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Abstract 26 

Archaeological potsherds have become a valuable source of information about diet and the 27 

wider economies of ancient communities, especially through the analysis of lipids preserved in 28 

the microporous matrix of the ceramic vessels. This study investigated >160 potsherds 29 

recovered from settlement phase 19 dated to 5160-5100 cal. BC from the Neolithic site of 30 

Bylany, one of the largest Linearbandkeramik (LBK) settlement in Central Europe. The aim 31 

was to investigate vessel use and animal management at the site and explore variations in 32 

organic residue composition and thus human activity at the household level. Pottery technology 33 

was also studied revealing a predominance of micro- and mesopores, indicating an advanced 34 

level of pottery production technology. More than 70% of the analysed potsherds yielded 35 

appreciable amounts of lipids dominated by C16:0 and C18:0 fatty acids, with compound-specific 36 



carbon isotope compositions indicating origins predominantly from ruminant and non-ruminant 37 

animal fats. Detection of very long fatty acids, fatty alcohols and traces of terpene compounds 38 

originating from plants suggested a combination of meat- and plant-based diet components and 39 

specialised use of some vessels. However, evidence of the use of vessels for milk collection or 40 

processing was not detectable at Bylany, at least during the settlement phase investigated 41 

herein.  42 

 43 

Highlights  44 

• Lipids were extracted from late LBK sherds from Bylany (Czech Republic).  45 

• Findings were interpreted in relation to pottery typology and households.  46 

• No difference in food processing practices between house types could be identified.  47 

• The processing of ruminant and non-ruminant carcass products was confirmed.  48 

• The lack of dairy fats pointed at the absence of milk exploitation.  49 

 50 

Key words: LBK pottery, organic residue analysis, gas chromatography, fatty acids, stable 51 

carbon isotope analyses, vessel use, porosity.  52 

  53 



1. Introduction 54 

The Neolithic period saw major changes in the way food and natural resources were used. It is 55 

well-known that the early farmers cultivated crops and bred livestock, although many of the 56 

details of plant agriculture and animal management are yet to be elucidated (Pavlu and 57 

Zapotocka 2007). Neolithic settlements of the central European Linear Pottery culture 58 

(Linearbandkeramik, LBK) consist of small, middle or long houses with thatched rooves, 59 

supported by rows of poles (Coudart, 1998). It was thought that the size of the houses 60 

corresponded to the status of their inhabitants (e.g. Modderman, 1986; van de Velde, 1990), 61 

although recent research proposed that the three basic types of houses correspond to different 62 

household activities and roles within the settlement (Hachem, 2000; Gomart et al., 2015). The 63 

different house sizes may reflect the size of animal herds, the proportion of hunted animal 64 

species and/or the type and volume of cultivated or gathered crops. Notwithstanding, variable 65 

local environmental conditions which not have been particularly suitable for stable subsistence 66 

strategies (Pavlu, 2014b), some large LBK settlements persisted more than 400 years. Social 67 

groups with different economies would have coexisted responding to the fluctuations and 68 

pressures associated with the beginnings of Neolithic agriculture (Pavlu, 1987, 2014b).  69 

 70 

The well-described site of Bylany (Kutna Hora, Czech Republic; see Fig. 1) is one of the largest 71 

central European Neolithic settlements of the LBK and following STK (Stichbandkeramik) 72 

cultures, comprising more than 100 house-plans. The settlement area was discovered in 1950s 73 

and over 7 ha of settlement remains were uncovered during excavations. The LBK period alone 74 

included 25 settlement phases (resp. ceramic phases), chronologically classified between 5350 75 

and 4900 cal. BC (Podborsky, 1997; Pavlu and Zapotocka, 2007). Phase 19 (examined here) is 76 

dated to 5160-5100 cal. BC and falls within the 5th interval of the LBK settlement (late LBK, 77 

phases 18-20). Phase 19 of the settlement exhibited a complicated house development 78 



consisting of small (n = 3), middle (n = 4) and long (n = 3) houses, with many associated clay 79 

pits (i.e. large pits used as a source of clay) and grain pits, covering areas A and B of the site 80 

(Fig. 2). A pit containing ceramic artefacts was found alongside each house. The pottery 81 

assemblage of Bylany is very large, comprising >76,000 classified fragments of vessels 82 

(Kvetina and Koncelova, 2012), allowing functional classification of the vessels based on 83 

ethnoarchaeological markers (Varien and Mills, 1997), primarily the shape and rim diameter of 84 

the vessels (Fig. 5; Rice, 2006). The archaeozoological assemblage recovered at the site is 85 

particularly scarce, with only 1.6 kg of poorly preserved animal remains having been discovered 86 

during the 40-year long excavations (Pavlu, 2014a). Archaeobotanical remains at Bylany are 87 

lacking for environmental and historical reasons. Furthermore, no evidence of burial sites have 88 

been detected. The type and position of the houses, pits and trenches, macrolithic tools and 89 

pottery are thus the only source of information that have been examined so far regarding 90 

household economies and other human activities at the Neolithic site of Bylany.  91 

 92 

The increasing range of biomolecular methods used in archaeology are proving particularly 93 

effective for investigating the diet and subsistence economies of Neolithic communities 94 

(Evershed et al., 1992). In particular, organic residue analysis of pottery vessels (e. g. Evershed, 95 

2008b) has been successfully applied widely, allowing various levels of information to be 96 

revealed, ranging from vessel use and technological innovation (Roffet-Salque et al., 2013) to 97 

specialised animal management strategies (Copley et al., 2003; Evershed et al., 2008) and the 98 

exploitation of wild resources (Cramp et al., 2014a, b; Craig et al., 2015; Roffet-Salque et al., 99 

2016). Organic residues accumulated during vessel use, mainly of lipophilic origin persist for 100 

millennia absorbed into the ceramic fabric of ancient pottery vessels (e. g. Evershed et al., 2002; 101 

Regert et al., 2003). The presence of characteristic lipidic biomarkers, including saturated fatty 102 

acids, triacylglycerols and a range of fatty acyl derivatives, waxes, long-chain ketones and 103 



triterpenoid components, allow the type and origin of the residue to be assessed (for reviews 104 

see Evershed, 1993, 2008b; Regert et al., 2003; Mukherjee et al., 2005). Traces of animal fats, 105 

plant oils, beeswax, resins, tars, pitches, etc. have been identified in archaeological pottery 106 

vessels. A combination of chromatographic techniques (GC/FID) and mass spectrometric 107 

techniques (GC/MS) is used to separate and identify the compounds. Animal fat residues occur 108 

widely, however, the molecular composition of degraded animal fats alone does not allow fat 109 

type to be identified and thus compound–specific stable carbon isotopic analyses with GC-C-110 

IRMS (gas chromatography-combustion-isotope ratio mass spectrometry) are carried out to 111 

enable ruminant adipose, ruminant dairy or non-ruminant adipose fats to be distinguished (e. g. 112 

Dudd and Evershed, 1998; Dudd et al., 1999; Copley et al., 2003). The possibility also exists 113 

of identifying milk residues in pottery vessels, which has opened up new avenues of 114 

investigation on the beginnings of dairying across Europe and the Near East (e.g. Evershed et 115 

al., 2008). Evidence for dairying has been revealed dating as early as the 7th millennium BC in 116 

the Near East and lipid residue analyses of potsherds from the 6th LBK have shown that some 117 

Central European LBK communities were processing milk into cheese using cheese-strainers 118 

(Salque et al., 2013).  119 

 120 

Notwithstanding the latter findings, extensive work is required to identify the temporal and 121 

spatial patterning of milk use in Europe order to understand the lactase persistence allele 122 

amongst the first farmers of Central Europe (Itan et al., 2009). As a contribution to this 123 

endeavour, herein, we focus on the organic residue analysis of pottery vessels from the LBK 124 

site of Bylany (phase 19) in order to assess: (i) pottery vessel use, and (ii) animal management. 125 

The investigation also aims to explore variations in pottery vessel use at household and site 126 

levels. Further, given the differences observed in lipid preservation, porosimetry was used in 127 

an attempt to explore the mechanisms of preservation of lipids. The focus of this study was 128 



phase 19 from the Bylany excavation, chosen as sherds of all functional categories (Pavlu, 129 

2000) were recovered and, overall, the sherds were less-fragmented than in other phases, 130 

suggesting a simpler taphonomic history for this assemblage, which legitimises the 131 

comparisons presented (Pavlu, 2010).  132 

 133 

2. Material and Methods 134 

2.1. Selection of pottery sherds 135 

A total of 1,842 rim potsherds were excavated from phase 19, from which 1,539 sherds were 136 

classified into 14 categories according to their presumed function (Fig. 5; Pavlu, 2010). Only 137 

842 potsherds (46%) could be simultaneously categorized using one of 14 classes and 138 

associated to a house type. From this set, a subset of 163 upper rim sherds (20%) were sampled 139 

and submitted to organic residue analysis. The potsherds originated from presumed water 140 

storage/processing vessels (n = 60; categories F6, F9 - F11, F13), from food processing and 141 

serving vessels (n = 88; categories F1-F5, F7, F8, F12) and from vessels for storage of dry 142 

commodities (n = 15, category F14). The potsherds were sampled from pits alongside 9 143 

different households, with 74 potsherds originating from long houses (houses 96, 162, 1246), 144 

49 from middle houses (houses 361, 619, 702) and 40 from small houses (houses 959, 1161, 145 

1240; see Table I).  146 

 147 

Porosimetry studies were carried out on 7 sherds from Bylany phase 19, of which 3 (categories 148 

F9, F10, F13) were presumed to be water storage/processing vessels and 4 (categories F4, F7, 149 

F12) were presumed to be food processing and serving vessels. A portion (0.1-0. 2 g) of each 150 

potsherd was sampled and subjected to mercury porosimetry using an AutoPore IV 9500 V1.06 151 

instrument. Each sherd was placed in the porosimeter, evacuated, and porosity determined using 152 



pressure ranges 0. 0003-0. 01 MPa for macropores, 0. 13-200 MPa for mesopores. The pressure 153 

was gradually increased simultaneously while the volume of mercury entering the pore of the 154 

sherd was recorded.  155 

2.2. Lipid extraction of potsherds 156 

All solvents used for lipid analyses were HPLC grade and all the glassware was furnaced at 157 

450 °C for a minimum of 4 h. The surface of a sub-sample of the archaeological potsherd was 158 

cleaned with a manual modelling drill to remove exogenous lipids (from the soil and post-159 

excavation handling). The portion of 2-3 g of potsherd was then crushed and ground in a glass 160 

mortar using a pestle to obtain a fine powder, which was accurately weighed and 20 µg of 161 

internal standard (n-tetratriacontane, Supelco Analytical, Bellefonte, USA) added. Lipids were 162 

extracted via the direct methanolysis method described in Correa-Ascencio and Evershed 163 

(2014). The method combines hydrolysis and transesterification reactions to obtain fatty acid 164 

methyl esters (FAMEs) from triacylglycerols and their derivatives simultaneously during the 165 

extraction of potsherds. Aliquots of total lipid extracts (TLEs) were taken and free hydroxyl 166 

groups trimethylsilylated by treatment with N, O-bis(trimethylsilyl)trifluoracetamide (BSTFA, 167 

20 µL, 70  °C, 1 h) to obtain trimethylsilylated (TMS) derivatives prior to GC analyses. The 168 

excess BSTFA was evaporated under a gentle stream of nitrogen and 169 

methylated/trimethylsilylated extracts dissolved in hexane for analyses by GC/FID, GC/MS 170 

and GC-C-IRMS.  171 

 172 

2.3. GC analyses 173 

GC/FID analyses were performed on an Agilent Technologies 6890N gas chromatograph 174 

equipped with a (5%-phenyl)methylpolysiloxane coated fused silica capillary column (Agilent 175 

19091S-433 HP-5MS; 30 m x 0. 32 mm i.d., 0. 25 µm film thickness). One microlitre of 176 



methylated/trimethylsilylated extract dissolved in hexane was introduced using a split/splitless 177 

injector at 220 °C. The temperature of GC oven was programmed from 120 °C for 5 min, to 178 

175 °C at 5 °C min-1, followed by an isothermal hold for 25 min, then to 300 °C at 7 °C min-1, 179 

followed by a third isothermal hold for 25 min. Helium was used as carrier gas with a constant 180 

flow of 1 mL min-1. The GC/MS analyses were performed with the same temperature program 181 

on a GC system Agilent Technologies 7890A with a 5975C VL MSD detector. The GC/MS 182 

system was equipped with the same column as the GC-FID system.  183 

 184 

Compound-specific stable carbon isotope analyses were performed using an Agilent Industries 185 

7890A gas chromatograph coupled to an IsoPrime 100 isotope ratio mass spectrometer. One 186 

microlitre of methylated/trimethylsilylated portions of extract dissolved in hexane  were 187 

introduced via a split/splitless injector operated in the splitless mode onto a 50 m x 0.32 i.d. 188 

fused silica capillary column coated with a 100% dimethylpolysiloxane stationary phase 189 

(Agilent HP 1; 0.17 µm film thickness,). The GC oven temperature programme was held at 40 190 

°C for 2 min, followed by a gradient increase to 300 °C at 10 °C min-1, after which the oven 191 

was held isothermally for 10 min. Helium was used as carrier gas at a constant flow of 192 

2 mL min-1. The combustion reactor consisted of a quartz tube filled with copper oxide pellets 193 

maintained at a temperature of 850 °C. Data processing was carried out using the Ion Vantage 194 

software (version 1.5.6.0, Isoprime).  195 

3. Results  196 

3.1. Lipid recovery 197 

More than 70% of potsherds from the 163 analysed yielded >5 µg g-1 of (µg of lipid per gram 198 

of potsherd) TLE, while 18% yielded >100 µg g-1. This high recovery rate is comparable to that 199 

observed at the LBK site of Kopydłowo (Poland; Roffet-Salque and Evershed, 2015).  200 



 201 

3.2. Lipid compositions 202 

Most of the TLEs were dominated by palmitic (C16:0) and stearic (C18:0) acids. Odd-numbered 203 

and branched-chain fatty acids (C17:0 and C17:0br), biomarkers of bacterial population from the 204 

rumen and characteristic of ruminant fats (Keeney et al., 1962), were detected in 23% of the 205 

extracts. The relatively high abundance of the C18:0 fatty acid compared to the C16:0 fatty acid 206 

suggests that these lipids derive from animal fats (Copley et al., 2001). Low concentrations of 207 

oleic acid (C18:1) and its degradation products (9,10 - dihydroxyoctadecanoic acid and azelaic 208 

acid) were detected in most of extracts. The presence of unsaturated fatty acids at high 209 

concentration is often considered as arising from modern contamination due to the lability of 210 

the double bond in oxidative conditions. However, considering that oleic acid can be found in 211 

animal fat triacylglycerols at high concentration (in the case of modern reference porcine or 212 

ruminant fats it ranges from 31 to 44%; Gunstone, 2007; Velisek, 2013), its occurrence at low 213 

concentration in well-preserved archaeological pottery is thus possible. The presence of its 214 

degradation products (Table 2) also points towards altered (archaeological) animal fats.  215 

 216 

Myristic (C14:0) and arachidic (C20:0) acids were also detected. Longer branched fatty acids (C15 217 

to C18) detected in 23% of the sherds could originate from microbial flora of the rumen and 218 

originate from domestic ruminant adipose or venison fats (e.g. Duncan and Garton, 1978; 219 

Velisek, 2013). The presence of mid-chain ketones (C31 and C35) in a single sherd from a pot 220 

of type F13, indicated that the pot was heated at high temperatures, leading to the pyrolysis of 221 

acyl lipids and their ketonic decarboxylation (Evershed et al., 1995; Raven et al., 1997).  222 

 223 

Nearly 23% of the samples with the appreciable amount of lipids had significant concentrations 224 

of long-chain fatty acids and fatty alcohols, such as behenic (C22:0), lignoceric (C24:0) or cerotic 225 



(C26:0) fatty acids (Fig. 3) and hexa- and octacosanol. These compounds derived mainly from 226 

plant tissues and plant waxes and suggest a combination of meat- and plant-based foodstuffs in 227 

some of the vessels (20 of 88 samples). Plant lipid residues were present in every type of vessels, 228 

in bowls, dishes and jars, and could have been used as flavouring (Filipović and Tasić, 2012) 229 

or waterproofing agents (Heron et al., 1994; Roffet-Salque et al., 2016). In 13 extracts n-alkanes 230 

(C16 to C29), resinous compounds and dicarboxylic acids were also detected (see Fig. 4b). 231 

Shorter n-alkanes (C16-C19) might have arisen in the potsherds through pyrolysis (Eckmeier and 232 

Wiesenberg, 2009; Schellekens et al., 2013), longer n-alkanes (C28, C29) could originate from 233 

waxes of higher plants (Gunstone, 2007). Resinous diterpenic (abietic acid derivatives) and 234 

triterpenic (betulin and friedelin) compounds were detected in small jars (type F13) from the 235 

long house 162 and small house 959 (Fig. 4b) providing evidence for the presence of tar 236 

adhesives possibly originating from a birch bark tar in case of betulin (e.g. Urem-Kotsou et al., 237 

2002; Grünberg, 2002; Regert et al., 2003) or from beach and oak barks in case of friedelin 238 

(Chandler and Hooper, 1979;  Urem-Kotsou et al., 2002; Prost et al., 2011) or from altered pine 239 

resin in case of abietic acid derivatives (Regert, 2004). 240 

 241 

3.3. Stable carbon isotope compositions of fatty acids 242 

A total of 38 total lipid extracts identified as pure animal fats and with an appreciable 243 

concentration of lipids (>10 µg g-1) were analysed to determine the carbon isotopic composition 244 

of the C16:0 and C18:0 fatty acids and identify the source of the animal fats. The δ13C16:0 values 245 

of archaeological animal fats ranged between -27.9 and -23.8‰, while δ13C18:0 values range 246 

between -30.6 and -22.9‰ (Fig. 8a). These δ13C values are in agreement with pure fats and 247 

mixtures of carcass fats from non-ruminant and ruminant animals raised on C3 diets (Copley et 248 

al., 2003). The ∆13C (= δ13C18:0 - δ13C16:0) proxy was used in order to identify the fat types by 249 

emphasising the influence of animal metabolism (Evershed et al., 1999; Copley et al., 2003). 250 



The archaeological animal fats extracted from the pots from Bylany exhibit ∆13C values ranging 251 

between -3.1 and 1.4‰ (Fig. 8b), consistent with pure non-ruminant adipose fats (n = 14) or 252 

mixtures of ruminant adipose (carcass) fats and non-ruminant adipose fats (n = 24; Table 3). 253 

No dairy residues were detected in the extracts. 254 

 255 

3.4. Porosity 256 

The mercury porosimetry analyses revealed the presence of mostly mesopores 257 

(10-7m > diameter > 2·10-9 m) and micropores (diameter < 2·10-9 m). The total pore surface of 258 

potsherds ranged between 4 and 11 m2 g-1, the average radius of pores ranged between 0.02 and 259 

0.06 µm and the mean porosity was 23%.  260 

  261 

4. Discussion 262 

4.1. Analysis of pottery and lipid preservation 263 

The presence of mesopores (10-7 m > diameter > 2.10-9 m) and micropores 264 

(diameter < 2.10-9 m) in pots from the site of Bylany (phase 19) detected by porosimetry 265 

analyses agrees with the hypothesis that pots were fired in open kilns with firing temperatures 266 

ranging between 700-800 °C (Pavlu and Zapotocka, 2007). Indeed, these temperatures are 267 

sufficient for creating hard microporous fabric and vessels with ‘suitable’ porosity. The well-268 

developed technology of pottery manufacturing at Bylany would have had an influence on the 269 

everyday activities at the settlement, e.g. by decreasing the amount of fuel needed for heating 270 

cooking vessels. High porosity allows liquids to permeate easily through the vessel walls, 271 

extending the time for liquid contents to boil by cooling the outer surface of the vessel wall. On 272 

the contrary, low vessel wall porosity and reduction of wall thickness (mean thickness value of 273 

Bylany potsherds without counting of storage vessels of type F14 was 0.8 cm) increases thermal 274 



shock resistance during repeated heating (Gosselain, 1992; Tite et al., 2001; Nelson, 2010) and 275 

heat conduction (Braun, 1983) while it decreases heat loss (Schiffer, 1990). Those properties 276 

had to be controlled also by a type of tempers and clays (Tite et al., 2001). Postfiring treatments 277 

can be applied to decrease permeability (Rice, 2006) and repetitive cooking of plant and animal 278 

tissues has been shown to seal vessel walls, improving the heat transfer during cooking 279 

(Charters and Evershed, 1997; Evershed, 2008b).  280 

 281 

The basic assumption is that lipophilic compounds are capable of binding into submicron pores 282 

of ceramic fabric due, the hydrophobicity, hence, insoluble properties of lipids, the presence of 283 

carboxylic and hydoxy moieties enhancing their propensity to bind to the polar ceramic fabric. 284 

However, the question of enhanced physico-chemisorption of lipids was recognised nearly 285 

twenty years ago, with the use of a caustic methanol extractant follow CHCl3/MeOH extraction 286 

was effective in revealing highly functionalised lipids produced via oxidation of unsaturated 287 

fatty acids (Regert et al., 1998).   Building on this approach the new extraction method recently 288 

proposed by Correa-Ascencio and Evershed (2014) uses an acidified solution of methanol to 289 

extract chemisorbed compounds, which could not be extracted using the commonly used 290 

organic solvents (chloroform, dichloromethane and methanol). As with the caustic methanol 291 

extraction method, the new protocol results in higher extraction yields than a solvent extraction 292 

with a mixture of chloroform/methanol (Evershed et al., 1990), suggesting that some lipids are 293 

strongly bound into ceramic pores or on surfaces, e.g. to metal ions such as Ca2+, Fe3+, Al3+ (as 294 

salts) or to SiOH (via hydrogen bonding), which create an inner ceramic lattice. In the sherds 295 

from Bylany, it appears that well-shaped micro- or mesopores protect adsorbed lipids from 296 

microbial utilization, as microbial flora cannot utilize unreachable substrates (mean size of 297 

bacteria >10-6 m). Degradation of lipids in the clay walls of potsherds is thus only driven by 298 



outer environmental conditions (humidity, air access, temperature, redox condition etc.; 299 

Evershed, 2008b).  300 

Some of the sherds from Bylany contained >1.5 mg of lipids per gram. While, such 301 

concentrations of lipid are not uncommon, the highest lipid concentrations are observed in 302 

potsherds excavated from arid (Dunne et al., 2012) or acidic (Smyth and Evershed, 2015) burial 303 

environments. Within a site higher concentration of lipids in some vessels could reflect a 304 

frequency of use of certain vessels (Smyth and Evershed, 2015). The burial conditions at Bylany 305 

are neutral or slightly acidic, and the loess soil is considered reasonable water-permeable (Pye, 306 

1995), but clearly these conditions lead to favourable preservation of lipids in potsherds. Not 307 

surprisingly, however, these same conditions cause extensive decalcification of bones at 308 

Bylany, dissolving the vast majority archaeozoological and human skeletal remains.  309 

 310 

4.2. Concentrations of lipid residues in different vessel types  311 

The function of the pottery vessels comparing the Bylany assemblage has been assessed in 312 

detail using typological analysis, correlating the shape of vessels to their potential use, with 313 

reference to ethnoarchaeological studies (Varien and Mills, 1997). Three basic shapes have 314 

been identified in the ceramic assemblage, namely: bowls, dishes and jars, and their volumes 315 

reconstructed based on orifice diameters and rim angles (Pavlu, 2000). This 316 

ethnoarchaeological approach has allowed the vessels to be classified into several categories of 317 

presumed use, e.g. cooking vessels, storage vessels or vessels for storing water, and a range of 318 

respective subcategories (Pavlu, 2000; Fig. 5). All the functional categories exhibited high 319 

recovery rate of lipids (above 60%), except sherds from the type F2 (31%, 4 residues extracted 320 

from 13 potsherds). The highest recoveries rates of lipids are observed for small dishes of types 321 

F1 and F3 (90% and 88%, respectively) but the median concentration of total lipid extract was 322 

<50 µg g-1. 323 



   324 

The typological set 1 (F6, F9, F10, F11 and F13) was interpreted as having been used for water 325 

storage and handling. Lipids were recovered from >75% of the sherds from this vessel category 326 

(45 residues extracted of 60 potsherds, one-sample χ2 test, p < 0. 01), which is the highest 327 

recovery rate of lipids detected in functional sets from Bylany. Lipids detected in those sherds 328 

were identified as being animal fats (n = 38; 23% of examined potsherds), with traces of plant 329 

waxes (n = 25; 15%; Fig. 8-9). Some of the vessel could have been used for water storage, with 330 

the animal fats present resulting from post-firing waterproofing (e.g. Evershed et al., 1997; 331 

Skibo, 2013). However, more than 11% of sherds contained >500 µg of lipids per gram, 332 

suggesting that animal products were processed in these vessels. The presence of mid-chain 333 

ketones in jar F13 (Fig. 4a), provides compelling evidence for the heating of animal fats at high 334 

temperatures (Evershed et al., 1995; Raven et al., 1997) that could have occurred when animal 335 

fats were spread on the inner surface of the pots for waterproofing just after the firing or when 336 

animal products were processed in those large pots. 337 

   338 

The typological vessel set 5 (F14) are large vessels proposed to be storage pots, as their 339 

substantial size would have prevented them being easily manoeuvred. Moreover, substantial 340 

thickness of their vessel wall (mean 1.6 cm) and toughness of the fired clay would have been 341 

important properties of storage vessels (Tite et al., 2001). Although lipids were recovered from 342 

15 sherds of this category (73%; one-sample χ2 test, p < 0.01), the concentrations were very 343 

low (average 11 µg g-1), which is entirely consistent with the hypothesis that the F14 pots were 344 

used for storage of dry goods or water. 345 

 346 

Based on typological assessments liquid and solid food would have been served in pots from 347 

sets 3 and 4, respectively. However, cold or hot contacts of foodstuffs lead in both cases to lipid 348 



adsorption, although concentrations may differ. Odd-carbon number mid-chain ketones, usually 349 

interpreted as demonstrating that pots were heated at high temperature (Raven et al., 1997) were 350 

not detected in these potsherds.  Although it is not possible to determine whether the foodstuffs 351 

contained in these pots were hot or not, the hypothesis remains that such vessels were used as 352 

tableware suitable for serving (e.g. Urem-Kotsou and Kotsakis, 2007). Significantly, the 353 

potsherds from set 3 exhibited relatively high concentration of lipids (average 135 µg g-1), 354 

which were skewed by high lipid concentrations in the potsherds from vessel types F3, F5 and 355 

F7 (Fig. 6a). This contrasted with the lower mean lipid concentrations in potsherds of set 4 356 

(average TLE concentration: 39 µg g-1) implying these pots were used either less frequently or 357 

for processing different foodstuffs.  358 

 359 

Finally, the vessels from the set 2 (F4 and F12) were hypothesised to be the most commonly 360 

used ware for cooking, food processing and serving. Repetitive use of pots for cooking 361 

foodstuffs leads to the accumulation of lipids in the clay walls (Evershed, 2008a). Lipids were 362 

recovered from 71% of potsherds from this set (17 residues were extracted from 24 potsherds, 363 

one-sample χ2 test, p < 0. 01). Moreover, the mean lipid concentrations determined for the 364 

sherds from  pots F4 and F12 were 121 and 152 µg g-1, respectively, which are relatively high 365 

compared to sherds from other sets except those from sets 1 or 2 (Fig. 6b). Significantly, the 366 

lipids detected in 8 potsherds from this set were identified as being animal fats (Table II) 367 

indicating that the original pots were used for food processing, likely cooking. 368 

 369 

No evidence was obtained from the analyses the specialisation in the use of pottery for 370 

processing specific types of foodstuff (Fig. 8), except for small bowls (n = 4, analysed 371 

categories F7, F9 and F11) where only pure non-ruminant fats were detected. In contrast to the 372 

inferences based on typological assessments, the lipid concentrations (Fig. 6) and compositions 373 



suggests no detectable hierarchy existed in vessel use at Bylany (Pavlu, 2014a; Fig. 5). The 374 

inference is that either: (i) lipid analyses lack the resolution to reveal specialisation, or (ii) that 375 

vessels were highly utilitarian and used for a wide range of purposes. The high concentrations 376 

of lipids in some vessels possibly reflect the repetitive use of vessels for cooking, as well as the 377 

use of vessels for longer time periods. However, in any discussion of concentrations of lipid 378 

observed we must be mindful of the taphonomic history of the sherds. Notwithstanding the 379 

latter, both repeated use and extended use-life will result in lipids being accumulated in 380 

appreciable concentrations in vessel walls. In contrast, vessels with lower recovery rates and 381 

low concentrations of lipids were either: (i) not used for cooking or processing of fat-rich 382 

foodstuffs, or (ii) had shortened use-lives due to early breakage of the vessels. 383 

 384 

Consideration of the lipid recovery rates and concentrations in different vessel types in the 385 

context of households (Fig. 7, Tab. 1), shows highest lipid concentrations were exhibited by the 386 

vessels from middle house 702 and small house 959 (recovery rates 67% and 100%, 387 

respectively). Relatively constant recovery rates were observed for the different house types, 388 

with rates being 70%, 76 % and 73% for small, middle and long houses, respectively (one-389 

sample χ2 test, p < 0.04; Table 1). Sherds from long houses thus present slightly lower recovery 390 

rates than sherds from middle and small houses. However, this observation is biased as large 391 

and small bowls, which are presumed to be cooking pots, represented just over 24% (18/74 392 

sherds) of the potsherds sampled from long houses. 393 

 394 

4.3. Stable carbon isotope analysis of lipid residues and animal management  395 

The faunal assemblage at Bylany is relatively scarce, with only 1.6 kg of poorly preserved bone 396 

and fragments recovered during the entire excavation. Archaeozoological remains of cattle (Bos 397 

taurus), aurochs (Bos primigenius), pigs (Sus domesticus), goats (Capra aegargus), sheep (Ovis 398 



orientalis), wild boar (Sus scrofa), wild horses (Equus ferus) and roe deer (Capreolus 399 

capreolus) were identified (Pavlu, 2014a). The remains were irregularly spread over the 400 

settlement mainly concentrated in pits situated alongside and between houses. Statistical 401 

correspondence analysis of the bone fragments found at the whole site of Bylany and at specific 402 

households showed that cattle and pigs were mainly associated with long and middle houses, 403 

while goats and sheep were more common in small houses (Pavlu, 2014a). 404 

  405 

All potsherds examined herein were excavated from pits alongside long, middle or small houses 406 

or from the immediate surroundings of houses, and not from the inner space of houses 407 

(Soudsky, 1966; Pavlu, 2010). Animal fats were detected in sherds from across all types of 408 

houses (Fig. 8). Animal fats extracted from sherds from long, middle and short houses exhibited 409 

∆13C values ranging between -3.1 and 1.1‰ (n = 13), 1.1 and 2.3 ‰ (n =16) and 1.4 and 2.8‰ 410 

(n = 9), respectively. The ∆13C values of animal fats extracted from sherds from long and 411 

middle houses are similar to those from short houses. The median of ∆13C values for small 412 

houses (-0.6‰) and middle and long houses (-0.9‰) were statistically comparable (Mann-413 

Whitney U test, U = 115, P < 0.05). Animal fats detected in sherds from long and middle houses 414 

exhibited δ13C and ∆13C values consistent with pure non-ruminant carcass (n = 10; 34%) fats 415 

and mixtures of non-ruminant and ruminant carcass fats (n = 18; 44%). However, non-ruminant 416 

carcass fats and mixtures of ruminant and non-ruminant carcass fats were also detected in sherds 417 

from pits alongside small houses (n = 9), providing evidence that both non-ruminant and 418 

ruminant products were processed in the small houses. Products from ruminant 419 

(cattle/sheep/goats) and non-ruminants (pigs) could have thus been processed at the small 420 

houses. Mixtures of ruminant and non-ruminant products occur across all types of houses 421 

without any preference, although the exploitation of pigs seems to have been restricted to long 422 

and middle houses (Pavlu, 2014a). The inhabitants likely share their economies to support also 423 



their neighbours (probably birth related), e.g. at the level of two or three houses, to maintain 424 

effective subsistence. For instance, if a cow, a pig or a large wild animal was slaughtered before 425 

winter or during some ceremonial rites, meat could have been divided between a bigger groups 426 

of people and processed at the level of each household, independently of house size, as 427 

evidenced in other Central European LBK settlements (Halstead, 2011; Marciniak 2011, 428 

2008b).  429 

 430 

Interestingly, no evidence for dairy fat residues was detected in potsherds from long, middle 431 

and small houses at the later settlement phase of Bylany (phase 19). The absence of dairy fats 432 

in sherds from Bylany can relate to: (i) the absence of milk use and processing at the site, (ii) 433 

the mixing of dairy and non-ruminant carcass products in pots, masking the milk signal, or (iii) 434 

the use of dairy products in perishable containers, which did not survive, e.g. in wooden vessels 435 

(Maigrot, 2003) or in leather containers (Morris, 2013). It should be also considered, dairy fat 436 

triacylglycerols with lower carbon number are more susceptible to degradation, especially when 437 

present in fresh milk and not concentrated e.g. in butter or cheese (see Dudd and Evershed 1998; 438 

Copley et al., 2005).   However, per compound-specific stable carbon isotope analysis results, 439 

the high number of animal fats detected in the pots (38 potsherds of 94 with concentration of 440 

lipids > 10 µg g-1) provide a relatively secure evidence for the absence of dairy fat residues in 441 

pots from phase 19 at Bylany. Unfortunately, the absence of sufficient archaeological remains 442 

prevents herd structures to be reconstructed and herding management to be assessed (Vigne and 443 

Helmer, 2007). Thus, milk exploitation at the site seems of rather low intensity or even non-444 

existent. This agrees with lipid residue analysis studies carried out at other central European 445 

LBK sites (Salque et al., 2012; Roffet-Salque and Evershed, 2015) and with aDNA analyses 446 

performed on human skeletal remains from LBK sites in Germany, Hungary or Poland (Burger 447 

et al., 2007; Oelze et al., 2011). 448 



 449 

Fresh milk drinking by early farming economies has been suggested to have offered an 450 

evolutionary advantage to Neolithic societies with a long tradition of cattle herding (Gerbault 451 

et al., 2007; Itan et al., 2009). Although Bylany inhabitants clearly exploited cattle and other 452 

ruminants, thus, raw milk would have been available to them. However, based upon lipid 453 

residues they appeared not to be processing dairy products in pottery. Explanations for this 454 

include absence of the genetic disposition to digest milk and/or the lack of knowledge of how 455 

to process it into a digestible form (Spangenberg et al., 2006; Evershed et al., 2008; Salque et 456 

al., 2013; Budja et al., 2013).  457 

 458 

Conclusions 459 

In order to extend our knowledge about diet and household economies at the later LBK phases 460 

of the Neolithic site of Bylany (phase 19) >160 potsherds were submitted to lipid residue 461 

analyses. The sherds studied originated from bowls, dishes and jars excavated from long, 462 

middle and small houses. More than 70% of potsherds exhibited detectable lipids, confirming 463 

that many of the vessels were used for cooking or serving of food, or the processing/storage of 464 

animal products.  465 

 466 

The favourable preservation of lipids is enhanced by porous nature of the pottery microstructure 467 

and chemistry (Heron et al., 1991) as evidenced further by the porosimetry analyses reported 468 

herein. Mean porosity of the studied potsherds was 23% and they contained a predominance of 469 

micro- and mesopores, which would aid the protection of adsorbed lipids during burial. The 470 

porosity measurements also indicated that pottery production technology at Bylany was well-471 

developed, which would have influenced the ways vessels were used and the extent to which 472 



they survived in the archaeological record (Tite et al., 2001). The slightly acid pH burial 473 

conditions at the site appear favourable for lipid preservation (e.g. Smyth and Evershed, 2015).  474 

 475 

Comparing lipid residue compositions to the pot shapes, indicate some differences in the 476 

foodstuffs processed in different types of pots, although some hypotheses regarding vessel 477 

specialisation appear not to hold.  478 

 479 

Stable carbon isotopic analyses of the animal fats detected in potsherds from Bylany 480 

demonstrated that carcass products were obtained from both ruminant and non-ruminant 481 

sources. Mixtures of carcass fats from both ruminant and non-ruminant animals were detected 482 

across all types of vessels and houses without any significant context specificity. It appears that 483 

the inhabitants of Bylany shared their economies between each other, independent of the size 484 

of the houses, herds or fields they managed , thus, suggesting maintenance of extensive cultural 485 

relationships needed to maintain essential sustainable community-level subsistence (Richards, 486 

2002; Halstead, 1999). Notwithstanding this, individual households may still have played a 487 

specific roles in the overall settlement economy. 488 

  489 

Evidence for dairy fats was not detected in any of the sherds analysed in this study neither by 490 

lipid composition nor by compound-specific stable carbon isotope analysis, suggesting that 491 

cattle or other ruminants were likely not milked at Bylany, at least during the later LBK phase 492 

19. The importance of dairying to the economy at Bylany, thus, remains an open question. 493 

Further work in progress will shed light on the exploitation of animal resources at earlier phases 494 

of the site.   495 
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  797 



Fig.1. Map showing the location of Bylany within the Early Neolithic (LBK) settlement area 798 

in Bohemia, Czech Republic (after Kvetina, Koncelova, 2012).   799 



Fig. 2. Map of households from which potsherds were selected for analysis from the 800 

settlement of Bylany (Area A and B - settlement phases 9-25; area F - settlement phases 1-8). 801 



 802 
Fig. 3. Partial gas chromatogram of total lipid extracts from sherds from Bylany phase 19 803 
typical of animal fat. Peak identities: FAME = fatty acid methyl esters, br-branched, 804 
C16-MAG - monopalmitoylglycerol, C18-MAG-monostearoylglycerol, IS-internal standard 805 
(n-tetratriacontane). 806 



 807 
Fig. 4. Partial gas chromatograms of (a) animal fats with mid-chain ketone and (b) traces of 808 
fatty acids and resinous components (magnified). Peak identities: FAME = fatty acid methyl 809 
esters, TMS-trimethylsilylated, br-branched, C16-MAG - monopalmitoylglycerol, C18-MAG-810 
monostearoylglycerol, 9 DCA – azealic acid, 9,10- C18 FAOH – 9,10-dihydroxystearic acid, 811 
31(35)-K – mid-chain ketones with 31 and 35 carbons, IS-internal standard (n-tetratriacontane), 812 
PL – plasticizer (contamination). 813 



 814 
Fig. 5 Functional classification of archaeological pottery from Bylany according to their 815 

typologies (after Pavlu, 2000). 816 

  817 



Fig. 6. Box plot of total lipid concentrations [µg g-1] in different categories of vessels from 818 

Bylany (A) and functional sets (B); ○ remote values; * extremes. Set 1 - Water processing (cat. 819 

F6, F9, F10, F11, F13), Set 2 - Serving and food processing (cat. F4, F5), Set 3 - Serving 820 

liquid food (cat. F3, F5, F7, F8), Set 4 - Serving solid food (cat. F1, F2), Set 5 - Storage (cat. 821 

F14).  822 



Fig. 7. Box plot of total lipid concentrations [µg g-1] in pottery recovered from specific houses 823 
examined in this study. Recovery rates of lipids in brackets; ○ remote values; * extremes.  824 



Fig. 8. (A) δ13C values for the C16:0 and C18:0 fatty acids from the TLEs extracted from potsherds 

from Bylany phase 19 according to the type of houses (long , middle ■ and small ). The 

three fields correspond to the P = 0.684 confidence ellipses for animals raised on a strict C3 diet 

in Britain (Copley et al., 2003). (B) Difference in the δ13C values of the C18:0 and C16:0 fatty 

acids (∆13C = δ13C18:0 - δ
13C16:0) for the same archaeological fats.  The ranges represent the 

mean ± s.d. for a global database comprising modern animal fats from across the globe (Copley 

et al., 2003; Outram et al., 2009; Spangenberg et al., 2006; Gregg et al., 2009; Dunne et al., 

2012). Each data point represents an individual potsherd. Analytical precision ± 0.3  



Fig. 9. Scatter plots of stable carbon isotope compositions of animal fat residues extracted from 

the potsherds of Bylany phase 19 in a context of presumed functional sets (A) where  

represent water processing vessels,  processing and food serving vessels and  represent 

storage vessel, and vessel shapes (B) where  represent big jar,  big dish,  small dish,  

big bowl and  small bowl.  

  



Table 1 Summary of the results of the lipid residue analyses of potsherds from Bylany (phase  

19).  

  Potsherds 

analysed 

Residues 

detected 

Recovery 

rate 

  n n [%] 

Houses Size     

96 Long  40 29 73 

162 Long  16 12 75 

1246 Long  18 11 61 

361 Middle  17 10 59 

619 Middle  23 21 91 

702 Middle  9 6 67 

959 Small  21 21 100 

1161 Small  13 6 46 

1240 Small  6 2 33 

Total   163 118 72 

Category Shape Functional  

set 

   

F1 Small dish 
4 

10 9 90 

F2 Big dish 13 4 31 

F3 Small dish 3 8 7 88 

F4 Big dish 2 12 8 67 

F5 Small dish 3 11 7 64 

F6 Big dish 1 9 7 78 

F7 Small bowl 
3 

11 9 82 

F8 Big bowl 11 9 82 

F9 Small bowl 

1 

12 10 83 

F10 Big bowl 14 10 71 

F11 Small bowl 12 8 67 

F12 Big bowl 2 12 9 75 

F13 Jar 1 13 10 77 

F14 Big jar 5 15 11 73 

Total  163 118 72 

 



Table 2 Summary of extracted lipids in the context of houses and vessel types 

House type House number Vessel type Lipids detecteda, 

    Small dish  

(F1, F3, F5) 

 

 

 

 

Small house 

 

959 

Big dish FA(l,vl,br), MAG 

Big bowl FA(m,l,vl,br), MAG 

Jar FA(m,l,vl,br), MAG, OH, TOH, ALK, DCA 

Big dish 

(F4,F6) 

1161 Small bowl FA(l,br,vl), MAG 

 

 

Middle house 

 

361 

Small dish FA(l,br,vl), MAG, OH(tr) 

Big dish FA(l,br,vl), MAG, OH(tr) 

Small bowl FA(l,br,vl), MAG, DCA (tr), OH(tr)  

 

 Small bowl 

(F7, F9, F11) 

Big bowl FA(m,l,br), MAG, DCA, OH 

619 

Jar FA(l,br), MAG 

Small dish FA(l,br), MAG, OH(tr) 

Big dish FA(l,br,vl), MAG 

Big bowl 
(F8, F10, F12) 

Small bowl FA(l,br), MAG 

Big bowl FA(m,l,br), MAG 

702 Big dish FA(l,br), MAG 

 

 

Long house 

96 

Small dish FA(m,l,br,vl), MAG, FAOH, DCA 

Big dish FA(m,l,br,vl), MAG, DCA 

Jar 

(F13) 

Small bowl FA(tr) 

Big bowl FA(tr), MAG(tr) 

 Big jar 
(F14) 

Big jar FA(tr) 

162 
Small dish FA(l,br,vl), MAG, DCA 

Jar FA(m,l,br,vl), MAG, DCA, ALK, K, FAOH, TOH 

1246 
Small dish FA(l,br,vl), MAG 

Big bowl FA(l,br,vl), MAG 
aFA, n-alkanoic fatty acids (m-middle, l-long, br-branched, vl-very long); MAG, monoacylglycerols; OH, n-alcohols; DCA, dicarboxylic acids; 

ALK, n-alkanes; K, mid-chain ketones; FAOH, hydroxy fatty acids; TOH, triterpene alcohols; tr, traces.



 1 

Table 3 Details of potsherds selected for GC-C-IRMS, results and interpretation of the isotopic analyses. 2 

a Mixture N/R - mixture of non-ruminant adipose and ruminant adipose fats 3 

 4 

 5 

i 

 

Lab number 

 

House 

number 

Category 

 

Rim diameter 

[cm] 

TLE 

[µg g¯¹] 
δ13C16:0 

[‰] 

δ13C18:0 

[‰] 

∆13C 

[‰] 

Classification by 

∆13C values 

1 BYL-C-1321 702 F4 unknown 193 -25.9 -27.7 -1.8 Mixture N/Ra  

2 BYL-C-1322 702 F12 unknown 895 -26.1 -28.4 -2.3 Ruminant adipose 

3 BYL-C-1323 702 F12 unknown 350 -24.8 -25.8 -0.9 Mixture N/R 

4 BYL-C-1325 702 F4 unknown 498 -24.8 -25.8 -0.9 Mixture N/R 

5 BYL-C-1329 1161 F5 unknown 822 -25.8 -27.9 -2.2 Ruminant adipose 

6 BYL-C-1334 1246 F4 unknown 43 -26.4 -28.2 -1.7 Mixture N/R 

7 BYL-C-1345 1161 F7 unknown 1975 -25.7 -25.4 0.2 Non-ruminant 

8 BYL-C-1353 1246 F3 unknown 1245 -25.7 -25.1 0.6 Non-ruminant 

9 BYL-C-1354 1246 F10 unknown 77 -26.4 -27.2 -0.8 Mixture N/R 

10 BYL-C-1375 361 F10 18 11 -26.4 -28.1 -1.7 Mixture N/R 

11 BYL-C-1376 361 F2 20 322 -26.2 -26.1 0.1 Non-ruminant 

12 BYL-C-1383 619 F6 unknown 99 -26.1 -27.1 -0.9 Mixture N/R 

13 BYL-C-1389 959 F10 25 61 -23.8 -22.9 0.9 Non-ruminant 

14 BYL-C-1395 959 F12 16 298 -26.9 -29.3 -2.4 Ruminant adipose 

15 BYL-C-1400 619 F11 12 99 -25.6 -24.7 0.9 Non-ruminant 

16 BYL-C-1402 619 F10 28 33 -25.7 -26.6 -0.8 Mixture N/R 

17 BYL-C-1408 619 F9 11 499 -24.9 -24.6 0.3 Non-ruminant 

18 BYL-C-1411 619 F3 17 148 -24.9 -24.3 0.6 Non-ruminant 

19 BYL-C-1416 959 F10 16 1634 -27.8 -30.6 -2.8 Ruminant adipose 

20 BYL-C-1417 959 F10 19 600 -27.9 -28.5 -0.6 Mixture N/R 

21 BYL-C-1419 959 F8 16 955 -25.3 -26.5 -1.2 Mixture N/R 

22 BYL-C-1423 959 F6 20 77 -25.5 -24.1 1.4 Non-ruminant 

23 BYL-C-1424 959 F6 20 53 -25.6 -24.7 0.8 Non-ruminant 

24 BYL-C-1425 361 F1 9 558 -26.2 -28.2 -1.9 Ruminant adipose 

25 BYL-C-1426 361 F2 26 40 -25.9 -26.1 -0.2 Mixture N/R 

26 BYL-C-1427 361 F4 27 109 -25.7 -26.9 -1.2 Mixture N/R 

27 BYL-C-1429 361 F10 24 232 -25.3 -24.3 1.1 Non-ruminant 

28 BYL-C-1433 361 F12 16.1 1867 -25.6 -26.9 -1.3 Mixture N/R 

29 BYL-C-1436 162 F1 unknown 202 -26.4 -28.4 -2.0 Ruminant adipose 

30 BYL-C-1437 162 F1 unknown 49 -25.4 -24.9 0.5 Non-ruminant 

31 BYL-C-1440 162 F5 unknown 43 -27.3 -30.1 -2.8 Ruminant adipose 

32 BYL-C-1449 162 F14 unknown 33 -26.9 -28.8 -1.9 Ruminant adipose 

33 BYL-C-1461 96 F3 13 17 -25.9 -25.7 0.2 Non-ruminant 

34 BYL-C-1464 96 F5 10 824 -25.3 -26.3 -1.0 Mixture N/R 

35 BYL-C-1470 96 F5 14 35 -27.6 -29.0 -1.4 Mixture N/R 

36 BYL-C-1472 96 F6 20 126 -26.1 -25.9 0.2 Non-ruminant 

37 BYL-C-1474 96 F6 20 166 -25.3 -28.4 -3.1 Ruminant adipose 

38 BYL-C-1476 96 F7 unknown 78 -25.0 -23.9 1.1 Non-ruminant 


