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Abstract This work proposes a novel method through
which local information about the target density can

be used to construct an efficient importance sampler.

The backbone of the proposed method is the Incremen-

tal Mixture Importance Sampling (IMIS) algorithm of

Raftery and Bao (2010), which builds a mixture im-
portance distribution incrementally, by positioning new

mixture components where the importance density lacks

mass, relative to the target. The key innovation pro-

posed here is to construct the mean vectors and co-
variance matrices of the mixture components by nu-

merically solving certain differential equations, whose

solution depends on the local shape of the target log-

density. The new sampler has a number of advantages:

a) it provides an extremely parsimonious parametriza-
tion of the mixture importance density, whose configu-

ration effectively depends only on the shape of the tar-

get and on a single free parameter representing pseudo-

time; b) it scales well with the dimensionality of the
target; c) it can deal with targets that are not log-

concave. The performance of the proposed approach is

demonstrated on two synthetic non-Gaussian densities,

one being defined on up to eighty dimensions, and on
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a Bayesian logistic regression model, using the Sonar
dataset. The Julia code implementing the importance

sampler proposed here can be found at https:/github.c

om/mfasiolo/LIMIS.
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1 Introduction

The efficiency gains brought about by taking into ac-

count local information about the target density have

been amply demonstrated in the context of Markov

chain Monte Carlo (MCMC) sampling. For instance,
the seminal paper of Girolami and Calderhead (2011)

introduced variations of the Metropolis adjusted Lange-

vin (MALA) (Roberts and Tweedie, 1996) and Hamil-

tonian Monte Carlo (HMC) (Duane et al, 1987) sam-

plers which, by exploiting second order information, can
efficiently sample highly dimensional non-Gaussian tar-

gets. This is achieved using an adaptive proposal, based

on the local information contained in the gradient and

Hessian of the target log-density. Notably, the state-of-
the-art probabilistic programming language Stan (Car-

penter et al, 2017), uses the tuned HMC algorithm

proposed by Hoffman and Gelman (2014) as its de-

fault sampler. This demonstrates that these ideas have

changed MCMC sampling practice, as well as theory.
It is therefore surprising that these concepts have not

been exploited nearly as widely in the context of Im-

portance Sampling (IS).

In this paper we attempt to fill this gap, by extract-
ing local information about the target density and using

it to set up an efficient importance sampler. We ac-

complish this by considering ideas related to Langevin
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diffusions and adapting them to the context of IS. In

particular, we demonstrate how linearized solutions to

Langevin diffusions can produce Gaussian densities that

often represent accurate local approximations to the

target density. These local densities can then be com-
bined to form a global mixture importance density that

closely approximates the target. To achieve this, we

exploit the Incremental Mixture Importance Sampling

(IMIS) algorithm, originally proposed by Raftery and
Bao (2010). This is an automatic and non-parametric

approach to IS, which constructs a mixture importance

density by iteratively adding mixture components in

areas where the importance density lacks mass relative

to the target. As the examples will demonstrate, the
proposed modification of the IMIS algorithm leads to a

scalable and semi-automated approach to Importance

Sampling (IS).

The literature related to the current proposal is quite

sparse. Indeed, the use of local target information has

been adopted mostly in the context of Sequential Monte

Carlo (SMC) samplers and particle filtering, rather than
IS itself1. In particular, Sim et al (2012) and Schuster

(2015) consider using MALA’s adaptive proposal within

SMC samplers. These proposals are quite different from

our approach, because we iteratively construct a single
mixture importance density, not a sequence of them. In

addition, in our proposal the mean and covariance of

the mixture components are not based on the deriva-

tives of the target log-density at a single fixed loca-

tion, as in MALA, but are obtained by numerically in-
tegrating certain differential equations, whose solution

depends on the shape of whole regions of the target.

Also, while in SMC each sample is generally perturbed

individually, in our case the number of mixture compo-
nents is much lower than the number of samples, which

reduces the cost of constructing the importance distri-

bution and of evaluating its density.

In the context of particle filtering, Bunch and God-

sill (2016) propose a Gaussian particle flow method,

which aims at approximating the optimal importance

density of a class of non-linear Gaussian state space
models. In particle flow algorithms (Daum and Huang,

2008) a particle is moved continuously in pseudo-time

according to differential equations that depend on the

underlying shape of the target density. The drawback of

many particle flow algorithms is that, despite their the-
oretical elegance, implementing them for general mod-

els requires several layers of approximation, whose effect

is not easy to quantify (Bunch and Godsill, 2016). Even

though we are not considering particle filtering here,
our current work has been inspired by this literature.

1 Note that, of course, most of the conventional SMC sam-
plers and particle filters are based on IS.

A critical distinguishing characteristic of our proposal

is that we exploit local information about the target

density, while not introducing any extra approximation

or source of bias in the importance sampler.

The rest of the paper is structured as follows. In Sec-
tion 2 we briefly describe the IMIS algorithm of Raftery

and Bao (2010). Then, in Section 3, we show how the

solutions to linearized Langevin diffusions can be used

to generate local approximations to the target density
and we explain how these can be exploited within the

IMIS algorithm. This results in the new Langevin IMIS

(LIMIS) sampler. Calculating the mean vector and co-

variance matrix of each importance mixture component

requires solving certain differential equations. This has
to be done numerically, and in Section 4 we propose a

novel statistically-motivated criterion for selecting the

step-size of the numerical integrator. In Section 5 we

compare the new sampler to IMIS, MALA and IS on
three examples. Section 6 contains some discussion of

the computational cost of each method, while Section

7 explains how the pseudo-time of integration can be

selected in an automatic fashion. We summarize the re-

sults and discuss possible future directions in Section
8.

2 Incremental Mixture Importance Sampling

The IMIS algorithm is an automatic and non-parametric

approach to IS, which is particularly useful for highly
non-Gaussian target densities (Raftery and Bao, 2010).

Let π(x) and p(x) be, respectively, the (possibly un-

normalized) target and the prior densities, with x ∈ R
d.

Here we describe a slightly modified version of IMIS,
which includes the following steps:

Algorithm 1: Nearest Neighbour IMIS (NIMIS)

1. Initialization:

(a) Sample n0 variables, x1, . . . ,xn0
, from p(x).

(b) Calculate the weight of each sample

w0
i =

π(xi)

p(xi)
, for i = 1, . . . , n0.

2. Importance Sampling: for k = 1, 2, . . . , repeat

(a) Let xj be the sample with the largest weight and

define µk = xj . Calculate the covariance, Σk,
of the b samples with the shortest Mahalanobis

distance from µk. The metric used to calculate

the distance is the covariance of all the samples

generated so far.
(b) Generate b new samples from a multivariate Stu-

dent’s t distribution with mean µk, covariance

Σk and ν > 0 degrees of freedom.
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(c) Update the importance weights of all samples

generated so far

wki = π(xi)
/

{n0

nk
p(xi)+

b

nk

k
∑

l=1

mvt(xi|µl,Σl, ν)
}

,

(1)

for i = 1, . . . , nk and where nk = n0 + kb and

mvt(x|µ,Σ, ν) indicates the density of a multi-

variate Student’s t distribution, with location µ,
covariance Σ and ν degrees of freedom.

(d) If a chosen criterion is met, terminate.

The above algorithm differs from the original IMIS pro-

cedure of Raftery and Bao (2010) in minor respects. In
particular, in their version Σk is a weighted covariance,

where the i-th weight is proportional to (wki +1/nk)/2.

We have verified that these weights can be quite un-

stable, especially in early iterations and in high dimen-

sions, hence we prefer using an unweighted covariance.
In step 2(a) they use the covariance of the prior dis-

tribution, rather than the covariance of all the gener-

ated samples, to determine the distances. The two ap-

proaches typically lead to similar results, but using the
prior covariance can be problematic if target and prior

have very different scales or correlation structures. Also,

they also use multivariate Gaussian, rather than Stu-

dent’s t, densities. Our experience suggests that in IS

it is better erring on the side of robustness, hence we
prefer using Student’s t densities to ensure that the

proposal is heavier-tailed than the target.

The key idea behind IMIS is that it lets the im-

portance weights determine where new mixture com-
ponents should be placed. The fact that the covariance

of the new components is estimated using a Nearest

Neighbour approach is somewhat secondary. For this

reason we use the acronym IMIS to refer to the overall

approach, while we use NIMIS to refer to its Nearest
Neighbour version.

In this work we use ideas related to Langevin diffu-

sions to determine µk and Σk in step 2(a). As we will

illustrate empirically in Section 5, this modification is
particularly advantageous in high dimensions. However,

the purpose of this work is not so much improving upon

the NIMIS algorithm, but rather showing how local in-

formation about the target can be exploited to set up

an efficient mixture importance density.

3 Langevin Incremental Mixture Importance

Sampling

Consider a d-dimensional Langevin diffusion, with sta-

tionary distribution π(x), which is defined by the stochas-

tic differential equation

dxt =
dt

2
∇ log π(xt) + dbt, (2)

where∇ log π(x) is the gradient of the target log-density
and bt is a d-dimensional Brownian motion. The dy-

namics of the first two moments of xt are not avail-

able for most target distributions, but if we consider

the discrete-time version of (2), that is

xt+δt = xt +
δt

2
∇ log π(xt) + δtzt, zt ∼ N(0, I),

and we linearize the gradient around E(xt), we obtain

E(xt+δt) ≈ E(xt) +
δt

2
∇ log π

{

E(xt)
}

, (3)

and

Cov(xt+δt) ≈

[

I+
δt

2
∇2 log π

{

E(xt)
}

]

Cov(xt) (4)

×

[

I+
δt

2
∇2 log π

{

E(xt)
}

]T

+ δtI,

where∇2 log π(x) is the Hessian of the target log-density

and I is a d-dimensional identity matrix. In continuous-

time this leads to the following differential equations

µ̇t =
dµt
dt

=
1

2
∇ log π(µt), (5)

Σ̇t =
dΣt

dt
(6)

=

{

1

2
∇2 log π(µt)

}

Σt +Σt

{

1

2
∇2 log π(µt)

}

+ I,

where we defined µt = E(xt) and Σt = Cov(xt). For

details regarding how (3) and (4) lead to (5) and (6), see

the Supplementary Material. Notice that if the gradient
is linear, that is if ∇ log π(x) = Fx for some matrix F,

(5) and (6) are equivalent to the differential equations

used to propagate the mean and covariance of the state

process in the Kalman-Bucy filter (Bucy and Joseph,

1987), under the special circumstance that the obser-
vation and control processes are absent.

If π(x) is Gaussian then ∇ log π(x) is linear and,

given any initial state xt0 , (5) and (6) can be solved

analytically. In addition, µt and Σt will converge, as

t→ ∞, to the mean vector and covariance matrix of x
under π(x). Hence, given that a Gaussian distribution

is fully specified by its first two moments, a Gaussian

target is recovered exactly. However, if the target is

not Gaussian, several issues arise. Firstly (5) and (6)
generally do not have analytic solutions. This is a rel-

atively mild problem, which can be addressed by using

a numerical integrator, such as a Runge-Kutta method
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Fig. 1 Three local Gaussian approximations to a multimodal
target density. The mean vectors and covariance matrices of
the local densities were generated by solving (5) and (6), with
µt0 indicated by the three black dots.

(Ascher and Petzold, 1998). More importantly, the so-

lutions to (5) and (6) will generally not converge to the

true mean and covariance under π(x), even as t → ∞.

To see this, assume that π(x) is unimodal. Given that
the solution to (5) is a steepest ascent curve, µt will

eventually converge to the mode of π(x). However, un-

less π(x) is symmetric, its mode differs from its mean

vector.

The second issue entails that, unless ∇ log π(x) is

linear, the quality of the approximation to the first two

moments will typically degrade as t − t0 increases, re-
gardless of the numerical integrator used. This is not

of great concern in our case, because we are interested

in creating local, not global, approximations to π(x).

In particular, let p(xt1 |xt0) be the distribution of xt1 ,
generated by integrating (2) between t0 and a finite

pseudo-time t1 > t0. Also, let q(xt1 |xt0) be a Gaussian

approximation to p(xt1 |xt0), with mean and covariance

matrix derived by solving (5) and (6), with the initial

conditions µt0 = xt0 and Σt0 = δtI. Our proposal is
based on the observation that, while q(xt1 |xt0) might

not represent a good global approximation to π(x) for

any value of t1 or xt0 , it often provides an accurate

Gaussian approximation to the distribution of random
variables generated from π(x), in the vicinity of µt1 . As

an example, consider the highly non-Gaussian density

represented in Figure 1. In addition to the target, we

show three Gaussian densities, obtained by numerically

integrating (5) and (6) from three starting points, us-
ing 100 steps and δt = 0.04. Notice how the covariance

matrices adapt to the local shape of the target.

In the context of importance sampling, an accurate

global approximation to π(x) is needed. We propose to

create such a density using a mixture of local Gaussian

approximations q(xt1 |x
1
t0
), . . . , q(xt1 |x

k
t0
). The IMIS al-

gorithm provides a natural approach to determining

the initial positions, x1
t0
, . . . ,xkt0 , because it places addi-

tional mixture components where the importance den-

sity is lacking mass, relative to the target. To use the
new local linearization within IMIS, it is sufficient to

modify step 2(a) of Algorithm 1 as follows:

2(a)* Let xj be the sample with the largest weight.

Given the initial position µt0 = xj , covariance ma-

trix Σt0 = δtI and a user-defined pseudo-time t1,
obtain the approximate solutions, µ̂t1 and Σ̂t1 , by

numerically integrating (5) and (6). Then, set µk =

µ̂t1 and Σk = Σ̂t1 and proceed to step 2(b).

We refer to this modified version of Algorithm 1 as

Langevin Incremental Mixture Importance Sampling

(LIMIS). In our experience, the choice of Σt0 is not
particularly critical, as long as this matrix is positive

semi-definite and on the scale of δt. However, if the tar-

get is log-concave, one might consider the less general

initialization Σt0 = −δt{∇2 log π(µt0)}
−1. Note that

for all practical purposes we can assume that t0 = 0, so

the user needs specify only the final time t1. This can

be done manually or using the automated approach de-

scribed in Section 7.

LIMIS has several advantageous properties. Firstly,

Σ̂t1 is guaranteed to be positive definite, even when

π(x) is not log-concave. This is easily seen by consider-
ing discrete-time case, and noticing that the r.h.s. of (4)

is positive definite. Secondly, the resulting approxima-

tion does not use a non-parametric estimator, such as

Nearest Neighbour, to determine Σk. As will be shown
in Section 5 this is especially advantageous in high di-

mensions. Thirdly, as t1 increases, the mixture com-

ponents move toward the nearest mode of π(x). This

feature has been found to be advantageous by West

(1992), who noticed that mixture approximations are
typically over-dispersed relative to the target density,

and proposed to shrink the mixture components to-

wards the sample mean. Our experience suggests that

shrinkage often leads to substantial efficiency gains, es-
pecially in high dimensions, but, as noted by Givens

and Raftery (1996), West’s method is less appropriate

when the target is highly non-Gaussian, as in Figure

1, because it might shift some of the mixture densities

toward areas where the target density is very low (such
as the center of the plot). This cannot occur when (5) is

used, because µt moves toward areas where the target

density is strictly higher. Finally, the most important

property of LIMIS is that it provides an extremely par-
simonious parametrization of the mixture importance

density. Indeed, the locations and covariances of the

mixture components are determined by equations (5)
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and (6). Through these, LIMIS extracts local informa-

tion about the target, which allows it to limit the num-

ber of free parameters that determine the shape of the

mixture density to one: the final pseudo-time t1.

4 Step-size selection

As explained in Section 3, equations (5) and (6) can

be used to propagate the mean vector, µt, and covari-
ance matrix,Σt, of each mixture component between t0
and t1. In general, the solutions will be approximated

using a numerical integrator, such as a Runge-Kutta

scheme. Given a target density π(x), let Lπµ(µ, δt) and

Lπ
Σ
(µ,Σ, δt) be the operators used to update the mo-

ments, that is

µ̂t+δt = Lπµ(µt, δt), Σ̂t+δt = Lπ
Σ
(µt,Σt, δt).

These operators depend on the numerical scheme used.

For instance, if an Euler scheme is used, they are given

by the r.h.s. of (3) and (4) (after discarding the O(δt2)
term in (4)). If µt and Σt represent the true solutions

of (5) and (6), then the local truncation errors of the

numerical integrator are

eµ = µt+δt − µ̂t+δt, eΣ = Σt+δt − Σ̂t+δt,

which are generally O{(δt)ψ}, for ψ > 1 (Süli and May-
ers, 2003). While it is possible to choose δt so that nu-

merical estimates of |eµ| and |eΣ| are below certain

thresholds, here we propose a different approach. In

particular, we describe a novel statistically-motivated

measure of discretization quality, which we then use to
determine the step-size δt.

Our proposal consists in quantifying the integration

quality in terms of distance between two local Gaus-

sian densities: q(x) = φ(x|µ̂t+δt, Σ̂t+δt) and q∗(x) =

φ(x|µt+δt,Σt+δt). While there are other distance mea-

sures that could be adopted, such as the Kullback-
Leibler (KL) divergence, we would like a measure that

is easily interpretable. For this reason we consider the

Population Effective Sample Size (PESS), which we de-

fine as

PESS
{

q(x), q∗(x)
}

= plim
n→∞

ESSIS
{

q(x), q∗(x)
}

n
(7)

=

[

∫
{

q(x)

q∗(x)

}2

q∗(x)dx

]−1

,

where

ESSIS
{

q(x), q∗(x)
}

=

{ n
∑

i=1

q(xi)

q∗(xi)

}2/ n
∑

i=1

{

q(xi)

q∗(xi)

}2

,

(8)

is the Effective Sample Size (ESS) measure proposed

by Kong et al (1994) and xi ∼ q∗(x) for i = 1, . . . , n.

As we show in the Supplementary Material, when both

q(x) and q∗(x) are Gaussian densities, it is possible to

obtain an analytic expression for the PESS

PESS
{

q(x), q∗(x)
}

=

[

(

|2Σq∗ −Σq|

)− 1

2

|Σq|
− 1

2 |Σq∗ |

× exp

{

(µq∗ − µq)
T (2Σq∗ −Σq)

−1(µq∗ − µq)

}

]−1

.

(9)

This distance measure has the advantage of having a

clear statistical interpretation: it is the limiting value

of the ESS, normalized by the number of samples n.

Recall that we are solving (5) and (6) in order to con-

struct an additional density to be added to the impor-
tance mixture. Hence, at each step of the numerical in-

tegrator, we are not interested in assessing the accuracy

of the approximate solutions (µ̂t+δt, Σ̂t+δt) per se, but

we want to quantify how the discretization error per-
turbs the corresponding density, q(x), away from q∗(x).

Therefore, we prefer using (9), rather the truncation er-

rors eµ and eΣ, to determine the steps size. Notice also

that PESS
{

q(x), q∗(x)
}

∈ [0, 1], as long as 2Σq∗−Σq is

positive definite, while KL{q(x), q∗(x)
}

≥ 0. Most im-
portantly, by looking at (7) it is simple to realize that

the chosen criterion is invariant under transformation

of x, which certainly is not the case for |eµ| and |eΣ|.

Having defined an appropriate distance measure,
the step size δt can be selected at t0, and kept fixed

afterward, or adaptively at each step. Here we follow

the former approach. In particular, if we indicate with

µt0 and Σt0 the initial moments, then the step-size is

selected as follows

δt∗ =

[

δt : PESS
{

φ(x|µ̂t0+δt, Σ̂t0+δt), (10)

φ(x|µt0+δt,Σt0+δt)
}

= α

]

,

where the parameter α ∈ (0, 1) is user-defined. Increas-
ing α reduces the step-size, which leads to more accu-

rate, but computationally more expensive, solutions to

(5) and (6). We use α = 0.99 as default value. While

the true moments (µt+δt,Σt+δt), needed to compute

(10), are typically unknown, they can be approximated
by propagating the moments between t0 and t0 + δt

using, say, 10 steps of size δt/10. Finally, (10) can gen-

erally be solved in just a few iterations by a standard

one-dimensional root-finding algorithm, such as Brent’s
method (Brent, 2013), hence the cost of tuning δt is typ-

ically a small fraction of the overall computational cost

of LIMIS.
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5 Examples

Here we compare the new LIMIS sampler with NIMIS,

IS and MALA on three examples. The first is a multi-
modal mixture density, whose components are warped

Gaussian densities, defined on up to 80 dimensions. In

the second we sample the posterior of a Bayesian lo-

gistic regression model, using the Sonar dataset of Gor-

man and Sejnowski (1988). The final example is the the
ridge-like posterior density used by Raftery and Bao

(2010) to test the original IMIS algorithm.

5.1 Set-up

We compare the performance of the samplers using sev-

eral criteria. While some of these, such as Root Mean

Squared Errors (RMSEs), are well known, others are

less well known and so specified here. In Section 5.2
we evaluate the methods using the marginal accuracy

measure of Faes et al (2011), that is

MA = 1−
1

2

∫

|π(x) − π̂(x)|dx,

where MA = 1 if π(x) and π̂(x) are identical and

MA = 0 if the two densities do not overlap anywhere.

When weighted samples z1, . . . , zn, drawn from q(z),

are available, π(x) is estimated by

π̂(x) =
1

hn

n
∑

i=1

κh(x|zi)wi ≈

∫

κh(x|z)
π(z)

q(z)
q(z)dz,

with κh(x|z) being a kernel density, with bandwidth h.

An additional criterion is efficiency (EF), by which we

indicate the ratio of ESS to total number of samples
n. For LIMIS, NIMIS and IS we use formula (8) to

compute the ESS, while for MALA we use

ESSMC =
n

1 + 2
∑∞
t=1 ρt

,

where ρt is the autocorrelation of the chain at lag t.

Notice that under both definitions ESS ∈ [1, n], so EF ∈

[0, 1]. We indicate with EFc the efficiency of a sampler
divided by its total running time, in seconds.

We report the RMSEs of the estimated marginal
means, variances and normalizing constant of the target

(
∫

π(x)dx). While estimating the normalizing constant

is straightforward when importance samples are avail-

able, much more care is required when using MCMC
methods. Hence, we do not estimate this quantity when

applying MALA.

In terms of algorithmic parameters, for IS, LIMIS

and NIMIS we use ν = 3, which is the smallest inte-

ger value of ν such that the variance of a Student’s t

random variable is finite, and we follow Raftery and

Bao (2010) who suggest the default values n0 = 1000d,

b = 100d. We use an equal number (n0+kb) of samples

or iterations for IS and MALA. The step size of LIMIS

is determined as explained in Section 4. The only LIMIS
parameter that we chose manually is the final pseudo-

time t1. However, we discuss how it can be selected in an

automated fashion in Section 7. When applying MALA

we discard the first tenth of each MCMC chain as the
burn-in period, and we select the step size so as to ap-

proximately achieve the optimal 0.574 acceptance rate

derived by Roberts et al (2001). The remaining settings

will be detailed in Sections 5.2 and 5.3.

All the examples are implemented in the Julia lan-
guage (Bezanson et al, 2012). We developed our own

implementation of LIMIS and NIMIS, while we use the

MALA algorithm offered by the Klara Julia package.

5.2 Mixture of warped Gaussians

As a first example we consider a mixture target density

π(x) =
r

∑

i=1

wipi(x),
r

∑

i=1

wi = 1,

where each of the r mixture components is a shifted ver-

sion of the banana-shaped density described in Haario

et al (2001). In particular, let y ∼ N(0,Σa), where

Σa = diag(a2, 1, . . . , 1), and consider the following trans-
formed random variables

x1 = y1 + s1, x2 = y2 − b(y21 − a2) + s2, xi = yi,

for i = 3, . . . , d, and where a, b, s1 and s2 are con-

stants. Given that the determinant of the Jacobian of

this transformation is 1, the density of x is simply

p(x) = φ[x1−s1, x2+b{(x1−s1)
2−a2}−s2, x3 . . . , xd|0,Σa],

where φ(x|µ,Σ) is the p.d.f. of a multivariate normal

distribution and 0 is a d-dimensional vector of zeros. We

consider a mixture of r = 6 such densities, each with
different values for parameters a, b, s1 and s2. These are

reported in the Supplementary Material, together with

formulas for the gradient and Hessian of log π(x). A

slice of the target density across the first two dimensions

is shown in top-left plot of Figure 2.

We sample π(x) using LIMIS, NIMIS, IS andMALA.

In particular, we consider three scenarios where d is re-

spectively equal to 5, 20 and 80. For LIMIS and NIMIS

we use k = 200 iterations, and for the former method
we let t1 grow with d, by setting it to 1, 3 and 5. To

make sure that the initial sample covers all regions of

high target density, which is particularly critical in high



Langevin Incremental Mixture Importance Sampling 7

−20 −15 −10 −5 0 5 10 15 20
x1

−15

−10

−5

0

5

10

15

x2

Target density

−20 −15 −10 −5 0 5 10 15 20
x1

−15

−10

−5

0

5

10

15

x2

NIMIS 200 iterations, 2 dimensions

−20 −15 −10 −5 0 5 10 15 20
x1

−15

−10

−5

0

5

10

15

x2

LIMIS 200 iterations, 2 dimensions

−20 −15 −10 −5 0 5 10 15 20
x1

−15

−10

−5

0

5

10

15

x2

LIMIS 400 iterations, 20 dimensions

Fig. 2 Two-dimensional slice of the target and of the impor-
tance densities, obtained using LIMIS and NIMIS.

dimensions, we initialize LIMIS and NIMIS using a dif-

fuse mvt(x|0, 100I, 3) prior distribution. To perform IS

we use a weighted mixture of four multivariate Stu-
dent’s t distributions each centered at one of the modes

of the target, x∗
1, . . . ,x

∗
4, and with covariances equal

to −2{∇2 log π(x)}|−1
x=x

∗

i
, for i = 1, . . . , 4. The weights

are reported in the Supplementary Material. See Sec-

tion 5.1 for additional information about the simulation
settings.

Table 1 reports the results obtained using 16 inde-

pendent runs of each sampler. We do not report the effi-
ciency of MALA, because the ESS was extremely low in

all runs, even when the algorithm was mixing properly.

In fact, sample autocorrelations are high when the sam-

pler explores the same mode for several hundred itera-
tions before jumping to another mode, which results in

extremely low autocorrelation-adjusted ESS estimates.

Hence, we consider the resulting efficiency estimates to

be misleading.

In the five-dimensional scenario NIMIS closely fol-

lows LIMIS, which is the best performer on most crite-

ria. However, the performance of NIMIS degrades rapidly

as the dimensionality increases, to the point that it
failed entirely in 80 dimensions. IS achieves the highest

EFc in five dimensions, which is not surprising given

that the target density is cheap to evaluate and that

the importance density was chosen manually. However,

IS loses its efficiency advantage in higher dimensions.
LIMIS seems to be scaling well with d on most criteria,

the estimated marginal variances,
∑d

i=3 Var(xi), being

an exception. Here MALA achieves a lower MSE than

LIMIS when d = 20, and the gap increases when d = 80.
However, in 80 dimensions, LIMIS is still more accurate

than MALA in terms of marginal accuracies and of the

RMSE for
∑d

i=3 E(xi).

5.3 Logistic Regression

Here we consider a Bayesian logistic regression problem.

Assume we have n i.i.d samples of binary labels y ∈
{0, 1}n and a corresponding n× d matrix of covariates

X. Under a logistic regression model

Prob(yi = 1|X, θ) =
eX

T
i:θ

1 + eX
T
i:θ
, for i = 1, . . . , n,

where θ is a vector of model coefficients and Xi: is a

column vector giving the i-th row of X. If Xj1 = 1, for

j = 1, . . . , n, then θ1 represents the intercept. If we use

a flat prior on θ1 and a Gaussian prior on {θ2, . . . , θd},
with mean zero and covariance Iλ−1, where I is a d− 1

dimensional identity matrix and λ > 0, the posterior

log-density of the parameters is

log π(θ) ∝ yTXθ −

n
∑

i=1

log(1 + eX
T
i:θ)−

λ

2

d
∑

j=2

θ2j .

Formulas for the gradient and Hessian of log π(θ) are

provided in the Supplementary Material.

To verify how LIMIS performs on this model, we

consider the Sonar dataset, which is freely available
within the UCI repository (Lichman, 2013). The dataset

was originally considered by Gorman and Sejnowski

(1988), who used it to train a neural network to dis-

criminate sonar signals bounced off a mine from those
bounced off a rock. It includes n = 208 observations,

where the response variable indicates whether the ob-

ject is a mine (y = 1) or a rock (y = 0). Each covariate

vector contains d = 60 numbers ranging between 0 and

1, which represent the signal’s energy within a specific
frequency interval, integrated over time. See Gorman

and Sejnowski (1988) for more details on the dataset.

We aim at sampling π(θ) using LIMIS, NIMIS, IS

and MALA, for fixed λ. We consider two different sce-

narios. In the first, after standardizing the features X,

we select λ ≈ 28 by k-fold cross-validation. In the sec-
ond, we use a much weaker penalization by choosing

λ = 1. For LIMIS and NIMIS we use k = 100 iterations,

and for MALA we discard the first 10% of each chain as

burn-in period. As importance distribution for IS we use

a multivariate Student’s t distribution with 3 degrees of
freedom, centred at the posterior mode, θ∗, and with

covariance matrix equal to −2{∇2 log π(θ)}|−1
θ=θ∗ . We

use the same density to initialize LIMIS and NIMIS.

The remaining settings are as described in Section 5.1.

Table 2 summarizes the results, on both scenarios,

of 16 independent estimation runs. The first three rows
report the RMSEs of the estimated marginal posterior

means and variances, averaged over the 61 dimensions,

and of the estimated normalizing constant or marginal
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5d LIMIS NIMIS IS MALA ord. mag.

MA(x1) 0.991 0.989 0.965 0.954 1
MA(x2) 0.990 0.988 0.967 0.929 1∑
d
i=3

E(xi) 0.53(0.99) 0.62(0.98) 1.74(0.98) 0.84(0.91) 10−2

∑
d
i=3

Var(xi) 9.11(0.97) 15.96(0.42) 33.12(0.97) 10.91(0.85) 10−3

∫
π(x)dx 2.30(0.35) 5.80(0.17) 13.26(0.99) - 10−3

EF(EFc) 0.69(0.094) 0.52(0.084) 0.05(0.106) - 1(1)

20d
MA(x1) 0.994 0.846 0.942 0.970 1
MA(x2) 0.993 0.844 0.943 0.966 1∑d
i=3

E(xi) 0.97(0.99) 8.58(0.73) 11.56(0.94) 1.54(0.98) 10−2

∑d
i=3

Var(xi) 47.73(0.29) 4429(0.01) 771(0.94) 20.67(0.85) 10−3

∫
π(x)dx 2.45(0.25) 306.4(0.01) 57.56(0.98) - 10−3

EF(EFc) 0.416(0.77) 0.005(0.006) 0.008(0.23) - 1(10−2)

80d
MA(x1) 0.995 - 0.945 0.982 1
MA(x2) 0.995 - 0.947 0.980 1∑d
i=3

E(xi) 1.13(0.88) - 32.14(0.86) 2.8(0.96) 10−2

∑d
i=3

Var(xi) 113.2(0.35) - 3029(0.37) 27.2(0.99) 10−3

∫
π(x)dx 1.6(0.37) - 41.1(0.50) - 10−3

EF(EFc) 0.22(0.404) - 0.002(0.044) - 1(10−3)

Table 1 Results for mixture of warped Gaussians, for each dimension: a) the first two rows report marginal accuracies along
the first two dimensions; b) the following three rows contain RMSEs and, between brackets, the ratio between squared bias
and MSE; c) the last row reports mean efficiencies and, between brackets, mean corrected efficiencies. For each row, the order
of magnitude of the marginal accuracies, RMSEs and efficiencies is reported in the last column.

λ ≈ 28 LIMIS NIMIS IS MALA scale

E(θj) 4.7(0.95) 22.5(0.87) 5.9(0.94) 11.1(0.95) 10−4

Var(θj)1/2 3.3(0.94) 12.9(0.91) 4.1(0.94) 5.9(0.92) 10−4

∫
π(θ)dθ 2.3(0.97) 50.0(0.05) 3.3(0.89) - 10−3

EF(EFc) 0.18(1.15) 0.01(0.04) 0.11(3.55) 0.03(0.50) 1(10−3)

λ = 1
E(θj) 94.7(0.92) 393.2(0.91) 221.9(0.95) 148.2(0.95) 10−4

Var(θj)1/2 46.4(0.90) 151.2(0.90) 147.1(0.94) 64.4(0.92) 10−4

∫
π(θ)dθ 118.8(0.01) 668.9(0.01) 37.4(0.93) - 10−3

EF(EFc) 0.015(1.2) 0.0019(0.07) 0.0014(0.47) 0.0038(0.62) 1(10−4)

Table 2 Results for both logistic regression scenarios, first three rows: RMSE and, between brackets, the ratio between squared
bias and MSE, for each estimate and method. Last row: mean efficiency and, between brackets, mean corrected efficiency. Last
column: order of magnitude of RMSEs and efficiencies.

likelihood. When λ ≈ 28, LIMIS is the best method

terms of RME and EF, but IS achieves the lowest EFc.
IS does well because this value of λ results in an ap-

proximately Gaussian posterior. All methods perform

less well when the prior is more dispersed, and the pos-

terior farther from Gaussian. This is the case also for
MALA, even though this method does not rely on a

global approximation to the posterior. When λ = 1

LIMIS is more efficient the IS, in terms of both EF

and EFc. The fact that EF is ten times higher under

LIMIS than under IS implies that producing an equiva-
lent number of effective sample requires ten times more

storage under IS. This is important in parallel environ-

ments where memory bandwidth, rather than compu-

tational resources, are often the main bottleneck. As
expected, NIMIS is the worst performing method in

both scenarios, due to the high dimensionality of the

target.

5.4 Ridge-like density

Here we consider a model, originally proposed by Bates

(2001), whose posterior density lies along a very thin

ridge. The model has six parameters, while prior and

likelihood densities are

p(θ) =

6
∏

i=1

φ(θi|γi, β
2
i ), p(y|θ) =

4
∏

i=1

φ(yi|µi, σ
2
i ),

where µ1 =
∏6
i=1 θi, µ2 = θ2θ4, µ3 = θ1/θ5 and µ4 =

θ3θ6. The values of the γs, βs, ys and σs are reported

in the Supplementary Material, which contains also ex-

pressions for gradient and Hessian of the log-posterior.
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Notice that the µs and the ys are exchanged here, rel-

ative to Raftery and Bao (2010).

We sample the posterior using the following set-

up. The moments of the Gaussian importance density

used by IS are determined as in Section 5.4. We use
k = 500 iterations LIMIS and NIMIS, and for the lat-

ter we set t1 = 0.001. We choose a small integration

interval because using the default value of α within

the step-size selection approach of Section 4 leads to
δt = O(10−6). Given that the solutions to (5) are steep-

est ascent curves, it is not surprising that a discretized

solution needs to use very small steps, at least in the

vicinity of the ridge, in order go uphill. All remaining

settings are described in Section 5.1.
Table 3 contains the results of 16 simulation runs.

The first three rows report the RMSEs of the estimated

marginal posterior means and variances, averaged over

the six dimensions, and of the estimated marginal like-
lihood. The performance LIMIS and NIMIS is similar

to that obtained in the five-dimensional warped Gaus-

sian mixture example. In particular, both methods are

able to concentrate the mass of the importance density

along the non-linear ridge of the posterior. This cannot
be achieved using a single Gaussian, and in fact IS per-

forms poorly here. Surprisingly, MALA performs worse

than IS on this example, despite its use of gradient in-

formation. It is possible that including second order
information within MALA, as proposed by Girolami

and Calderhead (2011), would lead to better mixing.

However, this target density is not log-concave, hence

it would be necessary to perturb the Hessian matrix in

order obtain a positive definite scaling matrix.

6 Computational considerations

In the previous examples we reported the corrected effi-

ciencies, EFc, of the different samplers. Even though all
methods were implemented in the same language, their

relative performance is still strongly dependent on the

simulation setting. For instance, let k be the number of

iterations of NIMIS and LIMIS, and let b be the num-
ber of samples simulated at each step. Then, for fixed k,

increasing b improves the efficiency of LIMIS relative to

that of NIMIS. This is because the cost of integrating

(5) and (6), which does not depend on b, is amortized

over a larger number of samples, while NIMIS needs to
search across a larger number of neighbours in step 2(a).

Despite these intricacies, here we make some broad con-

sideration about computational efficiency, which should

be useful in a practical setting.
Let nk = n0 + kb be the total number of samples

obtained using LIMIS, NIMIS, MALA and IS. An im-

portant factor in determining the attractiveness of each

method is the cost of evaluating log π(x) and its deriva-

tives. MALA requires nk evaluations of∇ log π(x). LIMIS

evaluates gradient and Hessian several times when con-

structing the k mixture densities. The factor multi-

plying k depends on the number of steps used in the
Langevin linearization of Section 3. For instance, using

the default α proposed in Section 4 to determine the

step size, δt, the linearization requires on average 50 in-

tegration steps in the twenty-dimensional warped Gaus-
sian mixture example. In that scenario we used k = 200,

b = 100d and n0 = 1000d, hence a whole LIMIS run re-

quires around 104 evaluations of gradient and Hessian,

which should be compared with the n0 + kb = 42× 104

gradient evaluations required by MALA. The Hessian
of this example is highly sparse but, for a typical model,

computing it should be O(d) times more expensive than

evaluating the gradient. Hence, if the Hessian of this ex-

ample was dense, the total cost of computing the deriva-
tives under LIMIS and MALA would roughly match.

However, notice that LIMIS outputs a mixture density

which can be used to do further importance sampling,

and this does not require any additional derivative eval-

uation.

A second factor is the cost of evaluating the impor-

tance density. At the j-th iteration of LIMIS or NIMIS,

where j ∈ {1, . . . , k}, the cost of single evaluation is
O(jd2). While in the examples we ran these algorithms

until a fixed k was reached, it might be preferable to

stop when the increased cost of evaluating the impor-

tance mixture is not more than offset by gains in effi-
ciency. In particular, let cπ and cq be, respectively, the

cost of evaluating the density of the target or of a single

mixture component. Then the cost of an independent

sample is approximately

c(j) =
cπ + jcq
EF(j)

, for j = 1, 2, . . . , (11)

where EF(j) is the efficiency of an importance mixture
with j components. Figure 3 shows the behaviour of

c(j) when running LIMIS on the mixture example. For

more complex examples accurate time estimates would

be required, but here the target is a mixture of six
warped Gaussian densities, hence we assumed cπ ≈ 6cq.

The plot suggests that the computational budget could

be used more efficiently by stopping LIMIS around the

25th iteration, and using the resulting mixture impor-

tance density to obtain more samples.

In the previous examples we have seen that, from

the point of view of statistical efficiency, the perfor-

mance of NIMIS is very unsatisfactory in high dimen-
sions. IS scales better, as long as a good approximation

to the target is available, as in the logistic example. IS is

also computationally cheap, because it does not require
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LIMIS NIMIS IS MALA scale

E(θj) 0.18(0.91) 0.32(1.00) 2.68(0.99) 44.6(0.96) 10−3

Var(θj)1/2 0.22(0.72) 0.23(0.80) 3.36(0.89) 20.5(0.87) 10−3

∫
π(θ)dθ 0.32(0.07) 0.62(0.10) 2.15(0.61) - 10−2

EF(EFc) 0.53(0.43) 0.39(0.40) 0.013(0.06) 0.0001(< 10−3) 1(10−2)

Table 3 Results for ridge-like model, first three rows: RMSE and, between brackets, the ratio between squared bias and MSE,
for each estimate and method. Last row: mean efficiencies and, between brackets, mean corrected efficiencies on the 16 runs.
Last column: order of magnitude of RMSEs and efficiencies.
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Fig. 3 Log-cost per sample, averaged over 16 runs, under
the three scenarios considered in Section 5.2.

derivative information. However, in high-dimensional

non-Gaussian scenarios a good off-the-shelf importance

distribution is, in most cases, not readily available. In

these cases, using LIMIS to construct an efficient im-
portance distribution might be advantageous. In fact,

the output mixture density could then be used to ob-

tain more importance samples, which would not require

any further evaluations of the target’s gradient and Hes-

sian. Obviously, one has to be careful not grow the size
of the importance mixture to the point that the increase

in the cost of evaluating this density is not justified by

the resulting statistical efficiency gains. This could be

avoided by stopping LIMIS when a criterion such as
(11) is approximately minimized.

7 Tuning the final pseudo-time t1

In the examples presented in Section 5 we selected the

final pseudo-time t1 manually. In general we start from

the default t1 = 1 and check whether perturbing t1
drastically improves a performance measure, such as

EF. In the logistic regression example the performance

did not seem to depend much on t1, hence we used

its default value. In the mixture density example we
increased t1 with the dimensionality, d, of the target.

Increasing t1 inflates the covariance of the importance

mixture components and it shrinks their locations to-

wards the closest mode of the target. Given that dis-
tances increase with d, this is a desirable behaviour.

An alternative approach would have been to increase

the number of LIMIS iterations with d, while keeping

t1 constant.

In this section we show how an initial choice of t1
can be improved, using a fully automated procedure.

Assume that the results of a preliminary LIMIS run are
available, and include a weighted sample x1, . . . ,xnk

,

where nk = n0+kb and k is the number of LIMIS itera-

tions. Indicate with µ1
t0

= x̃1, . . . ,µ
k
t0

= x̃k the samples

that achieved the highest weight in one of the iterations,
and hence resulted in the addition of a mixture com-

ponent. Let q(x|t1) be a Gaussian importance mixture,

whose components have mean vectors, µ1
t1
, . . . ,µkt1 , and

covariance matrices,Σ1
t1
, . . . ,Σk

t1
, which are constructed

by numerically integrating (5) and (6) between t0 and
t1. In this section we aim at selecting t1 so that q(x|t1)

is optimal, in a sense to be clarified shortly.

Suppose that we wish to estimate

I = E
{

h(x)
}

=

∫

h(x)
π(x)

c
dx =

∫

h(x)π̃(x)dx,

where c =
∫

π(x)dx and h(x) is an R
d → R function.

If only the un-normalized target, π(x) = c π̃(x), can be

evaluated, then I can be estimated by self-normalized

importance sampling, that is

Î =

∑m
j=1 h(xj)wj
∑m

j=1 wj
, where wj =

π(xj)

q(xj |t1)
,

and xj ∼ q(xj |t1), for j = 1, . . . ,m. The asymptotic
variance of Î is proportional to

v(t1) =

∫ π(x)2

q(x|t1)2

{

h(x) − I
}2
q(x|t1)dx

{ ∫

π(x)
q(x|t1)

q(x|t1)dx
}2 , (12)

hence, ideally, we would like to determine the value, t∗1,

that minimizes (12). In order to approximately achieve
this, we need a reasonably cheap estimator of v(t1).

Let q(x|tI1) be the mixture importance density in the

final iteration of the pilot LIMIS run. Then (12) can be
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estimated by

v̂(t1) =

1
nk

∑nk

i=1
π(xi)

2

q(xi|t1)2

{

h(xi)− Î
}2 q(xi|t1)

q(xi|tI1)
{

1
nk

∑nk

i=1
π(xi)
q(xi|t1)

q(xi|t1)

q(xi|tI1)

}2 (13)

=
1

ĉ2nk

nk
∑

i=1

π(xi)

q(xi|t1)

{

h(xi)− Î
}2
wi,

where

Î =
1

ĉ nk

nk
∑

i=1

h(xi)wi, ĉ =
1

nk

nk
∑

i=1

wi, wi =
π(xi)

q(xi|tI1)
,

(14)

and xi ∼ q(xi|t
I
1), for i = 1, . . . , nk. Here xi, h(xi),

π(xi), q(xi|t
I
1), wi, Î and ĉ have already been simu-

lated/computed and stored during the preliminary run.
Hence v̂(t1) is a deterministic function, which can be

minimized using a one-dimensional optimizer, where

only q(xi|t1), for i = 1, . . . , n, needs to be recomputed

as the optimizer explores different values of t1. If the

normalized target, π̃(x), can be computed directly and
I is estimated using

Ĩ =
1

m

m
∑

j=1

h(xj)
π̃(xj)

q(xj |t1)
, where xj ∼ q(xj |t1),

for j = 1, . . . ,m, then the finite-sample variance of Ĩ is

proportional to

ṽ(t1) =

∫

h(x)2π̃(x)2

q(x|t1)
dx, (15)

which can be estimated by

ˆ̃v(t1) =
1

nk

nk
∑

i=1

h(xi)
2π̃(xi)

q(xi|t1)
wi, (16)

where

wi =
π̃(xi)

q(x|tI1)
and xi ∼ q(x|tI1),

for i = 1, . . . , nk. Also in this case only q(xi|t1) needs
to be recomputed at t1 varies.

Notice that, if we set h(x) = 1 in (15), minimizing

ṽ(t1) is equivalent to maximizing PESS{π̃(x), q(x|t1)}

(7). This choice is useful when the practitioner is not

interested in minimizing the variance under any par-
ticular integrand h(x), but wants to obtain an impor-

tance density that is adapted to the target. However,

in the self-normalized case, setting h(x) = 1 leads to

v(t1) = v̂(t1) = 0 for any t1, because this estimator is
exact for constant h(x). Hence, if the normalizing con-

stant is unknown and no specific h(x) is particularly

relevant, then v(t1) might not be the best criterion to

use. An alternative is to consider the Kullback-Leibler

(KL) divergence between π̃(x) and q(x|t1), that is

KL(t1) =

∫

log

{

π̃(x)

q(x|t1)

}

π̃(x)dx (17)

∝ −

∫

log
{

q(x|t1)
}π(x)

c
dx,

as done, in a related context, by Cappé et al (2008).

The r.h.s. of (17), which we indicate with g(t1), can be

estimated by

ĝ(t1) = −
1

ĉ nk

nk
∑

i=1

log
{

q(xi|t1)
}

wi, (18)

where

xi ∼ q(x|tI1), for i = 1, . . . , nk,

with ĉ and the wis being defined as in (14).

To provide a simple illustration, we consider again

the mixture target density of Section 5.2. In particular,
we set d = 5 and we run LIMIS for k = 50 iterations,

using a grid of initial values for tI1. We then estimate the

optimal value of t1 by minimizing ˆ̃v(t1) with h(x) = 1.

To reduce the computational effort, we compute (16)

using a sub-sample of size nk/10, drawn multinomially
from the nk available samples. The left plot in Figure 4

shows, for each value of tI1, the estimated t∗1, averaged

over 60 runs. After estimating t∗1 for each t
I
1, we use each

of the resulting mixture densities within an importance
sampler, and we evaluate its efficiency. The average effi-

ciencies of q(x|t∗1) and q(x|t
I
1) are compared in the right

plot of Figure 4. Optimizing over t1 brings about drastic

improvements in efficiency, if tI1 is set too low. This is

to be expected, because for low t1 the importance mix-
ture density is composed of widely spaced and narrow

modes, which leads to highly variable weights. Notice

that, if tI1 is set too low, q(x|tI1) might not dominate

q(x|t1) or π(x). If this is the case or, more generally, if
the behaviour of v̂(t1) or ˆ̃v(t1) on the grid seems unsta-

ble, it might be appropriate to compute these quantities

using Truncated Importance Sampling (Ionides, 2008).

8 Conclusions

The LIMIS algorithm provides a simple but flexible it-

erative framework for concurrently constructing a mix-
ture importance density and performing importance sam-

pling using such a density. By exploiting the shape in-

formation about the target density, LIMIS scales well

with the dimensionality of the sampling space, espe-
cially if compared with the original NIMIS algorithm.

The examples show that the performance of LIMIS com-

pares favourably with that of a state-of-the-art MCMC
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Fig. 4 Left: mean (±σ) optimal pseudo-time t∗
1
, as a function of initialization tI

1
. Right: mean efficiency (EF) when the

mixture derived using the initial, tI
1
, or the optimized, t∗

1
, pseudo-time is used for importance sampling.

sampler such as MALA, under a multimodal, a nearly

Gaussian and a ridge-like target.

Notice that, as the number of iterations increases,

the covariance matrices produced by NIMIS become

more localized, because the space is filled with more
candidate neighbours. In contrast, the final pseudo-time

t1, which controls the location shrinkage and the covari-

ance expansion of the mixture components produced by

LIMIS, does not vary with the number of iterations. In

Section 7 we showed how a single t1 can be selected by
minimizing a function-specific variance estimate. This

requires post-processing the results of a preliminary

LIMIS run. A promising direction for future research

might be using a different value of t1 for each new mix-
ture component, and selecting it in an adaptive fash-

ion. For highly non-Gaussian targets, we expect that

the optimal t1 would be quite large for the first mix-

ture components, but it would then decrease as more

localized components are added. Cappé et al (2008) se-
lect weights and parameters of a mixture of Gaussian or

multivariate Student’s t densities, by adaptively mini-

mizing an entropy criterion. We think that their ap-

proach could be adjusted to fit our context. The re-
sulting adaptive algorithm should benefit greatly from

the fact that the locations and covariance matrices of

LIMIS mixture components are entirely controlled by

the target’s shape and by t1, which would drastically

reduce the number of parameters that need to be opti-
mized during the adaptation step.
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Cappé O, Douc R, Guillin A, Marin JM, Robert CP

(2008) Adaptive importance sampling in general mix-

ture classes. Statistics and Computing 18(4):447–459
Carpenter B, Gelman A, Hoffman M, Lee D, Goodrich

B, Betancourt M, Brubaker M, Guo J, Li P, Riddell A

(2017) Stan: a probabilistic programming language.

Journal of Statistical Software 76(1)
Daum F, Huang J (2008) Particle flow for nonlinear

filters with log-homotopy. In: SPIE Defense and Se-

curity Symposium, International Society for Optics

and Photonics, pp 696,918–696,918

Duane S, Kennedy AD, Pendleton BJ, Roweth D (1987)
Hybrid Monte Carlo. Physics Letters B 195(2):216–

222

Faes C, Ormerod JT, Wand MP (2011) Variational

Bayesian inference for parametric and nonparametric



Langevin Incremental Mixture Importance Sampling 13

regression with missing data. Journal of the Ameri-

can Statistical Association 106(495):959–971

Girolami M, Calderhead B (2011) Riemann manifold

Langevin and Hamiltonian Monte Carlo methods.

Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 73(2):123–214

Givens GH, Raftery AE (1996) Local adaptive impor-

tance sampling for multivariate densities with strong

nonlinear relationships. Journal of the American Sta-
tistical Association 91(433):132–141

Gorman RP, Sejnowski TJ (1988) Analysis of hidden

units in a layered network trained to classify sonar

targets. Neural Networks 1(1):75–89

Haario H, Saksman E, Tamminen J (2001) An adaptive
Metropolis algorithm. Bernoulli 7(2):223–242

Hoffman MD, Gelman A (2014) The No-U-Turn Sam-

pler: adaptively setting path lengths in Hamiltonian

Monte Carlo. Journal of Machine Learning Research
15(1):1593–1623

Ionides EL (2008) Truncated importance sampling.

Journal of Computational and Graphical Statistics

17(2):295–311

Kong A, Liu JS, Wong WH (1994) Sequential imputa-
tions and Bayesian missing data problems. Journal

of the American Statistical Association 89(425):278–

288

Lichman M (2013) UCI machine learning repository.
URL http://archive.ics.uci.edu/ml

Raftery AE, Bao L (2010) Estimating and projecting

trends in HIV/AIDS generalized epidemics using in-

cremental mixture importance sampling. Biometrics

66(4):1162–1173
Roberts GO, Tweedie RL (1996) Exponential conver-

gence of Langevin distributions and their discrete ap-

proximations. Bernoulli 2(4):341–363

Roberts GO, Rosenthal JS, et al (2001) Optimal scaling
for various Metropolis-Hastings algorithms. Statisti-

cal Science 16(4):351–367

Schuster I (2015) Gradient importance sampling.

arXiv:150705781

Sim A, Filippi S, Stumpf MP (2012) Information geom-
etry and sequential Monte Carlo. arXiv:12120764
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