section 4,
Fast R-CNN includes an ROI pooling layer, which carries out max-pooling over
H × W uniformly spaced rectangular grid. Therefore, the ROI pooling layer
captures the global structure of the person, while earlier convolutional layers
only pick up the local structure.

1 1 4 3 2 2 3 3
0 1 4 3 3 0 5 3
3 2 1 1 2 3 5 3
2 4 3 2 4 1 5 2

4
5
3
5
3
3
4
3

1 1 4 3 2 2 3 3
0 1 4 3 3 0 5 3
3 2 1 1 2 3 5 3
2 4 3 2 4 1 5 2

5
4

Fig. 7. Two pooling layers and their resulting feature vectors from a two channel input;
Left: An ROI pooling layer (red grid) takes the maximum for each channel in each cell
of an ROI (blue grid) resulting in an 8 dimensional vector; Right: A global max-pooling
layer simply takes the maximum yielding a 2 dimensional vector
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Table 4. Replacing the ROI pooling layer (default) with a single cell max-pooling layer
yields a performance drop greater than not fine tuning People-Art

Fine-Tuning People-Art VOC 2007

ROI Pooling default single cell default

CaffeNet 46% 34% 36%
VGG1024 51% 35% 36%
VGG16 59% 40% 43%

To test whether the global structure is useful for detecting and localising
people in artwork, we replaced the ROI pooling layer replaced with a single cell
max-pooling layer. This is equivalent to setting W = 1 and H = 1 for the ROI
pooling layer (see Figure 7). This is similar to “bag of visual word” algorithms:
with W = H = 1, the fully connected layers have no information about the
location the previous layer’s output. We fine-tuned as before.

Table 4 shows the results. In all cases, replacing the default ROI pooling
layer with a single cell max-pooling layer results in worse performance. On top
of this, the performance is worse than when fine-tuned on VOC 2007 with the
default configuration. This supports the claim of earlier work, that structure is
invariant across depictive styles.

6 Conclusion

We have demonstrated state-of-the-art cross-depiction detection performance on
our challenge dataset, People-Art, by fine-tuning a CNN for this task. In doing
so, we have shown that a CNN trained on photograph alone overfits to photos,
while fine-turning on artwork allows the CNN to better generalise to other styles
of artwork. We have also made other observations, including the importance of
negative exemplars from artwork.

The performance on our People-Art dataset, though the best so far, is still
less than 60% AP. We have demonstrated that the CNN often detects other
mammals instead of people or makes other spurious detections and often fails to
localise people correctly. We propose further work to address these issues.

In addition, the dataset only covers a subset of possible images containing
people. Our dataset does not include African, Babylonian, Chinese or Egyptian
art, the Bayeux Tapestry, stained glass windows, photos of sculptures and all
kinds of other possibilities. Therefore, we are only beginning to examine the
cross-depiction problem, which provides a huge scope for further research.
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