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Abstract. The concept of adaptive security for proofs of knowledge was
recently studied by Bernhard et al. They formalised adaptive security
in the ROM and showed that the non-interactive version of the Schnorr
protocol obtained using the Fiat-Shamir transformation is not adaptively
secure unless the one-more discrete logarithm problem is easy. Their only
construction for adaptively secure protocols used the Fischlin transfor-
mation [11] which yields protocols with straight-line extractors. In this
paper we provide two further key insights. Our main result shows that
any adaptively secure protocol must have a straight-line extractor: even
the most clever rewinding strategies cannot offer any benefits against
adaptive provers. Then, we show that any Fiat-Shamir transformed X-
protocol is not adaptively secure unless a related problem which we call
the X-one-wayness problem is easy. This assumption concerns not just
Schnorr but applies to a whole class of X-protocols including e.g. Chaum-
Pedersen and representation proofs. We also prove that X-one-wayness
is hard in an extension of the generic group model which, on its own
is a contribution of independent interest. Taken together, these results
suggest that the highly efficient proofs based on the popular Fiat-Shamir
transformed X-protocols should be used with care in settings where adap-
tive security of such proofs is important.

1 Introduction

Noninteractive zero knowledge proofs are a useful tool widely deployed in mod-
ern cryptographic constructions. They allow a prover (e.g. the creator of a ci-
phertext) to send a single message which will convince a verifier of the veracity
of a certain statement (e.g. that the plaintext underlying a ciphertext respects
certain constraints), without revealing any further information. A particularly
useful variant are the so called “proofs of knowledge" where there exists an ex-
tractor who can efficiently recover from the prover a witness that the statement
is true. Over parties in the system (who should obtain no information from the
witness), the extractor benefits from setup assumptions like the common ref-
erence string model or the random oracle mode [3]. Our focus is on the latter
model which yields by far the most efficient noninteractive proofs of knowledge



known to date. In a nutshell, in this paper we study different extraction strate-
gies afforded by the random oracle model and identify fundamental efficiency
limitations that such proofs need to face in practically relevant scenarios.

Background. Recall that in the random oracle setting the extractor learns
the RO answers/queries that the prover makes. Here, we distinguish between
several extraction strategies. ! An extractor is straight-line if it only sees a single
execution of the prover. An extractor is rewinding if it is allowed to launch and
interact with further copies of the prover (with the same coins used to produce
the statement) before returning a witness.

The distinction between straightline and rewinding extractors may be crucial
in applications since for a rewinding extractor it is not clear how many times does
it have to rewind to extract all witnesses from a prover who makes a sequence of
n proofs. Shoup and Gennaro [20] first encountered this problem in the context of
proving CCA security of a particular public-key encryption scheme; the “obvious”
approach ends up rewinding 2™ times which leads to an inefficient reduction.
Clearly, this problem disappears for a straight-line extractor.

The notion of adaptive proofs which lie somewhere between proofs with in-
efficient rewinding strategies and straight-line PoKs has been recently proposed
by Bernhard et al. [5]. A proof scheme is adaptively secure if there is an extrac-
tor that can rewind, but must efficiently extract even from provers who make
sequences of proofs. The notion is called adaptive because the extractor must
return a witness for the first proof to the prover before the prover makes the
second one, and so on.

As an application, Bernhard et al. study the Fiat-Shamir-Schnorr proofs:
a non-interactive proof of knowledge obtained by applying the popular Fiat-
Shamir [10] transform to the Schnorr [17] protocol for proving knowledge of
discrete logarithm. The main theorem of [5] shows the Fiat-Shamir-Schnorr
proof scheme is not an adaptive proof unless the one-more discrete logarithm
problem is easy. This result essentially separates the usual PoK notion from
adaptive proofs, but the separation has several shortcommings: i) it relies on an
inefficient interactive assumption, ii) it is specific to a proof system for a specific
problem (discrete logarithm), and iii) it is specific to a class of proofs (those
obtained from X-protocols via the Fiat-Shamir transform). That is, it does not
pinpoint precisely the source of the difficulty and, in particular, it leaves open
the question whether any adaptive proofs exist that are not also straight-line?.

Our contribution. In this paper we obtain a full characterization of adaptive
proofs in the random oracle model and we leverage this result to provide more
general results regarding the limitations of the Fiat-Shamir transform. Below we
outline our contributions.

! Recall that in the random oracle model hash functions can only be computed by
calling an oracle available to all parties (and which on a fresh input returns a truly
random output).

2 Straight-line proofs are trivially adaptively secure.



ADAPTIVE PROOFS = PROOFS WITH STRAIGHTLINE EXTRACTORS. Our main
contribution is a negative answer to Bernhard et al.’s open question. It holds for
all non-interactive proof schemes in the ROM, whether or not they are derived
from X-protocols:

Theorem 1 (Informal). Consider an arbitrary non-interactive proof of knowl-
edge system in the ROM. If the proof system has an efficient adaptive extractor
against adaptive provers then it also has a straight-line extractor.

The immediate consequence of this theorem is that when designing PoKs for
an adaptive setting, one cannot rely on rewinding and instead one should ensure
the existence of a straightline extractor. While a general strategy is to employ
Fischlin’s transformation [11], one may still want to rely on the more efficient
construction that uses the Fiat-Shamir transformation whenever possible — the
impossibility result of Bernhard et al. [5] only applies to Fiat-Shamir-Schnorr
proofs.

LIMITATIONS OF THE FIAT-SHAMIR TRANSFORM. We show that the Fiat-Shamir
transformation has intrinsic limitations. In particular, we generalize the results of
[5] in two distinct directions. On the one hand, we show that it holds for arbitrary
X-protocols for proving knowledge of preimages of linear functions (including
Schnorr, Chaum-Pedersen and representation proofs). More interestingly, we
weaken the condition under which these proofs are not adaptively secure from
one-more discrete logarithm (resp. one-more one-wayness [1]) to the following
assumption: a dishonest verifier in a single execution of the X-protocol cannot
extract the witness. We call this assumption X-one-wayness. Our result thus
improves from a “g-type” assumption, which does not admit an efficient game,
to an efficient game with only three rounds.

This theorem answers the main open question of [5] and hints at a short-
coming of proofs based on the Fiat—Shamir transform: if used in a setting where
the prover gets to adaptively chosen statements, an extractor would have to be
(more or less) straight-line. However, if this is the case, the proof may not be
that interesting anyway as the underlying witness is not well-protected:

Theorem 2 (Informal). Suppose there is a straight-line extractor for a Fiat-
Shamir transformed X-protocol X (to prove knowledge of a preimage of some
linear function f). Then a dishonest verifier can extract a witness (a preimage
under f) in a single run of X.

Taken together, these results imply that Fiat-Shamir transformed X-protocols
are not adaptively secure in any setting in which they might be useful. Take
the Schnorr protocol as an example: if Fiat-Shamir-Schnorr is adaptively secure
then either discrete logarithms are easy in the relevant group, in which case the
Schnorr protocol is redundant, or the Schnorr protocol provably helps a dishon-
est verifier to extract the discrete log of the statement — in which case Schnorr
is certainly not zero-knowledge.

The theorem of Bernhard et al. [5] contains an adaptive prover who makes
a sequence of n proofs such that each one depends on all previous ones. The



straightforward rewinding strategy — rewind on every proof to extract — ends
up rewinding 2" times since the rewound provers make new proofs which again
have to be rewound. A combinatorial argument then shows that any strategy
that rewinds fewer than 2™ times must have taken a discrete logarithm to find
out the witness for one of the proofs output by the prover. The problem is that
we do not know where, and also if we inject a challenge in one proof then we
end up having to simulate all other proofs in the experiment. So far the solution
to this problem was to reduce to the one-more discrete logarithm problem.

Our proof technique for Theorem 2 (formally, Theorem 14) is to take any
prover and turn it into an adaptive prover who makes a chain of n proofs,
together with some bookkeeping. We then show that any adaptive extractor
against this prover must either take exponential time or reduce to a straight-line
extractor against the original prover. Applying this theorem to the honest prover,
we get a reduction to X-one-wayness. We summarize these results in the following
table (FSS=Fiat-Shamir-Schnorr, DLOG=discrete logarithm, OMDL=one-more
discrete logarithm).

property breaks if FSS has
one-way (e.g. DLOG) straight line extractor [1§]
Y -one-way adaptive extractor (new)

one-more one-way (e.g. OMDL) adaptive extractor [5]

In conclusion, we suggest that adaptive proofs are not a new class of proofs
but rather another description of the class of straight-line extractable proofs;
and Fiat-Shamir transformed Y -protocols for “useful” functions are not in this
class.

WEAKER ASSUMPTIONS. The obvious next question is whether one can improve
our results even further and only rely on one-wayness (e.g. in the case of Schnorr,
DLOG) rather than X-one-wayness. We show using a meta-metareduction that
no algebraic metareduction [16] from a programming extractor to one-wayness
(e.g. DLOG) can exist, unless one-wayness is already easy. All previous metare-
ductions in this area [18,5] including ours to X-one-wayness are algebraic: the
only operations they perform on elements of the target group are group opera-
tions.

A GENERALIZATION OF THE GENERIC GROUP MODEL (GGM). To strengthen
trust in the Y'-one-wayness hypothesis on which our impossibility relies we pro-
vide a justification in the generic group model. Interestingly, the first problem
that one needs to face here is that the existing approaches to formalizing and
using GGM is not suitable: in brief, an adversary that interacts with the X
protocol for some problem gets to see not only group elements but also some
information related to the exponents of these group elements — this ability is not
considered the standard GGM formalizations. We suggest one approach to deal
with this issue and use the resulting model to formally justify X-one-wayness.



Related work. One-more type assumptions were introduced by Bellare et al.
[1]. Their value in proving schemes secure is subject to some debate, as ex-
plained by Koblitz and Menezes [13] who also gave the first “weakened” one-
more assumption. Problems with forking-based proofs were first noted by Shoup
and Gennaro [20]; Paillier and Vergnaud [16] developed separation results for
Schnorr-based signatures using metareductions that formed the first formal proof
of a limitation of Schnorr-based techniques. Both Brown [8] and Bresson et al.
[9] concurrently applied separation techniques to one-more problems. Fischlin
and Fleischhacker [12] were the first to consider limitations of metareductions
via meta-metareductions. The most recent results that motivated this paper
are Seurin and Treger [18] who gave a very simple metareduction from a non-
programming extractor for Schnorr proofs to discrete log; and Bernhard et al.
[5] who introduced adaptive proofs.

2 Preliminaries

NOTATION. f: A — B is a function with domain A and range B; A: A - B
is a randomised algorithm on the same domain and range. We write security
games in a language based on Bellare and Rogaway’s code-based game-playing
[2]. v + f(z) is assignment, x « R is uniform random sampling. T[i] is the
element at index 7 of table T'.

An interactive, randomised algorithm A has access to a random string r
and an input/output interface. It maintains its state between calls. A security
game is such an algorithm that may at some point output “win” or “lose”, which
terminates the entire execution. We say that a security property is given by a
game, to mean that the property holds if no efficient adversary can cause the
game to output “win” with more than negligible probability in some underlying
security parameter.

X-PROTOCOLS — Let k be a field. Let W, X be k-vector spaces and let ¢ : W —
X be a k-linear map, (i.e. linear map w.r.t. the field k). Suppose further that
one can sample uniformly from k& and W.

Definition 3. The X-protocol Xy is the following interactive protocol for a
prover P to prove knowledge of a preimage under ¢ to a verifier V.
Plwe W,z = ¢(w)) 14
T« W;a < ¢(r) N

—— c«k

sr+c-w —— ¢(s);a+c~x

We choose to let P transmit the statement = to V' as part of the first round
of the proof — of course, V may also know x in advance. The verifier accepts
if the equation ¢(s) = a + ¢z holds in X, in which case we call (z,qa,c¢,s) an
accepting transcript. Instances of this template protocol include:



— Schnorr: W = k = GF(p), X is some group G of order p with a generator g
(e.g. over an elliptic curve) and ¢(w) = g*.

— Chaum-Pedersen: W = k, X = G x G for a group as above and ¢(w) =
(g™, ") for two different generators g, h of G.

— Representation: W = k™, X = G and ¢(w1,...,w,) = [, ¢ for some
known set of generators {g;}icsr of G.

JY-protocols according to our definition automatically satisfy:

— Special soundness: if (z, a, ¢, s) and (x, a, ¢, s") are accepting transcripts with
c# ¢ then 1/(c— ') (s — §') is a preimage® of x under ¢.

— Soundness: if 2’ € X\ Im[¢], then a cheating prover gets a verifier to accept
with probability at most 1/|k|.

— Honest-verifier zero-knowledge: a verifier who chooses ¢ as prescribed (at
least, independently of a) gains no information from the protocol beyond
the fact that the prover knows a preimage of z under ¢.

PROOF SCHEMES — A (non-interactive) proof scheme for a relation p on sets
X, W consists of a proof space II and a pair of algorithms prove : X x W — I
and verify : X x II — {0,1} (i.e. verify is deterministic). An element 7 € IT
satisfying verify(x,m) = 1 is called a valid proof for z. For any (z,w) satisfying
p, if ™ < prove(z,w) then we require verify(z,7) = 1. We further assume
that there is an algorithm sample :— X x W that produces elements uniformly
distributed in p (as a subset of X x W). In the random oracle model (ROM),
both prove and verify may call a function H that is modelled as a random
oracle in security proofs. The relation p itself does not use H.

F1aT-SHAMIR — The Fiat-Shamir transformation turns X-protocols into non-
interactive proof schemes that are full zero-knowledge proofs of knowledge in the
random oracle model. The idea is simply to replace the verifier’s challenge ¢ by
a hash over the statement = and the commitment a.

Definition 4. Let ¢ : W — X be a k-linear function where W and k are effi-
ciently sampleable. Suppose that H is a function with domain (including) X x X
and range k. Then the Fiat-Shamir transformed X-protocol Fy is the following
proof scheme for sets (X, W) and relation p(z,w) =1 <= ¢(w) = x. The
proof space is I = X x W and the algorithms are

— sample(): pick w «= W, set x < ¢(w) and return (z,w).

— prove(z,w): pickr « W, set a + ¢(r), c + H(z,a) and s + r + cw.
The proof is ™ = (a, s).

— verify(z,(a,s)): check that ¢(s) = a+ H(z,a) - x.

3 The inversion 1/(c — ¢’) is in the field k where it exists due to ¢ # ¢/; the dot in this
formula is field-vector multiplication.



3 Variations on the theme of one-wayness

J-protocols are only useful when the function ¢ is hard to invert: otherwise, they
are trivially zero-knowledge proofs of knowledge, but so is the protocol in which
the prover just sends the statement x to the verifier. For the same reasons, if ¢ is
easy to invert then Fg is adaptively secure too. This shows that we cannot hope
for a theorem of the form “Fiat-Shamir Schnorr is not adaptively secure”, since it
is adaptively secure e.g. in the group (Z,, +) where taking discrete logarithms is
easy. Consequently, limitation theorems take the form “if Schnorr is adaptively
secure then some property (e.g. OMDL) is easy to break”.

We discuss some possible security properties of the function ¢ and introduce
X-one-wayness. Later on we will show that Fiat-Shamir proofs cannot be adap-
tively secure unless X-one-wayness of ¢ is easy to break (in which case, their use
within protocols would be already questionable).

Y-ONE-WAYNESS. One-wayness is the first obvious candidate property. Recall
that a property defined by a game means that the property (in this case one-
wayness of ¢) holds if it is hard to make the game output “win”. The game gives
the adversary a uniformly chosen image x; the adversary wins by recovering any
preimage w’ s.t. p(w’) = x.

Definition 5. The one-wayness property for a function ¢ : W — X is given by
the following game.

1w« Wiz +— ¢(w)
2 |output z; input w’ € W
3 |if ¢(w’) = then return “win” else return “lose” end

We propose a new security notion that we call X-one-wayness (for linear func-
tions). This says that even a dishonest verifier (who chooses ¢ arbitrarily, maybe
depending on z and a) cannot extract w from a single run of the protocol. We do
not claim that X-one-wayness is a sufficient security notion for X' protocols (it
says nothing about extracting partial information on w) but we postulate that it
is only deployed if this condition is satisfied. Consequently, we are not proposing
a new scheme that is secure under the XY-one-wayness assumption, but we will
claim that if the Fiat-Shamir proof scheme for a function ¢ is adaptively secure
then the Y-one-wayness property for ¢ is easy to break too. X-one-wayness is
clearly stronger than one-wayness of the function ¢, but it will turn out to be
weaker than one-more one-wayness (which we define in a moment).

Definition 6. The X'-one-wayness property for a linear function ¢ : W — X is
defined by the following game.



w «— Wiz + ¢(w)

T« Wsa < ¢(r)

output (z,a); input c € k
S<r+c-w

output s; input w’' € W
if ¢(w') =z then return

o O W N e

4

‘win” else return “lose” end

If X-one-wayness of a function ¢ is easy to break but one-wayness is hard
to break, then running the protocol Xy could leak a preimage to a dishonest
verifier, that said verifier could otherwise not compute by herself. In this case we
would discourage the use of the protocol Xy (among other things it is certainly
not zero-knowledge). If both X-one-wayness and one-wayness of ¢ are easy to
break then XYy is both harmless and useless. So, we think that X-one-wayness
of ¢ is a necessary condition for the protocol Y4 to be deployed. Under this
condition, we will show that the Fiat-Shamir transformed Yy is not adaptively
secure.

WEAK ONE-MORE ONE-WAYNESS. For Schnorr, the one-wayness property of the
function ¢(x) = ¢g® is the discrete logarithm property. Bernhard et al. [5] use a
stronger assumption known as one-more discrete logarithm, which generalises to
one-more one-wayness|1, 9.

One-more one-wayness assumes an invertible function ¢. The adversary is
given two oracles which she can call in any order: a sampling oracle that picks
a random preimage w; € W and reveals z; = ¢(w;) and an opening oracle that
on input x outputs ¢~!(x). To win the game, the adversary must recover the
preimages of all samples z; with fewer calls to the opening oracle than to the
sampling oracle.

One-more one-wayness was first discussed by Bellare et al. [1] although the
name first appears in a later paper [9]. Unlike the other properties here, it does
not admit an efficient security game: the game itself needs to be able to invert
¢ on arbitrary inputs. Koblitz and Menezes [13] discussed a variant that only
allows the adversary to open challenges themselves; this is insufficient for our
applications. Instead we propose a new property: weak one-more one-wayness
fixes this problem by restricting the adversary to asking linear combinations of
the sampled challenges. Your task is still to recover all w; with fewer queries to
the linear combination oracle than to the sampling oracle. The requirement for
¢ to be invertible can also be dropped again.

Definition 7. The weak and normal one-more one-wayness properties for a bi-
jection ¢ : W — X are given by the following games. In each game the adversary
can call the sample and open oracles many times, in any order. The adversary
wins the game if it can provide preimages under ¢ for all samples that it had
obtained and yet it made fewer opening queries than sample queries.



weak one-more one-wayness: one-more one-wayness:

sample(): sample() :
n<n+1 (same as weak version)
wn] « W

return ¢(w(n])

open(x € X'):
return ¢~ !(z)

open(cy,...,cp € K™):
return » . ¢ -w;

N o s W N e

N o o W e

The strong problem clearly reduces to the weak one. A weak adversary can
still obtain a preimage of a particular sample by submitting the vector with 1
at the appropriate position and 0 elsewhere.

The point of the weak one-more one-wayness property is that the theorem
by Bernhard et al. [5] can trivially be strengthened to show that Fiat-Shamir-
Schnorr is not adaptively secure even under the weak one-more discrete logarithm
property: their reduction only ever makes opening queries on elements that are
linear combinations of samples with known coefficients. This is not surprising
since their reduction is trying to “simulate” Schnorr proofs on sample elements.

X -one-wayness reduces to weak one-more one-wayness, even to a weaker ver-
sion where the number of samples is additionally bounded at 2 and only a single
linear combination query is allowed. Thus, we end up with a hierarchy of one-
wayness / X-one-wayness / weak one-more one-wayness / one-more one-wayness,
in order of increasing strength.

4 Adaptive proofs

In this section we recall the notion of adaptive proofs and introduce templates
for a couple of provers that form the basis of the results we prove in the next
section.

Definition 8. A prover is an algorithm P that outputs a statement/proof pair
(x,m); in the ROM a prover may make random oracle calls. We assume that
there is a uniformly sampleable space of random strings R associated to each
prover and we write P(r) to mean running prover P on random string r € R.
In the ROM, we write (x,m,1) < P(r) to mean that we also return the list | of
random oracle queries made by this execution of the prover on random string r.

A proof scheme is sound with error ¢ if for any prover P, the probability
of producing a pair (x,7) such that verify(z,7) = 1 but no w exists making
p(x,w) hold, is at most e.

A proof scheme in the random oracle model is straight-line extractable with
error ¢ if there is an extractor K as follows. For any prover P, pick r «~ R and
execute (z,m,1) «+ P(r). If verify(z,7) = 1 w.r.t.? [ then with probability at
least 1 —e¢, K(x,m,1) returns a w such that p(z,w) holds. It follows immediately



that an extractable proof scheme with error £ is also sound with at most the
same error.

A straight-line extractor, has black-box access to further copies of the prover
in the following sense: it may start these copies and control all interaction with
them, including picking the random string and answering all random oracle
queries. As motivation for this (established) notion of straightline extractors,
consider an extractor who is trying to extract from an honest prover. The code
of the honest prover is known, so the extractor can always simulate the honest
prover on inputs of its choice. The extractor cannot see the random coins of the
“main” copy of the honest prover from which it is trying to extract, however.

A proof scheme in the ROM has a programming straight-line extractor with
error ¢ if there is a straight-line extractor /C as follows. Let any prover P interact
with IC in the sense that I answers P’s random oracle queries. If P outputs
(x,m) such that verify(z,7) = 1 w.r.t. the oracle queries made by P, then with
probability at least 1 — e, K outputs a w such that p(x,w) holds.

A rewinding extractor can, in addition to the capabilities of a straight-line
extractor, launch further copies of the prover P with the same random string as
the one that the extractor is trying to extract from, and answer their random
oracle queries. The difference between straight-line and rewinding extractors is
thus that rewinding extractors can run further copies of the prover that behave
identically to the “main” one, as long as they receive the same inputs and outputs,
and thus “fork” the prover instance from which they are trying to extract.

ADAPTIVE PROOFS. We present the adaptive proof game of Bernhard et al. [5].
The game is an interactive algorithm with two interfaces for an adaptive prover
and an extractor. An adaptive prover for a proof scheme (II,prove,verify)
w.r.t. (X, W, p) is an algorithm that can repeatedly output pairs (z,7) € X x IT
and expect witnesses w € W in return. After a number of such interactions, the
adaptive prover halts. In the random oracle model, an adaptive prover may also
ask random oracle queries.

An adaptive extractor is an algorithm K that can interact with an adaptive
prover: it repeatedly takes pairs (z,m) € X x II such that verify(z,m) = 1
as input and returns witnesses w € W such that p(z,w) = 1. In addition, an
adaptive extractor may be rewinding, i.e. launch further copies of the adaptive
prover that run on the same random string as the main one (managed by the
game) and answer all their queries. The adaptive proof game does not check the
correctness of witnesses for the other copies of the prover.

Definition 9. A proof scheme (I, prove,verify) is an n-proof (with error ¢)
in the random oracle model if there is an adaptive extractor K such that for
any adaptive prover P, the extractor wins the game in Figure 1 (with probability
at least 1 — €). The adaptive extractor K may launch and interact with further

4 We say verify(z,7) = 1 w.r.t. [ if all elements on which verify queries the oracle
on input (x,7) are contained in I, and verify outputs 1 on these inputs if given the
appropriate responses in [.

10



1 | initialise: 18 | K asks ro(z):

2 Q<+ ] 19 y < ro(x)

3 K<+0 20 send y to K

4 r« R 21

5 run P(r) 22 | K outputs w:

6 23 if p(E,w) then

7 | P asks ro(z): 24 K+ K+1

8 y < ro(x) 25 if K =n then
9 Q<+ Q:(x,y) 26 K wins; halt.
10 send y to P 27 end

11 28 send w to P
12 | P outputs (z,m): 29 else

13 if not verify(z,7) then 30 P wins; halt.
14 I wins; halt. 31 end

15 end 32 | P halts:

16 Sz 33 K wins; halt.

17 send (z,m, Q) to K

Fig. 1. The adaptive proof game. The extractor also has access to further copies of
P(r) — to avoid cluttered notation we do not show this access explicitly.

copies of the adaptive prover P on the same random string r as the main one,
without the game mediating between them.

In the n-proof game in Figure 1, the prover P is trying to find a claim (z, )
that verifies, but from which the extractor K cannot extract a witness w. The
extractor is trying to extract witnesses from all claims made by the prover.

The game uses three global variables. K stores the number of witnesses that
the extractor has found so far. If this counter reaches n, the extractor wins and
the scheme is an n-proof. @ stores a list of all the prover’s random oracle queries
so far. These are provided® to the extractor along with each of the prover’s
claims. = stores the last statement that appeared in one of the prover’s claims;
it is used to check the validity of a witness returned by the extractor.

A n-proof for n = 1 is simply a proof of knowledge in the ROM: the prover
makes a single claim (a pair containing a statement x and a proof ) and the
extractor wins if it can obtain a witness. A proof scheme is an adaptive proof if
there is an adaptive extractor that works for any polynomially bounded param-
eter n.

CANONICAL PROVERS. The canonical prover Po samples a statement/witness
pair and creates a proof. We write R¢ for the randomness space of the canonical
prover and Pc(r) to denote running the canonical prover on the random string
r € Re.

5 The original definition gave the extractor an extra list oracle to query the prover’s
random oracle list. Our presentation is equivalent.
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5 |for i = n, 1, -1 do
P (r): 6 ?utput (Ixi,m)
7 input w
1t |for i =1, n do 8 if not p(z;,w’) then
2 (4,3, 1) < P(r) 9 halt
3 r <« F(r,) 10 end
4 |end 11 |end

Fig. 2. The adaptive chain prover P". The provder depends on function F' which here
we assumed fixed. When F' is a pseudorandom function, a key for F' is sampled at the
beginning of the execution of P".

Definition 10 (canonical prover). Let (II, prove,verify) be a proof scheme
for (X, W, p) where r is uniformly sampleable via an algorithm sample. The
canonical prover Po for this scheme is the following algorithm.

(z,w) < sample(); 7 + prove(z,w); return (z,m)

If required, the canonical prover can also return the list | of all random oracle
queries made during its execution (by prove).

Since an extractor is supposed to work against any (efficient) prover, to argue
that an extractor cannot exist it is enough to show that one cannot extract from
the canonical prover. To deal with adaptive extractors, we propose the following
construction of an adaptive chain prover P" from any prover P. It follows the
idea of Shoup and Gennaro [20] in making a chain of “challenges” (in this case
proofs) where each challenge depends on all previous ones and then asking queries
on them in reverse order. This way, the obvious rewinding extractor using special
soundness will take exponential time.

To make each challenge depend on previous ones, we use a function F' to
update the random string for each of the n contained copies of P based on the
(random oracle) state of the previous copy. The final parameter [ returned by
P is the list of all random oracle queries made by this copy. Recall that P(r)
means run prover P on random string » € R where R is the randomness space
for this prover.

Definition 11 (adaptive chain prover). Let (II,prove,verify) be a proof
scheme for (X, W, p). Let P be any prover (in the ROM) and let R be its random-
ness space. Let L be the space of possible random oracle input/output transcripts.
Let F: Rx L — R be a function (which does not depend on the random oracle).
The adaptive chain prover P™ of order n w.r.t. function F' is the algorithm in
Figure 2, taking an r € R as input.

Later on, we will take F' to be a (pseudo-)random function. This has the
effect that two copies of P™ that get identical answers to their random oracle
queries will behave identically, but two copies of P" that “fork” will behave as
copies of P with independent random strings from the forking point onwards.
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The intuition behind this construction is that having access to copies of P on
some uniformly random string 7’ cannot help you extract from a copy P(r), as
long as r and 7’ are independent — certainly, an extractor could always simulate
such copies herself if the code of P is known. We will use this idea to show that
forking a copy of P™ is no help in extracting from the proofs made later on by
another copy.

5 Limitations of the Fiat-Shamir transformation

We recall the hierarchy of security definitions for functions (the last is the
strongest): one-way / X-one-way / weak one-more one-way / one-more one-way.

KNOWN LIMITATIONS. Seurin and Treger [18] proved that Fiat-Shamir-Schnorr
cannot have a non-programming straight-line extractor unless the underlying
function is not one-way (i.e. one can take discrete logarithms). The following
theorem generalizes this result to the case of arbitrary Y-protocols.

Theorem 12. Suppose there is a non-programming straight-line extractor K for
the proof scheme Fy. Then ¢ is not one-way. Specifically, there is an algorithm
breaking one-wayness with approximately the same running time and success
probability as the extractor K has against the canonical prover Pc.

Proof. Let x be a challenge from the one-way game for ¢; we need to find a w’
such that ¢(w’) = x. We simulate a proof: pick s «~ W, ¢ « k and a <+ ¢(s)—c-z.
Then we give the extractor the statement x, proof (a,s) and a list of random
oracle queries consisting of the entry RO(x, a) = ¢. These elements are identically
distributed to what the extractor would see in an execution with the canonical
prover Pc for Fy. We pass any witness w’ returned by the extractor on to the
challenger to win with the same success probability. O

Bernhard et al. [5] showed that substituting an adaptive extractor for a
straight-line one gets a similar result for the one-more one-wayness assump-
tion on the function ¢ — the proof of this theorem is nontrivial however. While
their original proof only concerned Fiat-Shamir-Schnorr, a close inspection of
the proof shows that it works for any X' protocol and that the weak one-more
assumption is sufficient too. In summary:

Theorem 13. Suppose that there is an efficient adaptive extractor for Fy. Then
¢ is not weak one-more one-way.

We will not re-prove the theorem here. As to running time, as long as the
extractor makes fewer than 2" queries when running against a particular prover
then the reduction to weak one-more one-wayness runs in the same time as the
extractor, but its success probability is the inverse of the number of copies of
the prover that the extractor causes to be invoked. Although Bernhard et al. [5]
only prove the theorem for the case of the Fiat-Shamir-Schnorr protocol, their
reduction is “black box” in the sense that it only needs to be able to sample and
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open instances of the underlying X-protocol. The exact same proof will work
for our generalisation. We can write the prover in the cited theorem as (P¢)",
the adaptive chain prover derived from the canonical prover. This will allow us
to conclude that any extractor against the chain prover implies a straight-line
extractor against the canonical prover Pc.

NEw REsSuLTS. If we switch to a programming straight-line extractor, we can
show a separation result under the Y-one-wayness assumption.

Theorem 14. Suppose there is a programming straight-line extractor K for Fy.
Then ¢ is not X-one-way. Specifically, there exists a reduction with approzi-
mately the same running time and the same success probability as the extractor
K against the canonical prover Pc.

Proof. We simulate the canonical prover towards the extractor. Receive x, a from
the X-one-way challenger and ask the random oracle query ¢ < RO(x, a) (which
the extractor answers). Then send ¢ to the X-one-way challenger to get s and
send (z, a, s) to the extractor. Again, whenever the extractor provides the correct
w’, we win against the challenger. a

This result is new, but not surprising — Fiat-Shamir transformed X-protocols
are not supposed to be straight-line extractable and the X-one-wayness property
is constructed exactly to make this reduction work. The value of said property
is that we can also use it for adaptive extractors.

Our main contribution in this paper is a new theorem that says all adaptive
proofs in the ROM admit a straight-line extractor.

Theorem 15. Consider any non-interactive ROM proof scheme with an adap-
tive extractor K. Suppose that, running against any n-prover P, the extractor
K causes at most f(n) < 2™ copies of the prover to be run in the experiment
and answers all extraction queries of the main run correctly with probability at
least p(n) > 0. Then there is a programming straight-line extractor against any
non-adaptive prover P with success probability p(n)/(n - f(n)).

Remark 16. The proof, which we provide in the full version, is information the-
oretic. It relies only on the number of copies of P instantiated by K and, in
particular, it makes no assumptions on the efficiency of P and K. It does not es-
tablish a relationship between the running time of I and the success probability;
it is simply an application of the pigeonhole principle to derive a contradiction
that whenever f(n) < 2" then K must essentially have "guessed correctly" rather
than computed the preimage through interacting with P. For example, if launch-
ing a new copy of P costs K one unit of time then the theorem provides negative
results even for subexponential-time extractors.

Applying this theorem to protocols obtained via the Fiat-Shamir transform
from X-protocols yields the following insight.
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Corollary 17. Suppose that the Fiat-Shamir transformed X -protocol Fy is adap-
tively secure. Then ¢ is not X-one-way secure.

For the corollary, note that we have a programming straight-line extractor
against the canonical prover P¢ by applying Theorem 15 to the prover (Pg)”.
The result then follows from Theorem 14.

We sketch the proof here and provide the full argument in the full version of
this paper [7]. Let P be a non-adaptive prover. We construct a simulator S™ that
is indistinguishable from the black box providing “rewinding” access for multiple
copies of P™. The point of the simulator is that it shares state “between the
copies”. We then guess which instance of the prover (specifically, which proof)
the extractor is going to answer without “forking” and inject the Y-one-wayness
challenge into it. The same combinatorial argument as in the proof of Bernhard
et al. [5] shows that such an instance must exist if the extractor launches fewer
than 2™ copies of the prover.

The core of such a simulation argument is to keep track of a history of each
instance of the prover, since two copies of the prover with identical histories
must behave identically towards the extractor. In (P¢)™, this history is implicitly
tracked in the randomness r used for each copy of P¢, however a collision in the
random oracle could lead to two copies with different histories “merging”. Our
simulator computes an explicit history instead, namely the list of all random
oracle queries so far.

As in Bernhard et al. [5] we define an event E that occurs whenever a copy of
the prover gets its extraction query answered without having a “partner” (another
copy, from which the witness was extracted by forking and special soundness).
The novelty in our proof is that because we have cast the prover as a chain
(Pc)™ with suitable state tracking, we can show that event E implies not only
a “break” of the chain prover but also of one of the contained canonical provers
Pc. We then show that, if the simulator guessed correctly, event E implies that
the simulator can solve its X-one-wayness challenge. This is a much weaker
assumption than one-more one-wayness.

6 Generic hardness of Y-one-wayness

In this section we show that Fiat-Shamir transformed X-protocol Fy is not
adaptively secure in the generic setting. Thus if we want to build a protocol
where we need an adaptively secure proof (such as to get CCA encryption), we
would not use F,. By Corollary 17 we just need to prove that ¢ is Y'—one-way
secure in the generic group model (GGM). Again, let X, W be vector spaces
over k and ¢ : W — X be a k-linear map. We assume that k is a finite field and
X, W are finite dimensional, since sampling uniformly from an infinite set does
not make much sense. Let by, ba, ..., b, be basis vectors of X', where dim(X) =n
and {b1,...,bs} be a basis for Im(¢). For each 1 < i < s denote a; to be an
element of W so that ¢(a;) = b;.

The generic group model is a model which analyses success of algorithms
against representations of groups which do not reveal any information to adver-
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sary. There are many ways to formalise this idea [14, 15,19]. We will follow the
definition provided by Shoup [19]. Here, adversary is given access to images of el-
ements of a group under a random injective map o : X — S C {0, 1}*, called an
encoding function. Group operations can be computed by making oracle queries.
The adversary is given access to two oracles ADD and INV:

ADD(o(x),0(y)) = oz +y), INV(a(x)) = o(~a).

Note that the adversary cannot get any information from the representation
o(x) of element x. A generic algorithm A for X on S is a probabilistic algorithm
that takes as input an encoding list (o(z1),0(2z2),...,0(xz;)) where each xz; € X
and o is an encoding function of X on S. As the algorithm executes, it makes
queries to ADD or INV oracles and then appends outputs of the queries to
the encoding list. The output of A is a bit string denoted as A(c; z1, ..., x;). We
also want to extend the interface of the model and introduce the F'SS, ,, oracle:
FSS,(c) =r+ cw for some r,w € W and ¢ € k. We may assume that when
oracles encounter some oy ¢ I'm(o), they return an error message.

The next theorem establishes generic hardness of X—one-wayness; we provide
the proof in the full version of this paper [7].

Theorem 18. Let w,r be random elements of W and A be a generic algorithm
for X on S C {0,1}* that makes at most m queries to ADD and INV oracles and
exactly one query to F'SS, ., oracle. Then the probability that ¢(A(c; b1, ..., by, ,
y)) =z is O((m +n)?/|X| + |ker(¢)|/|W|), where x = ¢p(w) and y = ¢(r).

Note that Theorem 18 implies that every generic algorithm A, which wins
Y —one-wayness with high probability, must perform at least £2(«+/|X]|) group

operations, where o = /1 — |ker(¢)|/|W)|. In particular, if W is large then we
get the lower bound 2(4/|X|) for IES (described in [6]) by choosing ¢(w) = g*.

7 Reducing to DLOG?

Given a non-programming straight line extractor in the ROM for a Fiat-Shamir
transformed X-protocol Fy4 we can break one-wayness of ¢; for a programming
extractor or an adaptive extractor we can break X-one-wayness. This raises
the question, can we break one-wayness given a programming extractor? Our
answer is negative. We give the argument for the case of Schnorr proofs where
one-wayness is the discrete logarithm (DLOG) problem; this also implies that
there can be no generic metareduction to one-wayness for any X-protocol.

The metareductions in the theorems of Seurin and Treger [18], Bernhard et
al. [5] and this paper are all algebraic (in the sense of Paillier and Vergnaud) [16]
over the vector space® X, the range of the function ¢. We therefore consider it a
meaningful result to show that no algebraic metareduction to DLOG can exist
(unless DLOG is already easy).

5 Paillier and Vergnaud defined the algebraic model for groups; one can interpret a
GF (p) vector space as an Abelian group to use their definition of the algebraic model.
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Theorem 19. If there is an algebraic metareduction from a programming straight-
line extractor for Fiat-Shamir-Schnorr proofs to the DLOG problem then there
is also a meta-metareduction breaking the DLOG problem directly with approxi-
mately the same success probability.

The proof is in [7]. The idea is that a metareduction M gets to see two bases in
the group: the generator g and the challenge h from its DLOG challenger. Since
we assumed a programming extractor, M must ask its random oracle queries
to its extractor interface where our meta-metareduction will answer them. Any
statement output by M (to the extractor) therefore has the form (g®h®) for
some (a, b) which are available to our meta-metareduction by use of the algebraic
model. Proofs of the form (a,0) are independent of the challenge h; intuitively
they should not help to compute the discrete logarithm of h so we just return
the witness a. The first time M outputs a proof with a statement of the form
(a,b) with b # 0, we fork M on the relevant random oracle query and use special
soundness to find the discrete logarithm of A to basis g.

8 Conclusions

Bernhard et al. introduced adaptive proofs, setting up a hierarchy of (1) proofs
of knowledge (2) adaptive proofs and (3) straight-line extractable proofs, with
a separation between (1) and (2). While useful for proving limitations of X-
protocols, we have showed that adaptive proofs are not a new class of proof
after all: all adaptively secure proofs admit a straight-line extractor against the
canonical prover.

Along the way we have generalised previous results from Schnorr’s protocol
to X-protocols. In addition, we have weakened the counter-assumption from one-
more one-wayness, which is a “g-type” interactive assumption (adversary gets an
unbounded number of sample queries) and is not efficiently realisable to X-one-
wayness, which both has a constant number of steps and an efficient security
game.

Our result shows that the Fiat-Shamir transformation and X-protocols in
general may be even weaker than previously thought. Namely, the non-interactive
proof scheme F only achieves adaptive security if a single execution of the in-
teractive protocol Xy against a dishonest verifier already leaks the secret witness
with non-negligible probability.

In essence, this shows that using proofs derived from the Fiat-Shamir scheme
for some problem ¢ in a setting where adaptive security of such proofs is nec-
essary requires care: these should be replaced with proofs that have straightline
extractors. From a practice-oriented perspective, our results show that improv-
ing the efficiency of proofs that admit straightline extraction is an important
line of future research.
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