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Abstract—With the increase in volume, heterogeneity and
uncertainty in data, conventional analytics approaches for moni-
toring users behavior in organisations are no longer sufficient for
the effective and reliable detection of malicious activities. This
motivates the need for introducing additional analysis techniques.
This paper introduces an intelligent fusion method based on fuzzy
aggregation functions typically utilized in multi-criteria decision
making. The proposed method, which can be integrated with
analytics systems, undertakes temporal and multi-criteria fusion
processes on pre-analyzed data, to enhance effective monitoring
and decision-making. An application to a prominent area of
research in the cyber-security domain, the insider threat problem,
is shown to validate the usefulness of our method.

I. INTRODUCTION

The insider threat problem is one of the most daunting
challenges to handle in computer security, indeed in all aspects
of real-world security [1]. The term insider refers to “a current
or former employee, contractor or business partner who has
authorised access to an organisation’s network, system or data,
and intentionally exceeds or misuses that access in an manner
that adversely affects the confidentiality, integrity or avail-
ability of the organisation’s information system” [2]. Recent
industry surveys and academic literature revealed unequivocal
evidence supporting the significance and prevalence of this
threat [3]. Notable infamous cases such as Robert Hanssen,
Bradley Manning, and Edward Snowden illustrate the scale of
damage an insider can pose to an organisation [4].

Security monitoring tools designed to tackle external at-
tacks, e.g. Intrusion Detection Systems (IDS) and firewalls,
are not sufficient to monitor internally initiated attacks. Many
of these tools are ineffective against privileged insiders who
already have been granted legitimate access to sensitive data
and systems, thus adding a significant degree of uncertainty
to the monitoring process. Any tool that seeks modeling and
reasoning about insiders behavior must accept this ground
truth and deal with incompleteness (compensate for lack of
knowledge), inconsistencies (resolve ambiguities and contra-
dictions) and change (update the knowledge base over time).
With the increasing volume, variety, velocity and value of Big
Data [5], standalone classical approaches such as rule-based
techniques are no longer sufficient to handle these complexities
and overcome the difficulties in making the correct decisions.

Various machine learning and analytics techniques (e.g.
Support Vector Machines (SVM) [6], Hidden Markov Models
(HMM) [7] and agent-based [8]) have been tested against
the insider problem with limited success, as the behavioral
signatures of insider activities are often reported as normal
activity by classical solutions. We argue that combining tra-
ditional user behavior analytics tools with intelligent fusion
approaches based on fuzzy Multi-Criteria Decision Making
(MCDM) [9], [10], may help accurately detecting malicious
behaviors, analyzing data under multiple perspectives (criteria)
separately, and fusing it into meaningful conclusions.

This contribution presents an intelligent fusion approach for
analyzing multiple perspectives of users behavior data across
the time, and inferring suspicious behavior potentially driven
by malicious insider activities. Our approach enhances user
monitoring systems based on data analytics to provide reliable
information for decision support. The proposed solution is
characterized by using popular fuzzy aggregation techniques
in MCDM with the purpose of: (i) intelligently combining
temporal information about the user behavior (e.g. predicated
on streaming data), in terms of multiple behavioral aspects
(criteria), and (ii) providing more comprehensive information
about the user behavior in terms of the different activities
undertaken by her/him, as means for more informed decision
support. The main contributions of our work are threefold:

1) We present a novel intelligent fusion framework based on
fuzzy MCDM aggregation methods, that can be integrated
with a data analytics-driven monitoring system. In partic-
ular, we apply our framework to monitor insider threats
predicated on streaming data describing users behavior.

2) We adopt the aggregation methods from [11] and the dy-
namic MCDM principles from [12] to define a temporal,
multicriteria fusion scheme of user behavior information.

3) We define an improved dynamic re-weighting method
within the fusion approach, making it more adaptive to
the current information related to a specific user.

This paper is set out as follows. Related works and preliminar-
ies are outlined in Section II. Section III presents the intelligent
multi-criteria fusion approach, and Section IV integrates it
with an insider threat monitoring system, to demonstrate its
validity. Finally, concluding remarks are drawn in Section V.
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II. BACKGROUND

This section provides an overview of related works on aggrega-
tion approaches for MCDM [9]. Their underlying aggregation
functions are also formally introduced.

Albusac et al. presented in [11] an expert surveillance
system that dynamically weighs and combines information
(normality scores) categorised under multiple criteria (surveil-
lance aspects such as trajectory and speed of tracked ob-
jects). The aggregated score is subsequently utilised to support
decision-making when abnormal situations are encountered in
the monitored environment. The goal in their work is twofold:
(i) to reduce the occurrence of false negatives, i.e. abnormal
situations that are classified as normal and thus ignored by the
system, and (ii) to reduce the triggering of false positives, i.e.
unnecessary alarms. The authors describe the use of several
weighted aggregation functions to combine normality scores,
as well as a dynamic re-weighting scheme that adapts the
weights to the values of the input normality scores. Among
these functions, the Sugeno Integral [13] provided particularly
meaningful results. This function has the ability to reflect the
interaction between criteria in a MCDM framework, by using
a fuzzy measure that assigns weights not only to individual
criteria, but also to combinations of them.

Definition 1. [13] Let A = {a1, a2 . . . , az} ∈ [0, 1]z be a
set of z values in the unit interval, associated to a set C =
{c1, . . . , cz} of criteria. The Sugeno integral Sµ : [0, 1]z →
[0, 1], associated to a fuzzy measure µ, is defined as follows:

a = Sµ(a1, . . . , az) =

z∨
j=1

a(j) ∧ µ
(
{c(j), . . . , c(z)}

)
(1)

where c(j) is the criterion to which the i-th lowest value in
A corresponds. Thus, the Sugeno integral arranges inputs in
increasing order before fusing them. ∨, ∧ are a t-conorm and
t-norm function, respectively.

Example 1. The Sugeno Integral typically utilizes the maxi-
mum and minimum operators, in which case Eq. (1) becomes:

a = max
j
{min

(
a(j), µ

(
{c(j), . . . , c(z)

)
}
)
} (2)

Classical weighted aggregation functions, such as the weighted
average, weigh criteria individually. By contrast, fuzzy mea-
sures are defined on subsets of criteria, modeling the interac-
tions between them and capturing the importance of combined
criteria. A fuzzy measure µ(C ′) ∈ [0, 1] satisfies:

1) µ(∅) = 0.
2) µ(C ′) = 1, with C the set of criteria and C ′ ⊆ C.
3) If C ′ ⊂ C ′′ ⊆ C, then µ(C ′) ≤ µ(C ′′).
4) The additive property, µ(C ′∪C ′′)=µ(C ′)+µ(C ′′), which

only holds for so-called additive fuzzy measures [14].
In the work by Albusac et al., the temporal dimension is
also considered by determining the trapezoidal area under
aggregated scores, across consecutive time instants. We instead
consider the use of associative, full-reinforcing aggregation
functions to analyze the temporal evolution of users’ behavior.

The idea is inspired by the Dynamic Multicriteria Decision-
Making (DMCDM) framework presented by Campanella and
Ribeiro in [12]. In their work, multiple scores are fused across
the time into a single dynamic score, which reflects how scores
on a specific decision element (e.g. an alternative or criterion)
evolve across the time. Scores are aggregated across k ≥ 1
multiple time periods, T−k+1, T−k+2, . . . , T to obtain the
dynamic score at time T . In order to avoid storing all the past
decision information from time T−k+1 onwards, Campanella
et al. [12] proposed using an associative, full-reinforcing
aggregation function φ : [0, 1]k → [0, 1] to compute a dynamic
rating at T , s̃T , as s̃T = φ(sT−k+1, . . . , sT ), accomplishing:
• Associativity: φ only requires fusing the original score at
T with its associated dynamic rating at T −1 to output a
reliable indicator of the rating evolution across the time:

s̃T = φ(s̃T−1, sT ) (3)

• Full reinforcement: It prioritises the increasing (resp. de-
creasing) temporal evolution of ratings, applying upward
(resp. downward) reinforcement on the aggregated rating.

Uninorms are a popular family of aggregation functions ful-
filling these two properties [15]. They were introduced as
a generalization of t-norms and t-conorms, with a neutral
element e ∈ [0, 1] lying anywhere in the unit interval.

Definition 2. [15] A uninorm is a mapping, U : [0, 1]2 →
[0, 1], having the following properties for all a, b, c, d ∈ [0, 1]:

i) Commutativity: U(a, b) = U(b, a).
ii) Monotonicity: U(a, b) ≥ U(c, d) if a ≥ c and b ≥ d.

iii) Associativity: U(a,U(b, c)) = U(U(a, b), c).
iv) Neutral element: ∃e ∈ [0, 1] : U(a, e) = a.

Example 2. The following is an example of uninorm func-
tion with neutral element e, based on the general family of
uninorms introduced by Fodor et al. in [16]:

U(a, b) =



ab

e
if 0 ≤ a, b ≤ e,

a+ b+ ab− e
1− e

if e ≤ a, b ≤ 1,

MU (a, b) otherwise.

(4)

with MU (a, b) an averaging function.

Uninorms present a pessimistic, t-norm behavior in [0, e]2

(downward reinforcement) when the two aggregation inputs
are low. Conversely, they present an optimistic, t-conorm
behavior in [e, 1]2 (upward reinforcement) when such inputs
are high. Finally, when one of the inputs is above e and the
other is below e, uninorms exhibit an averaging behavior.

III. INTELLIGENT MULTICRITERIA AGGREGATION
METHOD

This section presents an intelligent data fusion approach that
analyzes and combines multiple aspects of users’ behavior,
based on fuzzy aggregation functions for MCDM. Our ap-
proach is conceived for its use alongside data analytics tools,



Fig. 1. Scheme of the intelligent multicriteria aggregation framework

to enhance situation-aware decision support. We extend the
intelligent fusion method from [11], by: (i) introducing an
improved and more adaptive weighting scheme based on each
user’s current data, and (ii) incorporating associative, full-
reinforcement functions in the temporal aggregation process,
based on [12]. In Section IV we further integrate this method
with a data analytics framework for insider threat monitoring.
Figure 1 shows an overview of the fusion methodology,
consisting of three phases: obtaining user behavior scores,
temporal aggregation, and criteria aggregation.

Remark 1. We use the terms “activity type” and “event type”
(such as e-mail usage, HTTP activity, device authentication,
etc.) hereinafter to refer to the same concept indistinctly, i.e.
a criterion cj ∈ C under a MCDM perspective.

A. Obtaining user behavior scores

We firstly introduce a method to calculate, for each existing
user ui, a number z of scores that describe her/his behavior
within a time window T = [t−, t+], according to z ≥ 2 criteria
C = {c1, . . . , cz}. Let us assume z data sources, containing
streaming information about different types of events (criteria)
separately, e.g. different types of user activity registered in
a monitored environment. Such data are partitioned across
consecutive, disjoint time windows {. . . , T−2, T−1, T, } (for
instance, on an hourly or daily basis). Suppose each data
instance or event in the j-th source, j ∈ {1, . . . , z} is a
triplet < ui,j , t, B

t
i,j > with ui a monitored user, t ∈ T a

time stamp, and Bti,j ∈ {1:normal, 0:abnormal} a (binary)
classification of an event triggered by ui at t. Importantly, we
assume without loss of generality that the value of Bti,j stems
e.g. from applying prior analytics (e.g. a SVM-classifier, as
will be illustrated later on in experiments) on raw streaming
sensor data of users activity. Let ETi,j be the number of events
of type j caused by ui within the time window T :

ETi,j = #Bti,j : t ∈ T (5)

Likewise, let NT
i,j be the number of events of type j originated

by ui and classified as normal during T :

NT
i,j = #Bti,j : Bti,j=1 ∧ t∈T (6)

A normality score sTi,j ∈ [0, 1] associated to ui and time interval
T is calculated, for each event type or criterion cj , as follows:

sTi,j =
NT
i,j

ETi,j
(7)

If ETi,j = 0, i.e. the user has no reported activity under cj
during T , we adopt the convention sTi,j = sT−1i,j . The normality
score is an indicator of ui’s behavior during T regarding
cj : the larger its value, the more “normal” (less malicious)
her/his activity is deemed. Figure 2 illustrates the process of
calculating normality scores.

0

1

Abnormal

Normal

t
+t

-

Fig. 2. Obtaining user behavior score at time window T

B. Temporal aggregation
Instead of relying solely on users behavior at the latest time
window T , we are also interested in their evolution across the
time. Therefore, in this phase the user normality scores for the
k latest time windows are combined to obtain a cumulative
normality score sT,ki,j ∈ [0, 1] spanning the last k time windows
1 ending in T . This cumulative score reflects both the current
and recent trend of ui’s behavior under cj . To do this, and
inspired by the DMCDM framework in [12], we propose using
a uninorm aggregation function U to iteratively combine the
normality scores of k consecutive time windows, as follows:

sT,ki,j = U(sT−1,k−1i,j , sTi,j) (8)

The cumulative normality score sT,ki,j incorporates user behav-
ior information from k previous time windows back to T−k+1.
Intuitively, sT,1i,j = sTi,j .

1In this work, both the window size T and the temporal aggregation size k
are deemed domain specific paremeters whose values are fixed by an expert.



Remark 2. As a consequence of the full reinforcement prop-
erty of uninorms, if ui’s behavior under criterion cj is reported
as normal both lately and currently, then the evidence of
normal behavior becomes stronger (a higher value is assigned
to sT,ki,j ). Conversely, if both recent and current behavior
are rather abnormal, then the resulting sT,ki,j is lower, thus
reinforcing the hypothesis of a possibly abnormal behavior.

Example 3. Consider a user whose normality scores for his
activity related to cj : e−mail, in the last five time windows
are sT−4i,j = 0.4, sT−3i,j = 0.36, sT−2i,j = 0.9, sT−1i,j = 0.8, and
sTi,j = 0.9. Assume a uninorm function with neutral element
e = 0.5 is used. The five scores can be combined to obtain
sT,5i,j , as follows:

sT−3,2i,j = U(sT−4i,j , sT−3i,j ) = U(0.4, 0.36) = 0.3

sT−2,3i,j = U(sT−3,2i,j , sT−2i,j ) = U(0.3, 0.9) = 0.67

sT−1,4i,j = U(sT−2,3i,j , sT−1i,j ) = U(0.67, 0.8) = 0.86

sT,5i,j = U(sT−1,4i,j , sTi,j) = U(0.86, 0.9) = 0.93

with U a uninorm function. Initially, the user follows an
abnormal behavior trend (low scores), thus downward rein-
forcement occurs in the first aggregation step. However, his
behavior drastically changes from T−2 onwards, therefore the
cumulative scores are eventually reinforced upwards. Finally,
when a low score is combined with a high one, the uninorm
aggregation function shows an averaging behavior, as occurs
with the computation of sT−2,3i,j . Figure 3 illustrates this effect.

normality 

scores

cumulative normality 

scores

T-4 T-3 T-2 T-1 T

Fig. 3. Temporal aggregation example based on uninorm functions

C. Criteria aggregation

The purpose of the criteria aggregation phase is to com-
bine cumulative normality scores over z criteria into one
by using a weighted aggregation function φµ, as sT,ki =

φµ(sT,ki,1 , . . . , s
T,k
i,z ). This aggregated score is ultimately com-

pared against a normality threshold τ ∈ [0, 1] to support
decision-making (τ can be e.g. periodically updated based on
the analytics model used alongside our method, see Figure 1).

This phase extends the dynamic re-weighting aggregation
method from [11], which exhibits a number of desirable
properties in monitoring and surveillance scenarios, including:

the adaptability of importance weights to the current score
values, the reliability in reducing the number of false alarms,
and the effectiveness in detecting as many real abnormal
behaviors as possible. Importantly, here we define a novel
approach to dynamically adjust weights of criteria, based not
only on the normality scores being aggregated, but also on the
current normality threshold.

Without loss of generality, the Sugeno integral in Eq. (2) is
considered hereinafter, and weights of individual criteria are
gathered a priori, e.g. by a domain expert. The following two
aspects are described in further detail in this phase:

i Dynamically adjustment of weights based on current ag-
gregation inputs.

ii Defining the fuzzy measure µ, in other words, obtaining
the weights of combined criteria in C.

Dynamic Weight Adjustment. The importance weight µ(cz)
assigned to an activity type cz determines how important
such activity becomes in the presence of abnormal (low)
score values, in order to conclude whether the user exhibits
a malicious behavior or not. The Sugeno Integral assumes
such weights (resulting from the definition of a fuzzy mea-
sure) are static, i.e. once calculated/assigned they are not
affected by the actual scores to be aggregated. However, in
a security-oriented monitoring context, it is more sensible that
the weights of criteria describing normal behavior at present
decrease with respect to those weights of criteria on which
a possibly abnormal behavior is occurring. It is therefore
necessary to “adapt” the initial (single) criteria weights µ(cj)
according to each user behavior, in a manner that allows for
enhancing reliable and effective aggregation results. In [11],
an abnormality score is calculated for each normality score,
as aT,ki,j = 1−sT,ki,j . This implies that the greater the normality
score, the larger its difference with the associated abnormality
score. The method in [11] assumes that the score domain
[0,1] is evenly distributed around a central and static normality
threshold, τ = 0.5. However, when the value of this threshold
is not static, but instead it is periodically updated based on
existing data and prior analytics processes, it may occur that
τ 6= 0.5. Assume for instance that τ = 0.6 and sT,ki,j = 0.8.
This normality score falls midway between τ and a “total
normality” value of 1. Intuitively, the value of aT,ki,j should in
this case lie midway between 0 and τ . However, we instead
would have aT,ki,j = 1 − 0.8 = 0.2, which is significantly
closer zero to than to τ . We propose making the computation
of the abnormality score adaptive to any normality threshold
τ ∈]0, 1[, with the following formula:

aT,ki,j =



sT,ki,j if sT,ki,j = τ ,

1−
sT,ki,j (1− τ)

τ
if sT,ki,j < τ ,

τ(1− sT,ki,j )

1− τ
if sT,ki,j > τ .

(9)

This formula maps sT,ki,j from [0, τ ] to [τ, 1] (or vice versa)



and then obtains aT,ki,j as its symmetrical value with respect to
the middle point of the mapped interval. Eq. (9) ensures that
an accurate abnormality score is calculated, regardless of τ .
The difference between abnormality and normality, ∆T,k

i,j =

aT,ki,j − s
T,k
i,j , is then calculated. Clearly, ∆T,k

i,j > 0 when the
the normality score is below τ , whereas ∆T,k

i,j < 0 when the
score lies above τ . Based on ∆T,k

i,j , the weight µ(cj) initially
assigned to criterion cj is updated to adapt it to the user ui
currently being analyzed, as shown below:

µTi (cj) =

 µ(cj) if ∆T,k
i,j ≤ 0

µ(cj) + ∆T,k
i,j otherwise;

(10)

Consequently, µ(cj) is adjusted (increases) for user ui at time
T if, given cj , the associated scores reflect a rather abnormal
behavior, and it remains unchanged otherwise. Weights are
finally re-normalized to ensure

∑
j µ

T
i (cj) = 1.

Obtaining combined criteria weights. Ideally, domain expert
knowledge would be used to determine all importance weights
for (subsets of) criteria. However, this is often not feasible in
realistic scenarios, particularly when the number of criteria is
large (notice that z criteria require defining a fuzzy measure
consisting of 2z weights, one for each C ′ ⊆ C,C ′ ∈ 2C). To
alleviate this problem, Sugeno proposed in [13] a formula that,
based on weights of single criteria, allows to automatically
determine the weights of combinations of them:

µTi (C ′∪C ′′) = µTi (C ′)+µTi (C ′′)+λµTi (C ′) ·µTi (C ′′) (11)

with C ′, C ′′⊆C. The parameter λ is computed upon individ-
ual criteria weights µTi (cj), by solving the equation2:

1 + λ =

z∏
i=1

(1 + λµTi (cj)) (12)

The method above is convenient when there is no available
expert information on the effects of combined criteria, hence
only weights of individual criteria, µTi (c1) . . . µTi (cz), are
provided. Eqs. (12) and (11) are subsequently applied to
determine λ and the combined criteria weights, respectively.
There exist other methods in the literature to construct a fuzzy
measure, most of which are based on optimization problems.

IV. INTEGRATION WITH AN INSIDER THREAT
MONITORING SYSTEM

In this section we integrate the fusion approach with
a classification-based insider threat monitoring system, to
demonstrate its validity in practice. For the purpose of valida-
tion, we use the insider threat test dataset provided by [17].

A. Dataset description

The dataset consists of both synthetic background data and
data from synthetic malicious actors, describing a collection
of logs from distributed host-based sensor networks within a
large organisation. The underlined attack scenario is outlined

2E.g. via R mathematical software suite: https://www.r-project.org/

as follows: a user who did not previously use removable
drives or work outside working hours, begins logging in after
working hours, using a removable drive, and uploading data to
wikileaks.org. After this, she leaves the organization shortly.
In order to produce the dataset, entries containing streaming
user behavior data have been recorded over the time, for
four different activity types: c1: logging details, c2: device
usage details, c3: email activities, and c4: web surfing details
alongside Lightweight Directory Access Protocol (LDAP). For
this proof of concept demonstration, we randomly select a
small sample from the above dataset which includes data for
only one insider and four innocent users over 25 days.

B. Experimental settings & results

In user behavior analytics applications, the validation based on
real traces of user activity with ground truth on attack activity
is often difficult, due to security, privacy and other legislation
issues. A commonly adopted solution to this problem consists
in employing unary classification algorithms. In practice, it is
relatively easier to find “clean” (normal) data than malicious
(abnormal) data, particularly for the insider problem. Hence
we employ one class support vector machine (OCSVM) as
the primary classifier (baseline method), and integrate our
proposed fusion method on top of it for comparisons. For
experiments, each day is split into two segments, with each 12-
hour segment a time window T . Within T , users are profiled
using raw streaming data of their activity.

In order to compare our approach (OCSVM+MCDM)
against the standalone OCSVM baseline, we calculate the
normality score for a given user in two different ways. Firstly,
we apply the OCSVM classifier itself under each criterion
cj separately and calculate a normality score per user, as the
percentage of normal events produced by that user within T .
Secondly, output values from the OCSVM classifier are used
as inputs to the proposed fusion method, whose aggregated
normality score sT,ki is deemed as the overall normality score
of the user. Figure 4 presents and describes the results gathered
across 43 time windows, with a temporal aggregation size
k= 7 and the following criteria weights (before dynamic re-
weighting): w1 = 0.3, w2 = 0.1, w3 = 0.3, w4 = 0.3. Dark
red lines show the scores from the insider user based on
the proposed method (OCSVM+MCMD). Since our method
combines all criteria, these scores have been plotted in all four
sub graphs to facilitate comparisons. Orange lines show insider
scores applying OCSVM separately on each criterion. Green
lines show normal user scores using the proposed method,
and blue lines show normal user scores using OCSVM.
Our proposed approach outperforms the baseline approach:
OCSVM can not detect the insider by looking at http, email
and device user activity separately. It might be argued that
event data from different sensors should be combined first
into a single source and then apply OCSVM to improve
detection results. Although seemingly feasible, this implies a
substantially higher computational cost in practice, hence it is
not feasible to merge together raw data from different activity
types without losing some discriminating features. Therefore,



Fig. 4. Comparison: OCSVM vs OCSVM+MCMD. Dark red (circle) line shows the insider scores over the time using OCSVM+MCMD, orange (triangle)
line shows insider scores using OCSVM, green (diamond) lines show innocent user scores using OCSVM+MCMD and blue (cross) lines show innocent user
scores using OCSVM. Device details show only two users for OCSVM, as only two users reported device activity during the time period considered.

the proposed approach can help overcoming this cost limitation
and effectively handling the uncertainty in data sources.

V. CONCLUDING REMARKS

This contribution has presented an intelligent multi-criteria
fusion approach for monitoring user behavior data. Our ap-
proach performs both temporal and multi-criteria aggregation
processes predicated on fuzzy aggregation methods, to fuse
different types of users activity across the time, providing
meaningful insights of their behavior to enhance monitoring
and decision support. By integrating our methodology with
an unary classification-based framework for insider threat
monitoring, we have demonstrated its validity to effectively
and efficiently detect malicious behaviors. Future directions of
work aim at introducing additional dimensions of knowledge
into the proposed fusion framework, such as psychometric
data, and incorporating evidential reasoning techniques for its
application to intrusion detection systems under uncertainty.
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