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High Reynolds number flows are typical for many applications including those found in aerospace.
In these conditions non-linearities arise which can, under certain conditions, result in instabilities
of the flow. The accurate prediction of these instabilities is vital to enhance understanding and
aid in the design process. The stability boundary can be traced by following the path of a
bifurcation as two parameters are varied using a direct bifurcation tracking method. Historically,
these methods have been applied to small-scale systems and only more recently have been
used for large systems as found in Computational Fluid Dynamics. However, these have all
been concerned with flows that are inviscid. We show how direct bifurcation tracking methods
are can be applied efficiently to high Reynolds number flows around an airfoil. This has been
demonstrated through the presentation of a number of test cases using both flow and geometrical
parameters.

Keywords : Hopf bifurcation,continuation,Navier-Stokes,bifurcation tracking

1. Introduction

When modeling flow that is inherently non-linear in nature it is possible that solutions occur that are
unexpected and the reasons behind this must be understood. This is often a result of the non-linearities
that arise when the system undergoes a bifurcation. A bifurcation is a phenomenon associated with a
change in behavior of the system and can result in the loss of stability of the system. Identification of
bifurcations, therefore, is necessary to understand when these instabilities occur and aid the design of the
system of interest, in this case aircraft design.

A number of software packages aimed at performing bifurcation analysis of non-linear systems are
currently available including AUTO [Doedel et al., 1991b,a, 1986], MATCONT [Dhooge et al., 2003] and
PITCON [Rheinboldt & Burkardt, 1983]. These packages are designed to solve low-dimensional systems
and not large-scale problems, largely due to the direct solvers they use. The solvers they use are developed
for dense matrices and would be too computationally expensive for large scale problems [Wales, 2010].
There are, however, a limited number of bifurcation analysis tools that have been designed to solve large-
scale problems. One of these packages is PDEcont [Lust et al., 1998], which is concerned with time-discrete
simulations and, as such, uses a Newton-Picard method. Another package is the LOCA library [Lehoucq &
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Salinger, 2001; Salinger et al., 2002]. They use an indirect solver known as Generalised Minimum Residual
(GMRES). In order for these solution methods to be efficient they require a good preconditioner [Wales,
2010]. This is still an active area of research for the types of flow of interest in this work. Finally, the work
of Bindel et al. [2014] implements the Continuation of Invariant Subspaces (CIS) method using a Matlab
code to track simple bifurcations. This uses a projection method to reduce the size of the problem but
requires a good approximation to the least stable subspace.

Bifurcation analysis in Computational Fluid Dynamics (CFD) has mainly been limited to continuation
methods. These have predominately been aimed at low-dimensional, enclosed flows, such as Taylor-Couette
flow, of which a review was conducted by Cliffe et al. [2001]. More recently continuation methods have
been applied to larger fluid dynamics systems but with the main interest still being well-conditioned
problems as the review by Dijkstra et al. [2014] highlights. The studies by Wales [Wales, 2010; Wales et al.,
2012b,a] have shown that continuation methods can be applied to high Reynolds number external flows,
such as is of interest in this work. However these studies did not look into tracking the bifurcation as two
parameters were changed but the results from this study suggests that bifurcation tracking methods should
be applicable also.

The application of direct bifurcation tracking methods to transonic flows is limited but a few studies
have been carried out [Badcock et al., 2004, 2005; Woodgate & Badcock, 2007]. In Woodgate & Badcock
[2007], the calculation of the stability limit of several aeroelastic systems using a direct bifurcation tracking
method was investigated. They used an analytical Jacobian and performed simulations on systems that
were smaller in size than those used in this work. They also used an analytical Jacobian in [Badcock et al.,
2004], which also only looked at symmetric cases, which simplifies the problem. This was also the case
in the work of Badcock et al. [2005] where they demonstrated bifurcation tracking on aeroelastic systems
using the Euler equations.

The aim of this study is to demonstrate the applicability of existing bifurcation computation and
tracking methods to high Reynolds number external flows. Previous studies have not looked into tracking
the bifurcation of large systems as two parameters change however the results presented here suggest that
bifurcation computation and tracking methods are applicable to these systems.

2. CFD Model Formulation

This section describes the method used to model the fluid dynamics of the flow around an airfoil. The
method is the same as used in the work of Wales et al. [2012a] where it has also been verified. The flow is
modeled using the Reynolds Average Navier-Stokes (RANS) equations which also requires a model for the
Reynolds stresses, achieved using the Spalart-Allmaras turbulence model here.

2.1. Governing equations

The two-dimensional Reynolds Averaged Navier-Stokes equations can be written in conservative form as

∂Y

∂t
+

∂F

∂x
+

∂G

∂y
= 0 (1)

where t is time, Y is the vector of conserved variables, F and G are flux vectors and x and y are the
Cartesian coordinates.

The vector of conserved variables, Y, is given by

Y = (ρ, ρu, ρv, ρE)T . (2)

Here ρ is the density, u and v are the velocity components in the x and y direction respectively and E
is the total energy.

The flux vectors F and G consist of inviscid and viscid components so they may be written as

F = FI − FV, G = GI −GV. (3)

The viscous flux vectors require the computation of a laminar viscosity and a turbulent viscosity. The
laminar eddy viscosity is calculated using Sutherland’s law and the turbulent eddy viscosity is given by
the Spalart-Allmaras turbulence model described below.
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2.2. Spalart-Allmaras turbulence model

In order to compute the turbulent eddy viscosity, the Spalart-Allmaras one-equation turbulence model was
used. The Spalart-Allmaras model is robust with respect to the grid spacing and has shown to provide
good results for separated flows [Rumsey & Ying, 2002] and drag predictions [Vassberg et al., 2008]. The
scalar transport equation describes the turbulent viscosity, solving for a variable, ν, which is related to the
turbulent eddy viscosity. The transport equation is given as

∂ν

∂t
+ Ui · ∇ν −

1

σRe
(∇ · ((ν̃ + ν)∇ν) + cb2 |∇ν|2)− cb1ω̃(ν)ν + cw1fw(ν)

(ν

d

)2

= 0 (4)

where ν̃ is the molecular viscosity, and the variable ν is related to the turbulent eddy viscosity by
νT = νfv1(ν/ν̃). Other relevant equations are:

ω̃(ν) = ω +
ν

κ2d2
fv2(ν/ν̃), fv2(x) = 1−

x

1 + xfv1(x)
, fv1(x) =

x3

x3 + c3v1
, x =

ν

ν̃
,

ω = ||∇ × Ui||
2 , fw(g) = g

(

1 + c6w3

g6 + c6w3

)1/6

, g(r) = r + cw2(r
6 − r), r(ν) =

ν

ω̃κ2d2

The constants [Spalart & Allmaras, 1994] are given by:

cb1 = 0.1355, cb2 = 0.622, σ = 2/3, cw1 =
cb1
κ2

+
1 + cb2

σ
, cw2 = 0.3, cw3 = 2, cv1 = 7.1 (5)

2.3. Solution method

The RANS equations are augmented with the turbulence model resulting in a system that now includes the
flow variables for the Navier-Stokes equations and the those for the turbulence model. This set of equations
is solved using a finite volume formulation which gives a system of the form

dY

dt
+R = 0 (6)

where Y now contains both the mean flow variables and the turbulence model variable and R is the
residual. The system is solved as part of a numerical continuation method via Newton’s method allowing
both stable and unstable solutions to be found. This is vital for this work as we are interested in the
bifurcation point.

3. Numerical Continuation

In order to compute a starting solution for the bifurcation tracking algorithms, a continuation method was
employed. This computed the system equilibria as a parameter, λ, was varied. At each equilibrium the
corresponding stability information was also computed. This process was continued until a bifurcation had
been detected. The method chosen to carry out this task was identical to that of the studies of Wales et al.
[2012b,a] and more details can be found therein.

3.1. Predictor-Corrector method

In this work an arclength continuation method is applied using a predictor-corrector algorithm. The solu-
tion branch is found by calculating an initial solution, (Y0, λ0), then changing the value of the continuation
parameter, λ, by a small amount and finding the solution at this new parameter value. Arclength continu-
ation is used in order to allow the continuation to continue through a fold bifurcation. The solution curve
is parameterized in terms of its arclength, which ensures that a singular point is not encountered. The
arclength is given as the distance between two consecutive solution points along the curve.

The predictor-corrector algorithm works by computing an approximate solution in the predictor stage
and then iterating on this value using Newton’s method in the corrector stage to find the system equilibrium
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point converged to acceptable accuracy. In this work a secant predictor is used. This requires the first two
solutions on the branch, (Y0, λ0) and (Y1, λ1), to be generated. An approximate solution at the next
parameter value is then generated using

X̄n+1 = Xn + htn (7)

where X = (Yn, λn) and

t =
Xn −Xn−1

‖Xn −Xn−1‖
. (8)

This value is then used as the starting point for the Newton solver, which iterates on this value to
find the actual solution at the current parameter value. If a turning point is encountered the standard
parameter continuation method will fail and it is therefore necessary to allow both the solution vector, Y,
and the parameter itself, λ, to vary during the convergence process. This approach is known as arclength
continuation. Allowing the parameter to vary introduces one extra unknown and an additional equation.
This extra equation is the arclength equation used to parameterize the curve.

g(Y, λ, ς) =

[

∂Y

∂ς

]

∆Y +

[

∂λ

∂ς

]

∆λ−∆ς = 0, (9)

This process works by restricting the Newton updates to a hyperplane normal to the direction taken
for the predictor. The complete augmented system which must be is solved is





J ∂R
∂λ

∂g
∂Y

∂g
∂λ





[

∆Y

∆λ

]n

=

[

−R

−g

]n

, (10)

where J = ∂R
∂Y is the Jacobian of the flow variables. The system, Eq. 10, was solved using a bordered

solver known as the block elimination mixed (BEM) [Govaerts, 1991] bordering algorithm. This requires
only solves involving the sparse Jacobian, which were accomplished using Umfpack [Davis, 2004b,a; Davis
& Duff, 1999, 1997], a direct solver designed for sparse systems.

Note also that the Jacobian was calculated numerically using first order differencing of the residual as
in Wales [2010].

3.2. Stability

At each completed continuation step the eigenvalue problem

(A− ΛI)v = 0 (11)

must be solved. Here A = J is the Jacobian, Λ is the matrix of eigenvalues, v is the matrix of eigenvectors
and I is the identity matrix [Wales, 2010].

In this work the Jacobian is a large matrix and computing all the eigenvalues would be impractical.
Therefore only the most positive eigenvalues are computed as these are important for stability analysis.
In order to do this, the eigenvalue problem package ARPACK [Lehoucq et al., 1998] is used. This package
uses an iterative solver known as Arnoldi’s method to compute a subset of the system eigenvalues with
the properties of interest, such as the rightmost eigenvalues. In order to ensure that no eigenvalues with
large imaginary part that lie close to the imaginary axis are missed and the implementation is efficient,
the iterative solver is combined with a preconditioner [Wales, 2010]. In this work the preconditioner used
a combination of two rational transforms: the Cayley transform and Shift invert. These transforms are
used as they allow better convergence to be achieved when iterative solvers are used to find well-separated
eigenvalues [Voss, 2007].

The first transform used as a preconditioner to calculate the eigenvalues was the shift invert method.
If the centre of the region of interest is denoted σ then the shift invert method transforms the eigenvalues
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in the region of interest; those that are close to σ move far away from σ and those that are far away
from σ move close to it. This means that the eigenvalues of interest now become well-separated after the
transformation [Wales, 2010].

The Cayley transform was also used as a preconditioner. It transforms the eigenvalues in the region of
interest, this time defined as those with real parts greater than 1

2
(a1 + a2), to values outside the unit disk.

It does this by mapping the eigenvalues with real parts close to a2 to values far away from the unit disk.
It also maps the eigenvalues close to a1 to values with a small modulus [Wales, 2010].

In this work, these two methods are combined, the shift-invert is used first to produce a preliminary
guess of the eigenvalues of interest and then the Cayley transform is employed to ensure that no eigenvalues
have been missed [Wales, 2010].

4. Bifurcation Tracking

Continuation methods are useful because they allow the dependency of the solution on a particular param-
eter to be discovered. The main aspect of interest, however, is the bifurcation point. Continuation methods
can detect when a bifurcation point has occurred but its exact location remains unknown, only the interval
in which it lies is known. Therefore, once a bifurcation has been detected in the continuation, certain ad-
ditional methods can be employed that allow it to be calculated more accurately. It is then possible to free
a second parameter, γ, and track the bifurcation as it changes with both parameters. This allows a loci of
bifurcation points in two parameter space to be mapped out which corresponds to the stability boundary
of the problem being investigated. This is more efficient and accurate than performing continuation at
multiple fixed values of the second parameter, just to determine the stability boundary.

The basic premise behind all bifurcation tracking methods is the same. They utilize the fact that a
bifurcation results in a change in stability. The stability of the steady solutions to small perturbations can be
determined using linear stability analysis. This gives the eigenvalue problem, which has the form Jv = ηv.
Here η is the eigenvalue and v is the corresponding eigenvector. The eigenvalue and eigenvector generally
both have complex form and the eigenvalue can thus be written in terms of real values as η = ν ± iω. If
any eigenvalue has a positive real part, ν, then any perturbations applied to the system grow exponentially
with time and the system is considered unstable. Therefore, as a bifurcation point denotes a change in
stability, a bifurcation occurs when the solution has at least one eigenvalue with real part equal to zero.
In this work the type of bifurcation encountered was always of the Hopf type, therefore the bifurcation
tracking methods employed were set up to locate and track a Hopf bifurcation, although for both methods
an alternative formulation for tracking other simple bifurcations is possible. Hopf bifurcations occur when a
complex pair of eigenvalues crosses the imaginary axis. This means that ν = 0 and η = ±iω. Two different
methods were used to firstly locate and then to track a bifurcation. Both have a similar computational
cost per iteration and should produce similar results.

4.1. Augmented system

The first bifurcation tracking method employed was a method known as an augmented system. This type
of method involves solving a defining system that corresponds to the type of bifurcation that has been
detected. This enlarges the standard system by augmenting equations that define the bifurcation. The
solution of this larger system is a bifurcation point.

The set of equations that define the Hopf bifurcation are [Salinger et al., 2005]












R

Jv1 + ωv2

Jv2 − ωv1

φ · v1 − 1
φ · v2













= 0. (12)

This system solves for the five unknowns: the flow solution vector, Y, the real and imaginary parts of the
complex eigenvector, v1 and v2, the eigenvalue, ω, and the first parameter, λ. This involves expanding the
system to size 3N + 2. The first equation in system (12) specifies that the solution must be on the flow
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solution branch, the second and third ensure that the point has a purely imaginary eigenvalue and the
final two fix the phase and amplitude of the eigenvectors. Different formulations of the last two equations
have been used in other papers [Griewank & Reddien, 1983; Poliashenko & Aidun, 1995; Wriggers & Simo,
1990]. Applying Newton’s method to these equations gives

























J 0 0 0 ∂R
∂λ

∂Jv1

∂Y J ωI v2
∂Jv1

∂λ

∂Jv2

∂Y −ωI J −v1
∂Jv2

∂λ

0 φT 0 0 0

0 0 φT 0 0

















































∆Y

∆v1

∆v2

∆ω

∆λ

























= −

























R

Jv1 + ωv2

Jv2 − ωv1

φ · v1 − 1

φ · v2

























(13)

When dealing with large systems, such as in this case, increasing the size of the system from N to 3N + 2
can be prohibitive. Some of the computational burden can be removed by using a bordering method as
employed by LOCA [Salinger et al., 2005]. The solution algorithm for one iteration is then given by:

Ja = −R, (14)

Jb = −
∂R

∂λ
(15)

[

J ωI

−ωI J

][

c

d

]

=

[

v2

−v1

]

(16)

[

J ωI

−ωI J

][

e

f

]

=





−∂Jv1

∂Y a

−∂Jv2

∂Y a



 (17)

[

J ωI

−ωI J

][

g

h

]

=





−∂Jv1

∂Y b− ∂Jv1

∂λ

−∂Jv2

∂Y b− ∂Jv2

∂λ



 (18)

∆λ =
(φ · c)(φ · f)− (φ · e)(φ · d) + (φ · d)

(φ · d)(φ · g) − (φ · c)(φ · h)
(19)

∆ω =
(φ · h)∆λ+ (φ · f)

φ · d
(20)

∆Y = a+∆λb (21)

∆v1 = e+∆λg −∆ωc− v1 (22)

∆v2 = f +∆λh−∆ωd− v2 (23)

This solution algorithm requires two solves involving J, an N ×N matrix, and three solves involving
[

J ωI
−ωI J

]

a 2N × 2N matrix. These two matrices are sparse so it is possible to employ the same solver

as used for the continuation method. The vector φ can be any reasonable vector, in this work φ was
chosen to be a vector of ones. The derivatives that appear on the right hand side of Eq. (17) and Eq. (18)
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are calculated using second order differences. Equations (24)-(26) show the derivatives involving v1. The
derivatives involving v2 are calculated in a similar manner.

∂Jv1

∂Y
a =

R(Y + σ1v1 + ǫ1a, λ)−R(Y + σ1v1 − ǫ1a, λ)−R(Y − σ1v1 + ǫ1a, λ) +R(Y − σ1v1 − ǫ1a, λ)

4σ1ǫ1
(24)

∂Jv1

∂Y
b =

R(Y + σ1v1 + ǫ2b, λ)−R(Y + σ1v1 − ǫ2b, λ)−R(Y − σ1v1 + ǫ2b, λ) +R(Y − σ1v1 − ǫ2b, λ)

4σ1ǫ2
(25)

∂J

∂λ
v1 =

R(Y + σ1v1, λ+ ǫ3)−R(Y + σ1v1, λ− ǫ3)−R(Y − σ1v1, λ+ ǫ3) +R(Y − σ1v1, λ− ǫ3)

4σ1ǫ3
(26)

The perturbations, ǫ1, ǫ2, ǫ3, and σ1 have an impact on the efficiency and robustness of the algorithm. In
this work they are calculated using the following equations as they were found to perform well in the work
of Salinger et al. [2005]

ǫ1 = δ

(

‖Y‖

‖a‖
+ δ

)

(27)

ǫ2 = δ

(

‖Y‖

‖b‖
+ δ

)

(28)

ǫ3 = δ (|λ|+ δ) (29)

σ1 = δ

(

‖Y‖

‖v1‖
+ δ

)

(30)

The value of δ can be chosen by the user to be any small number. A value of 1 × 10−6 proved to work
well for these types of problems [Huntley, 2015]. This method requires good initial approximations for all
the unknowns. These are provided by the continuation method, which is employed until a bifurcation has
been detected and the eigenvalues and eigenvectors are calculated using the eigenvalue calculation method
described in Sec. 3.

4.2. Test function

An alternative way of locating a bifurcation is by using a test function. Test functions are continuous around
the bifurcation point and have the condition that at a bifurcation point the solution is zero. There are a
wide range of test functions available and although they solve the same system the choice of test function
is dependent upon the problem size and implementation [Govaerts, 1991]. The most common test function
for Hopf bifurcations works by noting that at a Hopf bifurcation the matrix J2 + ω2I has rank defect 2.
This method was considered initially, however although the matrix J2 +ω2I has the same dimensions as J
it is a lot more dense, which slows down the computation considerably. Therefore an alternative method
was implemented that works on the basis that at a Hopf bifurcation point the matrix J− iωI is singular.
This matrix is then appended with elements to make it non-singular. This gives a bordered matrix of

M =

[

J− iωI W
VT 0

]

(31)

Here V is the right complex eigenvector, where V = v1 + iv2 and W is the left complex eigenvector,
W = w1 + iw2. This system can be split into real and imaginary components. This increases the size of



8 S. Huntley et al.

the system from N +1 to 2N +2 but allows a real-valued solver to be applied to the system. The bordered
matrix written in terms of real-valued variables is

M =









J ωI w1 −w2

−ωI J w2 w1

vT
1 −vT

2 0 0
vT
2 vT

1 0 0









(32)

This matrix is then used to define the test function, which in this case has two components (h1 and h2),
defined by









J ωI w1 −w2

−ωI J w2 w1

vT
1 −vT

2 0 0
vT
2 vT

1 0 0

















p1

p2

h1
h2









=









0

0

1
0









(33)

where P1 and P2 are ... In order for Eq. (32) to have rank defect 1 it must be true that h1 = h2 = 0. This
means the defining system s = (Y, λ, ω) is then given by

R = 0, (34)

h1 = 0, (35)

h2 = 0. (36)

A single Newton iteration then solves the system










J ∂R
∂λ 0

∂h1

∂Y
∂h1

∂λ
∂h1

∂ω

∂h2

∂Y
∂h2

∂λ
∂h2

∂ω





















∆Y

∆λ

∆ω











= −











R

h1

h2











(37)

The partial derivatives of h1 and h2 with respect to s can be computed efficiently by considering the
solution of the transpose of the system

[

qT
1 qT

2 g1 g2
qT
3 qT

4 g3 g4

]

M =

[

0T 0T 1 0
0T 0T 0 1

]

(38)

By differentiating Eq. (33) and substituting Eq. (38) into the result, the derivatives with respect to Y, λ,
and ω are shown to be:

∂h1
∂Y

= −qT
1

∂J

∂Y
p1 − qT

2

∂J

∂Y
p2 (39)

∂h2
∂Y

= −qT
3

∂J

∂Y
p1 − qT

4

∂J

∂Y
p2 (40)

∂h1
∂λ

= −qT
1

∂J

∂λ
p1 − qT

2

∂J

∂λ
p2 (41)

∂h2
∂λ

= −qT
3

∂J

∂λ
p1 − qT

4

∂J

∂λ
p2 (42)

∂h1
∂ω

= −qT
1 p2 + qT

2 p1 (43)

∂h2
∂ω

= −qT
3 p2 + qT

4 p1 (44)
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where ∂J
∂Y is the Hessian matrix and ∂J

∂λ is the derivative of the Jacobian matrix, J, with respect to the
parameter, λ. For a two-dimensional system the Hessian matrix is a large three-dimensional system and its
computation is expensive. However, in the current implementation the Hessian is only required when post-
multiplied by two vectors, as in Eqs. (47) and (48) which allows it to be computed using a finite difference
formulation such as that given in Eq. (24). The system was solved by a block elimination algorithm that
requires only two solves of the matrix J as shown below.

Ja = −R (45)

Jb =
∂R

∂λ
(46)

∆λ =

(

∂h1

∂ω

∂h2

∂ω

h2 − h1 − h1Ya+
∂h1

∂ω

∂h2

∂ω

∂h2

∂Y a

)

(

∂h1

∂Y b+ ∂h1

∂λ −
∂h1

∂ω
∂h2

∂ω

(

∂h2

∂Y b+ ∂h2

∂λ

)

) (47)

∆ω =
−h2 −

∂h2

∂Y a−
(

∂h2

∂Y b+ ∂h2

∂λ

)

∆λ

∂h2

∂ω

(48)

∆Y = a+ b∆λ (49)

5. Results

The purpose of this work is to demonstrate the feasibility of bifurcation tracking methods for large systems
such as those that are created when CFD is used to model high Reynolds number flows around an airfoil.
Both the underlying CFD and the base continuation method have been verified for these types of problems
(see [Wales et al., 2012b,a]). The bifurcation tracking methods should be able to trace the path of a Hopf
bifurcation as two parameters are changed. The aim of this study is to show the applications of this approach
rather than compute any specific solutions. For this reason a typical geometry and mesh have been used
as the starting point for all the calculations. This was a NACA 0012 airfoil with a structured 225 × 65
C-mesh shown in Fig. 1 . The parameters used to track the bifurcation included the flow parameters: angle
of attack, Reynolds number and Mach number and the geometrical parameters: camber and thickness.
When the bifurcation tracking process involved a geometrical parameter, this was used as the second
continuation parameter. This meant that it could be held constant whilst the bifurcation tracking algorithm
was being converged and the mesh only needed to be adapted between bifurcation solution points. The
mesh adaptation was performed using a simple interpolation method. All the examples used the Spalart-
Allmaras turbulence model detailed above.

5.1. Bifurcation tracking of shock induced oscillations

The onset of shock induced oscillations is associated with a Hopf bifurcation and, as such, continuation
methods can be used to identify the parameter values where this unsteady flow regime begins. The original
continuation method can be used to calculate rough values where this bifurcation occurs and the accuracy
of the bifurcation point will depend on the step length used as it is unlikely that the step will give the exact
parameter value where the bifurcation occurs. Furthermore, computing the stability boundary for a range
of second parameters would require a continuation run to be performed for a selection of second parameter
values. This method was used in [Wales, 2010]. Before this, the previous computational evaluation of
stability used standard time integration and inspection of time histories to decide on the stability. Through
the use of bifurcation tracking methods the stability boundary can be computed directly, giving the exact
bifurcation point without the need for multiple continuation runs. This first test case examines the ability
of the direct bifurcation tracking methods to compute this stability boundary.
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Fig. 1. Close up of mesh used for NACA 0012 computations.

The angle of attack was used as the first continuation parameter, λ = α, and Mach number was used
as the second continuation parameter, γ = M , with a constant Reynolds number of 1× 107. Fig. 2 shows
the predicted boundary of the flow stability in terms of angle of attack and Mach number. The required
converged solution tolerance was set at 10−8. This test case required more work as the step size for the
Mach number had to be constantly monitored and adapted to enable both solution methods to converge.

Both methods show fairly good agreement but also fail to find any solutions in certain regions of the
solution curve. The two methods differ most at the higher Mach numbers. The augmented system method
looks likely to be correct whilst the solutions found using the test function are not entirely as expected. As
the test function still managed to compute converged solutions but diverged from the expected stability
boundary, this suggests that the test function may have located a different Hopf bifurcation and started to
track that. There can be multiple Hopf bifurcations, both physical and numerical, in a given system and
this number is also dependent on the CFD method used and how the problem is discretized. Furthermore,
ARPACK struggles to compute any eigenvalues at the higher Mach numbers indicating that the problem is
ill-conditioned. A mesh dependency study was not carried out for this particular test case although it has
previously been reported that it is more important to have a finer grid than one that extends further into
the free-stream [Iovnovich & Raveh, 2012] and the mesh used was chosen with this in mind. The CPU time
taken for the methods for this test case are given in Table 5.1. This shows that there is not much difference
in cost between the augmented system and test function. This is expected as both methods have a similar
computational cost per iteration, took a similar number of iterations to converge onto each solution and
computed a similar number of solutions.

5.2. Bifurcation tracking in Reynolds number and angle of attack

This test case investigates the performance of the bifurcation tracking methods at mapping the stability
boundary in a parameter space defined by both angle of attack and Reynolds number. The first continuation
parameter used was the angle of attack, λ = α, whilst the second continuation parameter was Reynolds
number, γ = Re. The tracking was performed for a range of Reynolds numbers between 5 × 106 and
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Fig. 2. Shock induced oscillations for a NACA 0012 airfoil Re = 1× 107.

Table 1. Time taken for the bifurcation
tracking
methods for shock induced oscillations.

Method CPU Time (s)

Augmented System 3.06× 105

Test Function 3.19× 105

3.3 × 107 with an initial step size of 0.5 × 106. The Mach number was fixed at 0.3. This problem was set
up to replicate that of the Reynolds number continuation test case in Wales [2010], which mapped the
stability boundary by performing continuation at fixed Reynolds numbers and angles of attack.

Both methods were converged to a tolerance of 10−8. Both tracking methods were initialized by per-
forming continuation in angle of attack at a fixed Reynolds number of 5×106, using the arclength continu-
ation method. The continuation was performed until the eigenvalue solver had detected that a bifurcation
had occurred. Both methods generally show good agreement throughout the range of parameter values, as
shown in Fig. 3. Some bifurcation points are computed at the same parameter values, whilst others have
a small discrepancy, most noticeably at the lower Reynolds numbers. This could again be due to multiple
Hopf bifurcations, numerical or physical, being present in this range of parameters.

The CPU time taken for the methods for this test case are given in Table 5.2. Again, the cost of the
augmented system and test function method are similar, as would be expected given the size of the system
is the same.

The following results will present bifurcation tracking with a shape parameter. This reflects the idea
of how a change in design could move the unwanted bifurcation outside the operating range.
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Fig. 3. Stability limit of Reynolds number and angle of attack for a NACA 0012 airfoil M = 0.3.

Table 2. Time taken for the bifurcation
tracking methods for Reynolds number
and angle of attack.

Method CPU Time (s)

Augmented System 3.18× 105

Test Function 3.22× 105

5.3. Bifurcation tracking in camber and angle of attack

This test case compares the performance of the bifurcation tracking methods at mapping the stability
boundary in a parameter space defined by both angle of attack and camber. The results were carried out
for the flow past a NACA 4-digit airfoil with a constant thickness of 12% chord, with the initial airfoil
being a NACA 0012. The first continuation parameter used was the angle of attack whilst the second
continuation parameter was camber. The tracking was performed for a range of cambers between 0% chord
and 0.4% chord with the maximum camber location being kept constant at 40% chord. The Mach number
was fixed at 0.7 and the Reynolds number was fixed at 1× 107. The required converged solution tolerance
was set at 10−8 for both methods.

The results, shown in Fig. 4, show a fairly good agreement between the test function and augmented
system method. Tracking a bifurcation in camber proved difficult for all the methods with neither method
being able to track the bifurcation beyond a camber of 0.4% chord. The test function method also required
a much smaller step size in camber in order to be able to continue the solution curve. The step size for the
augmented system was 0.04% chord whilst the test function needed the step size to be reduced to 0.02%
chord. Furthermore, the test function only managed to compute solutions up to 0.2% chord, which is half
the range that the augmented system was able to achieve. Part of the reason for the lesser performance of



Bifurcation Tracking For High Reynolds Number Flow Around An Airfoil 13

Camber (% Chord)

A
n

g
le

 o
f 

A
tt

ac
k 

(D
eg

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

4.78

4.8

4.82

4.84

4.86

Augmented System
Test Function

Fig. 4. Stability limit of camber and angle of attack for a NACA 4-digit airfoil with a thickness of 12% of the chord at
M = 0.7 and Re = 1× 107.

both methods in this test case could be due to the simple implementation of mesh adaptation.

5.4. Bifurcation tracking in thickness and angle of attack

This test case looks at the performance of the bifurcation tracking methods at mapping the stability
boundary in a parameter space defined by both angle of attack and thickness. The results were carried out
for the flow past a symmetric NACA 4-digit airfoil, again starting with the NACA 0012 airfoil.

The first continuation parameter used was angle of attack whilst the second continuation parameter
was thickness. The tracking was performed for a range of thicknesses between 12% chord and 15% chord
with a constant step size of 0.1% chord. The Mach number was fixed at 0.7 and the Reynolds number was
fixed at 1 × 107. As with all the previous test cases, the required converged solution tolerance was set at
10−8. Both tracking methods were initialized by performing continuation in angle of attack at a thickness
of 12% chord, giving the NACA 0012 airfoil, using the arclength continuation method. The continuation
was performed until the eigenvalue solver had detected that a bifurcation had occurred. Again, the results,
shown in Fig. 5, show a good agreement between the two methods. It shows that a thicker airfoil reduces
the angle at which the flow solution becomes unstable, although this occurs at a much higher rate initially
and then levels off towards the thickest airfoils computed.

5.5. Bifurcation tracking in thickness and Mach number

This test case compares the performance of the test function and augmented system bifurcation tracking
methods at mapping the stability boundary in a parameter space defined by both Mach number and
thickness. The first continuation parameter used was the Mach number whilst the second continuation
parameter was thickness. The tracking was performed for a range of thicknesses between 12% chord and
15% chord with a constant step size of 0.25% chord. The angle of attack was fixed at 4.8◦ and the Reynolds
number was fixed at 1 × 107. The required converged solution tolerance was set at 10−8. Both tracking
methods were initialized by performing continuation in Mach number at a thickness of 12% chord, giving the
NACA 0012 airfoil, using the arclength continuation method. The tracking methods were implemented once
the continuation method had detected that a bifurcation had occurred, which was achieved by computing
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Fig. 5. Stability limit of thickness and angle of attack for a NACA 4-digit symmetric airfoil at M = 0.7 and Re = 1× 107.
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Fig. 6. Stability limit of thickness and Mach number for a NACA 4-digit symmetric airfoil at an angle of attack of 4.8◦ and
Re = 1× 107.

the eigenvalues. The results, shown in Fig. 6, show a good agreement between the two methods especially
towards the end of the tracking. This figure shows that as the thickness of the airfoil is increased the Mach
number at which the flow solution becomes unstable is reduced.

Combining the results from bifurcation tracking in angle of attack and thickness at Mach 0.7 and
with addition of further solutions at different fixed Mach numbers allows stability boundary surfaces to
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be generated. The boundary shown in Fig. 7 was generated using the augmented system method, as this
method was found to be the most robust and produce the most consistent results. This shows a range of
angles, Mach numbers and thicknesses, for a constant Reynolds number of 1× 107 where there is a change
in stability due to a pair of complex eigenvalues crossing the imaginary axis. Anything above this surface
as it is displayed gives an unstable solution, whilst anything below it is a stable flow solution. The three
Figs. 7, 8 and 9 show the corresponding coefficients for lift, drag and moment as contours on the surface,
respectively.

Fig. 7. Lift coefficient on the stability limit of thickness, Mach number and angle of attack for a NACA 4-digit airfoil with
Re = 1× 107.

Fig. 8. Drag coefficient on the stability limit of thickness, Mach number and angle of attack for a NACA 4-digit airfoil with
Re = 1× 107.

The last three test cases demonstrate that if applied in three dimensions these methods could be used
to aid the design of the aircraft if applied in a optimisation type calculation.



16 REFERENCES

Fig. 9. Moment coefficient on the stability limit of thickness, Mach number and angle of attack for a NACA 4-digit airfoil
with Re = 1× 107.

6. Conclusions

This paper shows that direct bifurcation tracking methods are a viable means to map stability boundaries of
high Reynolds number flow around an airfoil as system parameters are varied. The parameters demonstrated
in this paper include flow parameters: angle of attack, Mach number and Reynolds number and geometrical
parameters: camber and thickness.

Although the bifurcation tracking methods have successfully been applied to a large system to predict
the stability limit, they are still currently limited by the size of the problem they can handle. This could
be overcome by solving the matrix system using an indirect method as opposed to the direct method
currently implemented. This would lead to a larger range of problems that could be analysed but would
require the development of a preconditioner suitable for this type of flow, which must have the properties
of accelerating the indirect solver and being robust over a wide range of parameters.

This paper has used only the Spalart-Allmaras turbulence model, this has a direct bearing on the
accuracy of the results but not on the effectiveness of the bifurcation tracking methods. Other turbulence
models could be implemented. This may be especially beneficial for the cases where the two methods do
not agree, to investigate whether these bifurcations are physical or numerical.
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