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Approximate Kernel Extreme Learning Machine
for Large Scale Data Classification

Alexandros Iosifidis, Anastasios Tefas, and Ioannis Pitas

Abstract— In this paper, we propose an approximation scheme
of the Kernel Extreme Learning Machine algorithm for Single-
hidden Layer Feedforward Neural network training that can be
used for large scale classification problems. The Approximate
Kernel Extreme Learning Machine is able to scale well in
both computational cost and memory, while achieving good
generalization performance. Regularized versions and extensions
in order to exploit the total and within-class variance of the
training data in the feature space are also proposed. Extensive
experimental evaluation in medium-scale and large-scale classi-
fication problems denotes that the proposed approach is able
to operate extremely fast in both the training and test phases
and to provide satisfactory performance, outperforming relating
classification schemes.

Index Terms— Extreme Learning Machine, Large Scale Learn-
ing, Facial Image Classification.

I. INTRODUCTION

Extreme Learning Machine (ELM) is a fast algorithm for
Single-hidden Layer Feedforward Neural (SLFN) networks
training that requires low human supervision [1]. Conventional
SLFN network training approaches, like the Backpropagation
[2] and the Levenberg-Marquardt [3] algorithms, adjust the
input weights and the hidden layer bias values by following
an optimization process, e.g., by applying gradient descend-
based optimization. However, such learning techniques are
generally slow and may decrease the generalization ability of
the network, since the solution may be trapped in local min-
ima. In standard ELM approaches the input weights and the
hidden layer bias values of the SLFN network are randomly
assigned and the network output weights are, subsequently,
analytically calculated. ELMs not only tend to reach the
smallest training error, but also the smallest output weight
norm as well. For feedforward networks reaching a small
training error, smaller output weight norm results in better
generalization performance [4]. Despite the fact that the de-
termination of the network hidden layer outputs is based on
randomly assigned input weights, it has been proven that ELM
networks have the properties of global approximators [5], [6].
Due to its effectiveness and its fast learning process, the ELM
network has been adopted in many classification problems
and many ELM variants have been proposed in the last few
years, extending the ELM network properties along different
directions [7], [8], [9], [10], [11], [12], [13].
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Recently, kernel versions of the ELM algorithm have been
proposed [14], [15], which have been shown to outperform
the standard ELM approach that uses random input param-
eters [16]. A possible explanation of this fact is that kernel
ELM networks have connections to infinite single-hidden
layer feedforward networks [16]. However, the superiority in
performance of kernel ELM formulations is accompanied by a
higher computation cost and memory requirements, rendering
the exploitation of kernel ELM networks prohibitive in large
scale classification problems. Specifically, for a dataset con-
sisting of N training data, kernel ELM approaches require the
calculation of a matrix K ∈ RN×N having a quadratic O(N2)
computational complexity with respect to N . The calculation
of the network parameters requires the inversion of K, having
a cubic O(N3) computational complexity with respect to N
[14], [16]. In order to make the application of ELM-based
classification in large scale classification problems possible,
an SMO-based optimization algorithm has been proposed in
[15] for the case where the hinge loss of the prediction error is
exploited. This method has the drawbacks that it still requires
the calculation of the entire kernel matrix K and that the opti-
mization process is still very slow for large scale datasets. For
squared loss criteria, the regularized ELM approach exploiting
random hidden layer parameters has been proposed in [14]. It
has the disadvantage that, by employing randomly sampled
hidden layer parameters, the obtained performance is inferior,
when compared to the kernel approach [16].

Approximation approaches have been found to be both
efficient and effective. A line of work in approximate methods
determines a low-rank approximation of a Gram matrix of the
form K ≃ Q = CQ̃CT , where C ∈ RN×n and Q̃ ∈ Rn×n.
C is formed by n (uniformly or data-dependent nonuniformly
sampled) columns of K and Q̃ is a matrix formed by the inter-
section between those n columns of K and the corresponding
n rows of K [17]. By using such matrix approximation
approaches, approximate Linear Algebra methods, like matrix
multiplication and Singular Value Decomposition, and their
application in kernel machines have been proposed that have
provable guarantees on the quality of obtained approximate
solution [18], [19], [20], [21], [17]. In addition, it has been
recently shown that the adoption of such an approximate
approach can be exploited in kernel-based clustering [22],
[23], [24] with state-of-the-art performance. While the above-
described approximate approach has the advantage that the
entire kernel matrix needs not be computed, for KELM-based
classification the the inversion of the corresponding approx-
imate kernel matrix Q ∈ RN×N still has a computational
complexity equal to O(N3). Another approximate approach
exploits a so-called “randomized kernel”, which is constructed
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by randomly sampling a small set n of the N training data
[20], [25], [26]. This approach has the disadvantage that the
corresponding methods exploit information appearing only in
the subset of the training data employed for the calculation of
the randomized kernel.

In this paper, we propose a novel approximate kernel
ELM (noted as AKELM hereafter) formulation. We show
that the proposed approach is able to scale well in memory
and operates extremely fast, when compared to the kernel
ELM approach, while achieving comparable, or even better,
performance with that of kernel ELM. Extensions of the
proposed AKELM approach exploiting regularization and in
order to exploit the total and within-class variance of the
training data in the feature space, are also proposed. We
evaluate the proposed approach in medium and large scale
classification problems, where we compare its performance
with that of a) ELM and regularized ELM exploiting random
hidden layer parameters [1], [14], b) kernel ELM applied on
a subset of the training set and c) kernel ELM applied on the
entire training set [14].

The novel contributions of the paper are the following ones:
• A novel approximate kernel ELM algorithm that is able to

scale well in memory and operate extremely fast during
both training and testing is proposed.

• The proposed Approximate Kernel Extreme Learning
Machine (AKELM) algorithm is extended, in order to
exploit regularization and the total and within-class vari-
ance of the training data in the feature space.

The rest of the paper is organized as follows. In Section II,
we provide an overview of the ELM, regularized ELM and
kernel ELM algorithms. The proposed AKELM algorithm is
described in Section III. Regularized AKELM algorithm and
AKELM exploting the total and within-class variance of the
training data in the feature space are described in Subsections
IV and III-B. Experimental results evaluating the performance
of the proposed approach in medium and large scale datasets
are described in Section IV. Finally, conclusions are drawn in
Section V.

II. OVERVIEW OF EXTREME LEARNING MACHINES

In this section, we briefly describe the ELM, regularized
ELM and kernel ELM proposed in [1] and [14]. Subsequently,
we discuss the kernel ELM method proposed in [14] and
compare it with the original kernel definition [27], [28], [29].

Let us denote by X a set of N vectors xi ∈ RD and by
c the corresponding class labels ci ∈ {1, . . . , C}, which will
be used in order to train a SLFN network using the ELM
algorithm. An ELM network is essentially a combination of
C one-versus-rest classifiers. It consists of D input (equal to
the dimensionality of xi), L hidden and C output (equal to
the number of classes involved in the classification problem)
neurons. The number of hidden layer neurons is usually
selected to be much greater than the number of classes [14],
[30], i.e., L ≫ C. The elements of the network target vectors
ti = [ti1, ..., tiC ]

T , each corresponding to a training vector
xi, are set to tik = 1 for vectors belonging to class k, i.e.,
when ci = k, and to tik = −1 when ci ̸= k. In ELM-based

approaches, the network input weights Win ∈ RD×L and the
hidden layer bias values b ∈ RL are randomly assigned, while
the network output weights Wout ∈ RL×C are analytically
calculated.

Let us denote by qj , wk, wkj the j-th column of Win, the
k-th row of Wout and the j-th element of wk, respectively.
Given an activation function Φ(·) for the network hidden
layer and using a linear activation function for the network
output layer, the response oi = [oi1, . . . , oiC ]

T of the network
corresponding to xi is calculated by:

oik =
L∑

j=1

wkj Φ(qj , bj ,xi), k = 1, ..., C. (1)

It has been shown that almost any nonlinear piecewise contin-
uous activation functions Φ(·) can be used for the calculation
of the network hidden layer outputs, e.g. the sigmoid, sine,
Gaussian, hard-limiting, Radial Basis Function (RBF), RBF-
χ2, Fourier series, etc [6], [31], [14], [32]. By storing the
network hidden layer outputs ϕi ∈ RL corresponding to all
the training vectors xi, i = 1, . . . , N in a matrix Φ =
[ϕ1, . . . ,ϕN ], or:

Φ =

 Φ(q1, b1,x1) · · · Φ(q1, b1,xN )

· · ·
. . . · · ·

Φ(qL, bL,x1) · · · Φ(qL, bL,xN )

 , (2)

equation (1) can be expressed in a matrix form as:

O = WT
outΦ, (3)

where O ∈ RC×N is a matrix containing the network re-
sponses for all training data xi.

A. Extreme Learning Machine

ELM assumes zero training error [1], by assuming that oi =
ti, i = 1, . . . , N , or in a matrix notation:

O = T, (4)

where T = [t1, . . . , tN ] is a matrix containing the network
target vectors. By using (3), the network output weights Wout

can be analytically calculated by:

Wout = Φ† TT , (5)

where Φ† =
(
ΦΦT

)−1
Φ is the generalized pseudo-inverse

of ΦT . After the calculation of the network output weights
Wout, the network response for a vector xl ∈ RD is given
by:

ol = WT
outϕl, (6)

where ϕl is the network hidden layer output for xi.

B. Regularized and kernel Extreme Learning Machine
The calculation of the network output weights Wout

through (5) is sometimes inaccurate, since the matrix ΦΦT

may be singular. A regularized version of the ELM algorithm
that allows small training errors and tries to minimize the
norm of the network output weights Wout has been proposed



3

in [14], where the network output weights are calculated by
solving the following optimization problem:

Minimize: JRELM =
1

2
∥Wout∥2F +

λ

2

N∑
i=1

∥ξi∥
2
2 (7)

Subject to: WT
outϕi = ti − ξi, i = 1, ..., N, (8)

where ξi ∈ RC is the error vector corresponding to xi and λ is
a parameter denoting the importance of the training error in the
optimization problem, satisfying λ > 0. Based on the Karush-
Kuhn-Tucker (KKT) theorem [33], the network output weights
Wout can be determined by solving the dual optimization
problem:

JD,RELM =
1

2
∥Wout∥2F +

λ

2

N∑
i=1

∥ξi∥22

−
N∑
i=1

ai
(
WT

outϕi − ti + ξi
)
, (9)

which is equivalent to (7). By calculating the derivatives of
JD,RELM with respect to Wout, ξi and ai and setting them
equal to zero, the network output weights Wout are obtained
by:

Wout =

(
ΦΦT +

1

λ
I

)−1

ΦTT , (10)

or

Wout = Φ

(
ΦTΦ+

1

λ
I

)−1

TT

= Φ

(
K+

1

λ
I

)−1

TT , (11)

where K ∈ RN×N is the ELM kernel matrix, having elements
equal to [K]i,j = ϕT

i ϕj [34]. By using (11), the network
response for a given vector xl ∈ RD is given by:

ol = WT
outϕl = T

(
K+

1

λ
I

)−1

ΦTϕl

= T

(
K+

1

λ
I

)−1

kl, (12)

where kl ∈ RN is a vector having its elements equal to kl,i =
ϕT

i ϕl, i = 1, . . . , N .

C. Discussion on kernel Extreme Learning Machines

The kernel ELM method described above follows the
analysis used in regularized ELM and exploits the kernel
matrix definition K = ΦTΦ, in order to derive an equation
involving ol and K (i.e. Eq. (12)). Since in this analysis
ϕi ∈ RL, K is also defined in RL. Thus, the network output
weights wk, k = 1, . . . , C are defined in RL too. Kernel
formulations define data representations in a feature space F
of arbitrary (even infinite) dimensions, having the properties of
Hilbert spaces [27], [28], [29]. Subsequently, they restrict the
respective parameters to lie on the span of the training data
representations in F . That is, according to the Representer
theory following the Mercer conditions, we should restrict

the network output weights to be a linear combination of the
training data (when represented in F) [35], [36], i.e.:

Wout = ΦAT , (13)

where Φ ∈ R|F|×N denotes the training data representations
in F and A ∈ RC×N is a matrix containing the reconstruction
weights of Wout with respect to Φ. Clearly, the case where
F is defined to be the feature space determined by the outputs
of the network hidden layer outputs RL, is a special case of
the proposed approach. In this case, the dimensionality of the
network hidden layer space L may be either finite or infinite,
i.e., L → ∞ [16].

By adopting the above ELM kernel definition, we can revisit
the ELM and regularized ELM formulations. ELM solves (3),
subject to the constraints in (4). This can be expressed as
follows:

T = WT
outΦ = AΦTΦ = AK. (14)

In the case where K is non-singular1, the optimal reconstruc-
tion matrix A is given by:

A = TK−1. (15)

The network output for a vector xl ∈ RD is given by:

ol = WT
outϕl = AΦTϕl = Akl. (16)

That is, by using the Representer theory [27], [28], [29],
the ELM network can be approached as a kernel machine,
while by following the analysis in Section II-A this was
not possible. It should be noted here that the above KELM
algorithm achieves zero training error. This may degrade its
generalization performance if the training set contains outliers.

Regularized ELM, minimizes (7), subject to the constraints
in (8). By substituting (8) in (7) and using Wout = ΦAT , we
obtain:

JRELM =
1

2
∥ΦAT ∥2F +

λ

2
∥AΦTΦ−T∥2F

=
1

2
Tr
(
AKAT

)
+

λ

2
∥AK−T∥2F . (17)

In the case where K is non-singular, by solving ∇AJRELM =
0, the reconstruction weights matrix A are given by:

A = T

(
K+

1

λ
I

)−1

. (18)

The network output for a vector xl ∈ RD is given by:

ol = WT
outϕl = AΦTϕl = T

(
K+

1

λ
I

)−1

kl. (19)

By comparing (19) and (12), it can be seen that, for the
regularized ELM case, the approach followed in [14] provides
the same network output with the one obtained by employing
the Representer theory-based formulation in (19). However,
as will be shown in the next Section, the adoption of the
Representer theory-based analysis can be exploited in order
to appropriately formulate approximate kernel ELM networks
in both the ELM and the regularized ELM cases.

1In the case of independent and identically distributed training samples
xi, i = 1, . . . , N , this assumption is always valid.
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III. APPROXIMATE KERNEL EXTREME LEARNING
MACHINE

In this Section, we describe in detail the proposed Ap-
proximate Kernel ELM (AKELM). In order to obtain an
approximate solution, we assume that the network output
weights Wout lie on the span of a subset of the training data
(represented in F), i.e. Wout = Φ̃AT , where Φ̃ ∈ R|F|×n,
where A ∈ RC×n is a matrix containing the reconstruction
weights of Wout with respect to Φ̃. The columns of Φ̃ are
randomly selected from the columns of Φ, i.e.:

Φ̃ = ΦEM, (20)

where E is a random (column) permutation matrix and M ∈

RN×n is a matrix with elements Mii = 1 and Mij = 0, i ̸= j.
AKELM solves (3), by setting O = T. This can be expressed
as follows:

T = WT
outΦ = AΦ̃TΦ = AK̃, (21)

where K̃ ∈ Rn×N is a submatrix of the original kernel matrix
K ∈ RN×N . The optimal reconstruction weight matrix A is
given by:

A = TK̃T
(
K̃K̃T

)−1

(22)

and the network output for a vector xl ∈ RD is given by:

ol = WT
outϕl = AΦTϕl = TK̃

(
K̃K̃T

)−1

kl. (23)

It should be noted here that the calculation of A through (22)
is always possible, since n ≤ N . Analysis concerning the
training error bound of the proposed AKELM algorithm is
provided in the Appendix.

Comparing (15) and (23), it can be seen that the proposed
AKELM algorithm has a much lower time complexity, when
compared to the KELM in (15). Specifically, the KELM
algorithm in (15) requires the following processing steps:

• Kernel matrix K calculation, having time complexity
equal to O(DN2).

• Kernel matrix K inversion, having time complexity equal
to O(N3).

• Reconstruction weights matrix A calculation, having time
complexity equal to O(CN2).

The proposed AKELM algorithm requires the following pro-
cessing steps:

• Calculation of the matrix K̃ having time complexity equal
to O(nDN).

• Calculation of the matrix K̃K̃T , having time complexity
equal to O(n2N).

• Reconstruction weights matrix A calculation, having time
complexity equal to O((n2 + C)N).

From the above, the computational complexity of the KELM
algorithm is equal to O(N3 + (D + C)N2), while the time
complexity of the proposed AKELM algorithm is equal to
O((2n2 + nD + C)N). By setting n = pN and D = mN ,
the time complexity of the KELM algorithm is equal to
O((m+1)N3+CN2) and the time complexity of the proposed
AKELM algorithm is equal to O((2p2+p)N3+CN). Taking
into account that, for large scale classification problems,

m ≪ 1 and that satisfactory performance can be achieved
by using a value p ≪ 1, as shown in the experimental
evaluation provided in Section IV, the computational cost
of the proposed AKELM algorithm in the training phase is
significantly lower than the one of the KELM algorithm. For
example, in the Youtube Faces database [37], the proposed
AKELM algorithms achieves a good performance by using
a value of p = 1.6 · 10−3. In that database, where m =
6 · 10−3, the acceleration achieved by applying the proposed
AKELM algorithm versus KELM is in the order of 103. In
the test phase, the time complexity of KELM algorithm is
equal to O(CN2 + D2N) = O(CN2 + m2N3), while the
time complexity of the proposed AKELM algorithm is equal
to O(Cn2 + D2n) = O(Cp2N2 + m2pN2). Thus, in the
test phase the computational cost of the proposed AKELM
algorithm is significantly lower from that of KELM too.
Regarding memory requirements, KELM employs a matrix of
N ×N dimensions, while the proposed AKELM a matrix of
pN ×N dimensions.

A. Regularized Approximate Kernel Extreme Learning Ma-
chine

Following a similar analysis as above, a regularized version
of the proposed AKELM algorithm can be obtained by solving
for:

JRAKELM =
1

2
∥Φ̃AT ∥2F +

λ

2
∥AΦ̃TΦ−T∥2F

=
1

2
tr
(
AΦ̃T Φ̃AT

)
+

λ

2
∥AK̃−T∥2F

=
1

2
tr
(
AK̂AT

)
+

λ

2
∥AK̃−T∥2F , (24)

where tr(·) denotes the trace operator and K̂ ∈ Rn×n. By
solving ∇AJRAKELM = 0, the reconstruction weights matrix
A is given by:

A = TK̃T

(
K̃K̃T +

1

λ
K̂

)−1

. (25)

The network output for a vector xl ∈ RD is given by:

ol = WT
outϕl = AΦTϕl = TK̃T

(
K̃K̃T +

1

λ
K̂

)−1

kl.

(26)
The calculation of A through (25) is always possible, since
n ≤ N . It should be noted here that, compared to the AKELM
algorithm described in the previous section, the calculation of
the reconstruction weights matrix A through (26) requires an
additional n × n matrix addition operations. Thus, its time
complexity is equal to O((2p2+p)N3+p2N2+CN), which
is significantly lower than that of KELM algorithm. This is due
to the fact that the matrix K̂ is a sub-matrix of K̃ and, thus, the
elements of K̂ need not to be computed. The computational
cost during testing and the memory requirements of the
regularized AKELM algorithm (noted as RAKELM hereafter)
are the same with that of AKELM algorithm.
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B. Approximate Kernel Extreme Learning Machine exploiting
Variance Regularizer

By using a sufficiently large number of hidden layer neu-
rons, ELM classification, when approached from a Subspace
Learning (SL) point of view, can be considered to be a
learning process formed by two processing steps. The first
step corresponds to a (nonlinear) mapping process of the input
space RD to a high-dimensional feature space RL (the so-
called ELM space), preserving some properties of interest for
the training data. In the second step, an optimization process
is employed for the determination of a linear projection of
the high-dimensional data to a low-dimensional feature space,
where classification is performed by a linear classifier. Based
on this observation, the ELM algorithm has been recently
extended, in order to incorporate the within-class variance of
the training data [32] and the variance of the entire training set
[30] (expressed in the ELM space) in its optimization process,
leading to enhanced classification performance.

In order to exploit variance criteria of the training data in
F , the following optimization problem is solved:

JMVAKELM =
1

2
∥S 1

2Wout∥2F +
λ

2
∥WT

outΦ−T∥2F , (27)

where S ∈ R|F|×|F| is a matrix (of arbitrary dimensions)
expressing variance criteria in F . By exploiting a Graph
Embedded-based approach [38], we can assume that the train-
ing data representations in F are used in order to form the
vertex set of a graph G = {Φ,V}, where V ∈ RN×N is
a similarity matrix whose elements denote the relationships
between the graph vertices Φ. S can be defined by S =
ΦLΦT , where L ∈ RN×N is the graph Laplacian matrix
defined by L = D−V, D being the diagonal degree matrix
of G having elements Dii =

∑N
j=1 Vij . (27) can now be

expressed as follows:

JMVAKELM =
1

2
tr
(
AK̃LK̃TAT

)
+

λ

2
tr
(
K̃ATAK̃

)
− λ tr

(
K̃ATT

)
+ tr

(
TTT

)
. (28)

By solving ∇AJMVAKELM = 0, A is given by:

A = TK̃T

(
K̃K̃T +

1

λ
K̃LK̃T

)−1

. (29)

As can be seen from (29), subspace learning criteria de-
signed in the context of Graph Embedding framework can be
incorporated in the calculation of the reconstruction weights
matrix A. However, the adoption of general graph structures
would require a prohibitive additional computational cost
and memory usage, since LN×N . Fortunately, the Laplacian
matrices used to define the total and within-class variance of
the training data in Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA), respectively, have the
form:

LT =
1

N

(
I− 1

N
eeT

)
(30)

and

Lw =

(
I−

C∑
k=1

1

Nk
eke

T
k

)
, (31)

where e ∈ RN is a vector of ones, ek ∈ RN is a vector with
elements equal to eki = 1 when ci = k and eik = 0 when
ci ̸= k. Nk denotes the cardinality of class k. By substituting
(30) and (31) in (29), we obtain:

AT = TK̃T

[(
λN + 1

λN

)
K̃K̃T − 1

λN2
(K̃e)(eK̃)T

]−1

(32)
and

Aw = TK̃T

[(
λN + 1

λN

)
K̃K̃T −

C∑
k=1

1

λNk
(K̃ek)(ekK̃)T

]−1

.

(33)
The calculation of A through (32) and (33) is always possible,
since n ≤ N . Compared to the RAKELM algorithm described
in the previous section, the calculation of the reconstruction
weights matrix A through (32) and (33) requires an additional
multiplication of a n×N matrix with a vector of N elements
and the calculation of a symmetric matrix through the multipli-
cation of two vectors of N elements. Thus, its time complexity
is equal to O((2p2+ p)N3+(p2+ p+0.5)N2+CN), which
is significantly lower than that of KELM algorithm. The com-
putational cost during testing and the memory requirements of
the AKELM algorithms exploiting variance criteria (noted as
MVAKELM and MCVAKELM for the formulations in (32)
and (33), respectively) are the same with that of AKELM and
RAKELM algorithms.

C. Discussion

In the following, we highlight the difference between the
proposed approach and those followed in [14], [39], where
the optimization problem (7) is solved by using its dual
formulation (9), in order to derive the two solutions for Wout

given in (10) and (11). From these two solutions, one way to
derive an ELM solution of reduced dimensions involving K̃ is
to use a subset of the training data X̃ ⊆ X as input weights,
employ the kernel function k(·, ·) instead of Φ(·) and calculate
the network output weights through:

Wout =

(
K̃K̃T +

1

λ
I

)−1

K̃TT . (34)

Subsequently, the network output for a vector xl ∈ RD is
given by:

ol = WT
outkl = TK̃T

(
K̃K̃T +

1

λ
I

)−1

kl. (35)

Comparing (25) and (34), it can be seen that the adopted
regularization terms are different. This is due to the fact
that (25), by following the Representer theory, regularizes
the network output weights Wout in the feature space F .
However, in (34) the network output weights are regularized in
the space determined by the network hidden layer outputs RL.
A second observation is that the network output calculation
for xl through (35) involves the matrix K̃ and the vector
kl defined in the space determined by the network hidden
layer outputs RL and not in the feature space F of arbitrary
dimensionality. Both these differences are due to the fact
that the solution in (34) corresponds to a regularized ELM
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network, where some of the training data are employed, in
order to form the input weight matrix, i.e. Win = X̃, where
X̃ = XEM. A similar approach has also been proposed in
[39], where the input data are mapped to a subspace of the
kernel space following a Nyström-based kernel approximation.
This representation is obtained by Φ̂ = K̃K̂− 1

2 . Using Φ̂,
optimization problems proposed for different ELM variants
are subsequently solved [32], [40].

IV. EXPERIMENTS

In this Section, we present experiments conducted in or-
der to evaluate the performance of the proposed AKELM
algorithm. We have employed four publicly available facial
image datasets to this end. A brief description of the datasets
is provided in the subsection IV-A. Experimental results are
provided in subsection IV-B. In all our experiments we com-
pare the performance and efficiency of the proposed AKELM
algorithms with that of ELM [1], RELM [14] and Kernel
ELM (KELM) [14] algorithms. All the experiments have been
conducted on a 4-core, i7 − 4790, 3.6GHz PC with 32GB
RAM using single floating point precision and a MATLAB
implementation.

A. Data sets
1) JAFFE dataset [41]: consists of 210 facial images

depicting 10 Japanese female persons performing emotions:
anger, disgust, fear, happyiess, sadness, surprise and neutral.
Each of the persons is depicted in 3 images for each expres-
sion. Example images of the dataset are illustrated in Figure
1.

Fig. 1. Facial images depicting a person of the JAFFE dataset. From left
to right: neutral, anger, disgust, fear, happy, sad and surprise.

2) COHN-KANADE dataset [42]: consists of facial images
depicting 210 persons of age between 18 and 50 performing
the seven emotions. Each facial expression is depicted in 35
facial images. Example images of the dataset are illustrated in
Figure 2.

Fig. 2. Facial images from the COHN-KANADE dataset. From left to right:
neutral, anger, disgust, fear, happy, sad and surprise.

3) BU dataset [43]: consists of facial images depicting
over 100 persons performing the seven emotions. The persons
of the comes from a variety of ethnic/racial background,
including White, Black, East-Asian, Middle-East Asian and
Hispanic Latino. In our experiments, we have employed the
images depicting the most expressive intensity of each facial
expression. Example images of the dataset are illustrated in
Figure 3.

Fig. 3. Facial images depicting a person of the BU dataset. From left to
right: neutral, anger, disgust, fear, happy, sad and surprise.

TABLE I
TRAINING SET CARDINALITY N ON EACH EVALUATION ROUND FOR THE

JAFFE, COHN-KANADE AND BU DATASETS.

JAFFE COHN-KANADE BU
4200 4900 14000

4) Youtube Faces dataset [37]: consists of 621126 facial
images depicting 1595 persons. All images have been down-
loaded from YouTube. In our experiments we have employed
the facial images depicting persons in at least 500 images,
resulting to a dataset of 370319 images and 340 classes.
Example images of the dataset are illustrated in Figure 4.

Fig. 4. Facial images depicting persons of the YouTube dataset.

.

B. Experimental Results

In our first set of experiments, we have applied the various
ELM algorithms on the JAFFE, COHN-KANADE and BU
datasets. Since there is not a widely adopted experimental
protocol for these datasets, we perform the five-fold cross-
validation procedure [44], by taking into account the facial
expression labels. That is, we randomly split the facial images
depicting the same emotion in five sets and we use four
splits of all the emotions for training and the remaining splits
for evaluation. This process is performed five times, one for
each evaluation split. On each evaluation round, we enrich
the training set by following the approach proposed in [45].
Specifically, each training facial image was translated, rotated
and scaled according to 25 different geometric transforma-
tions. Each eye has five possible positions: original position,
one-pixel left, right, up and down (resulting into 25 pairs).
Therefore, the cardinality of the training set on each evaluation
round is multiplied by a factor of 25, since the enriched version
of each training set consists of the original training (centered)
facial images and the 24 shifted images for each centered
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TABLE II
PERFORMANCE ON THE JAFFE DATASET.

L,n,Ñ ELM KELM AKELM RELM RAKELM MVAKELM MCVAKELM
25 33.81% 35.24% 51.43% 35.71% 54.29% 54.29% 54.29%
50 43.81% 45.71% 51.43% 39.52% 54.76% 54.76% 55.24%
100 45.24% 49.05% 54.29% 44.76% 55.71% 56.19% 57.14%
250 50% 50.95% 56.19% 50.48% 57.62% 58.1% 58.57%
500 47.67% 58.1% 60% 55.71% 60.48% 60.48% 60.95%
4200 - 60% - - - - -

TABLE III
PERFORMANCE ON THE COHN-KANADE DATASET.

L,n,Ñ ELM KELM AKELM RELM RAKELM MVAKELM MCVAKELM
25 48.98% 29.39% 49.8% 48.98% 49.8% 49.8% 50.61%
50 58.78% 39.59% 56.73% 60% 60 % 60% 61.63%
100 64.9% 47.76% 63.67% 64.08% 65.31% 65.63% 66.94%
250 67.76% 55.92% 69.8% 69.8% 71.02% 71.02% 71.84%
500 68.16% 66.53% 70.2% 71.43% 76.73% 76.94% 76.94%
4900 - 73.47% - - - - -

TABLE IV
PERFORMANCE ON THE BU DATASET.

L,n,Ñ ELM KELM AKELM RELM RAKELM MVAKELM MCVAKELM
25 47.14% 28.43% 47.71% 47.14% 47.71% 47.71% 48.07%
50 51.14% 38% 56.43% 52.29% 56.43% 56.71% 56.71%
100 60.57% 46.43% 62.43% 60.86% 62.43% 62.43% 62.71%
250 67.43% 51.57% 69.29% 67.86% 69.57% 69.57% 70.29%
500 67.86% 57.57% 69.14% 69.19% 70.43% 71% 71.22%

14000 - 68.29% - - - - -

image. The cardinality N of the training set used on each
evaluation round for the JAFFE, COHN-KANADE and BU
datasets is illustrated in Table I.

In all the experiments, we have resized the facial images
in 40 × 30 pixel images and vectorized these images in
order to create vectors xi ∈ R1200. For the ELM methods
exploiting a kernel formulation we have employed the RBF
kernel function:

K(xi,xj) = exp
(
− ∥xi − xj∥22

2σ2

)
. (36)

The value of σ is set equal to the mean Euclidean distance
between the training vectors xi that corresponds to the natural
scaling value for each dataset. In the case of ELM formulations
exploiting random input weights qj , we have employed the
RBF activation function:

Φ(xi,qj , b) = exp
(
− ∥xi − qj∥22

2b2

)
, (37)

where the value b is set equal to the mean Euclidean distance
between the training data xi and the network input weights
qj .

We test the performance of the ELM algorithms exploiting
random input weights for a number of hidden layer neurons
L = {25, 50, 100, 250, 500}. We determine the cardinality
of the reference data in the proposed AKELM algorithms
accordingly, i.e. n = {25, 50, 100, 250, 500}. For the KELM
approach, we test the original approach exploiting the en-
tire training set in order to calculate the network weights
through (11) and an approximate KELM approach, exploiting

a subset of the training data for network weights calcu-
lation through (11). We set the cardinality of the reduced
training set similar to the ELM and AKELM approaches,
i.e. Ñ = {25, 50, 100, 250, 500}. For fair comparison, in all
the experiments, we use the same subset for the proposed
AKELM methods and the KELM approach using a reduced
training set. Regarding the optimal value of the regularization
parameter λ used in all the regularized ELM formulations, it
has been determined by following a line search strategy, which
is applied on the training data, using the values λ = 10r, r =
−6, . . . , 6.

Experimental results obtained by applying the competing
algorithms on the JAFFE, COHN-KANADE and BU datasets
are illustrated in Tables II, III and IV, respectively. As can be
seen, the proposed AKELM approach outperforms both the
ELM approach exploiting random input parameters and the
KELM approach employing a subset of the training data in all
cases. In addition, the proposed AKELM algorithm provides
performance comparable with that of KELM applied in the
entire training set. The incorporation of variance criteria in
MVAKELM and MCVAKELM algorithms further enhances
performance, since these two algorithms achieve the best
performance in all the cases.

In Tables V, VI and VII we provide the computational cost
and memory requirements of the ELM, KELM and AKELM
algorithms, when applied to the JAFFE, COHN-KANADE and
BU datasets. As can be seen, during testing the computational
cost and the memory requirements of the proposed AKELM
algorithm are the same with that of ELM. The computational
cost of the proposed AKELM algorithm during training is
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TABLE V
TRAINING AND TEST TIMES AND MEMORY DURING TRAINING IN JAFFE DATASET.

Training time (sec) Test time (sec) Memory (MB)
L,n,Ñ ELM KELM AKELM ELM KELM AKELM ELM KELM AKELM
25 0.047 0.001 0.047 0.001 0.001 0.001 0.897 0.006 0.897
50 0.054 0.002 0.054 0.001 0.001 0.001 1.794 0.024 1.794
100 0.07 0.004 0.071 0.001 0.001 0.001 3.364 0.084 3.364
250 0.12 0.018 0.121 0.002 0.002 0.002 8.075 0.484 8.075
500 0.21 0.08 0.211 0.005 0.005 0.005 16.15 1.938 16.15
4200 - 9.24 - - 0.258 - - 134.58 -

TABLE VI
TRAINING AND TEST TIMES AND MEMORY DURING TRAINING IN COHN-KANADE DATASET.

Training time (sec) Test time (sec) Memory (MB)
L,n,Ñ ELM KELM AKELM ELM KELM AKELM ELM KELM AKELM
25 0.058 0.001 0.058 0.001 0.001 0.001 1.05 0.006 1.05
50 0.065 0.002 0.066 0.001 0.001 0.001 2.09 0.024 2.09
100 0.079 0.004 0.08 0.001 0.001 0.001 3.93 0.084 3.93
250 0.145 0.018 0.147 0.003 0.003 0.003 9.42 0.484 9.42
500 0.243 0.08 0.245 0.005 0.005 0.005 18.84 1.938 18.84
4900 - 12.11 - - 0.314 - - 183.18 -

TABLE VII
TRAINING AND TEST TIMES AND MEMORY DURING TRAINING IN BU DATASET.

Training time (sec) Test time (sec) Memory (MB)
L,n,Ñ ELM KELM AKELM ELM KELM AKELM ELM KELM AKELM
25 0.179 0.001 0.18 0.002 0.001 0.002 2.67 0.006 2.67
50 0.197 0.002 0.198 0.002 0.001 0.002 5.34 0.024 5.34
100 0.237 0.004 0.239 0.002 0.001 0.002 10.68 0.084 10.68
250 0.414 0.018 0.416 0.004 0.003 0.004 26.7 0.484 26.7
500 0.704 0.08 0.706 0.009 0.005 0.009 53.41 1.938 53.41

14000 - 152.17 - - 1.265 - - 1495.4 -

slightly higher than that of ELM, but the differences are
insignificant. On the other hand, the computational cost during
both training and testing and the memory requirements of
the KELM algorithm are significantly higher than the ones
of ELM and AKELM.

In Table VIII, we also compare the performance obtained
by applying AKELM-based classification with that of other,
recently proposed, methods evaluating their performance on
the BU, Jaffe and Kanade databases. As can be seen, the
proposed AKELM methods achieve satisfactory performance
in all the cases. Specifically, AKELM-based classification
outperforms [46] and [47] in all cases, while MMRP proposed
in [48] provides the best performance on the Cohn-Kanade
dataset. This may be explained by the fact that the resolution
of the facial images used in [48] was equal to 150×200 pixels,
i.e., five times the resolution of the facial images used in our
experiments. Even in this case, it can be seen that AKELM
outperforms MMP and SVM-based facial image classification.

In our second set of experiments, we have applied the
competing algorithms in Youtube Faces dataset. In these ex-
periments, we have employed the facial image representation
suggested in [37]. Specifically, the bounding box of the face
detector output has been expanded by 2.2 of its original size
and cropped from the video frame. The expanded bounding
box is resized to an image of 200× 200 pixels. We then use
the centered 100×100 pixels to obtain the facial image, which

TABLE VIII
COMPARISON OF OUR RESULTS WITH SOME STATE-OF-THE-ART METHODS

ON THE BU, JAFFE AND KANADE DATASETS.

BU Jaffe Kanade
Method [46] - 56.72% 69.05%
Method [47] 66.4% - 72.9%
Method [48] - MMP - - 70.3%
Method [48] - RP - - 75.2%
Method [48] - SVM - - 73.4%
Method [48] - MMRP - - 80.1%
AKELM 69.14% 60% 70.2%
RAKELM 70.43% 60.48% 76.73%
MVAKELM 71% 60.48% 76.94%
MCVAKELM 71.22% 60.95% 76.94%

is converted to grayscale. Facial images are subsequently
aligned by fixing the coordinates of automatically detected
facial feature points [49] and the Local Binary Patter (LBP)
description [50] was employed, leading to a facial image
representation xi of D = 1770 dimensions. The RBF kernel
function in (36) and the RBF activation function in (37) have
been employed for the kernel ELM algorithms and the ELM
algorithms exploiting random input parameters, respectively.
Since there is no widely adopted experimental protocol on
the YouTube Faces dataset for multi-class classification, we
retain 80% of the facial images for training and the remaining
20% for testing, by taking into account the ID labels of the
persons in the dataset. That is, we keep 80% of the facial
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TABLE IX
PERFORMANCE (CR) ON THE YOUTUBE FACES DATASET.

L,n ELM AKELM RELM RAKELM MVAKELM MCVAKELM
25 7.57% 23.93% 17.9% 23.93% 24.77% 26.19%
50 31.3% 36.28% 31.31% 36.28% 37.09% 40.4%
100 45.18% 51.16% 45.18% 51.17% 52.32% 59.16%
250 67.32% 73.84% 67.37% 73.84% 77.45% 77.85%
500 54.72% 84.45% 54.74% 84.47% 85.12% 86.64%
1000 73.81% 85.08% 73.84% 85.12% 87.32% 87.45%
2000 77.03% 89.93% 77.03% 89.99% 90.18% 91.36%
5000 86.61% 94.35% 86.64% 94.38% 95.69% 97.79%

TABLE XI
TRAINING AND TEST TIMES AND MEMORY DURING TRAINING IN YOUTUBE FACES DATASET.

Training time (sec) Test time (sec) Memory (MB)
L,n/Ñ ELM KELM AKELM ELM KELM AKELM ELM KELM AKELM
25/- 3.26 - 3.27 0.78 - 0.78 28.25 - 28.25

50/500 3.57 0.06 3.52 0.84 2.02 0.84 56.51 3.81 56.51
100/1000 4.59 0.22 4.64 0.96 3.21 0.96 113.01 15.26 113.01
250/2000 6.11 1.40 5.91 1.35 5.55 1.35 282.53 95.37 282.53
500/5000 10.01 23.68 9.64 1.95 13.06 1.95 565.94 381.47 565.94

1000/10000 21.82 182.81 21.51 3.22 25.85 3.22 1131.9 1525.4 1131.9
2000/20000 42.96 1411.8 41.41 5.63 50.47 5.63 2263.9 1525.4 2263.9
5000/296257 322.52 4 · 105 322.06 13.07 820.9 13.07 4537.6 3 · 105 4537.6

TABLE X
PERFORMANCE (CR) OF KELM ON THE YOUTUBE FACES DATASET.

Ñ 500 1000 2000 5000 10000 20000
CR 67.15% 76.61% 78.37% 83.14% 85.12% 90.18%

images depicting each person for training and the remaining
facial images for evaluation.

We test the performance of the ELM algorithms ex-
ploiting random input weights for a number of hidden
layer neurons L = {25, 50, 100, 250, 500, 1000, 2000, 5000}.
We determine the cardinality of the reference data in
the proposed AKELM algorithms accordingly, i.e. n =
{25, 50, 100, 250, 500, 1000, 2000, 5000}. For KELM, we test
the approximate KELM approach, exploiting a subset of the
training data for network weights calculation through (11).
Since in this classification problem the number of classes is
equal to 340, we set the cardinality of the reduced training
set to Ñ = {500, 1000, 2000, 5000, 10000, 20000}. Regarding
the optimal value of the regularization parameter λ used in
all the regularized ELM formulations, it has been determined
by following a line search strategy, which is applied on the
training data, using the values λ = 10r, r = −6, . . . , 6.

Experimental results obtained by applying the competing
algorithms on the YouTube Faces dataset are illustrated in
Table IX. As can be seen, the proposed AKELM algorithm
outperforms the ELM algorithm exploiting random input pa-
rameters in all cases. Since the number of classes in this
classification problem is equal to 340, we test the performance
of the KELM algorithm that exploits a subset of the training
data using the values Ñ = {1000, 2000, 5000, 10000, 20000}.
The performance of KELM for different training set cardinal-
ities Ñ is illustrated in Table X. KELM requires a relatively
large training set in order to achieve performance comparable
with the one obtained by applying the proposed AKELM

algorithm. For example, KELM achieves a classification rate
equal to 90.18% for Ñ = 20000, while AKELM achieves a
similar performance, 89.93%, for n = 2000. This fact also
increases its computational cost in the test phase, since test
kernel vectors have a higher dimension, i.e. kl ∈ RÑ , Ñ ≫ n.
Overall, by using a value of n = 5000, the proposed AKELM
algorithm achieves a classification rate equal to 94.35%, thus
outperforming ELM providing a classification rate equal to
86.61% and KELM applied on a subset of Ñ = 20000
training data providing a classification rate equal to 90.18%.
The proposed RAKELM algorithm outperforms both RELM
in all the cases, while the adoption of variance criteria in
MVAKELM and MCVAKELM algorithm further enhances
classification performance.

In Table XI we provide the computational cost and memory
requirements of the ELM, KELM and AKELM algorithms,
when applied to the YouTube Faces dataset. As can be
seen, the computational cost during testing and the memory
requirements of the proposed AKELM algorithm is the same
with that of ELM. The computational cost of the proposed
AKELM algorithm during training is similar to that of ELM.
On the other hand, the computational cost during both training
and testing of KELM are significantly higher than the ones of
ELM and AKELM for Ñ > 10000. It is expected that the
application of the KELM algorithm on the YouTube Faces
dataset would require the storage of a matrix of 3 · 105
MB and its training process would require 4 · 105 seconds
(approximately 4.5 days). In addition, testing by using the
KELM classifier trained on the entire training set would
require 820 seconds. Even for the case where KELM is trained
on a subset of Ñ = 20000 training vectors, the training and
test times of the KELM algorithm are significantly higher from
those of the proposed AKELM algorithm.

Finally, in Table XII, we compare the performance of the
ELM, KELM and AKELM algorithms in the case where each
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TABLE XII
PERFORMANCE ON THE YOUTUBE FACES DATASET WITH RESPECT TO THE

TRAINING TIME.

Training time (sec) ELM KELM AKELM
100 67.32% 78.37% 73.84%
101 77.03% 83.14% 89.93%
102 86.61% 85.12% 94.35%

algorithm is allowed to exploit a constant training time for
training. By exploiting a training time of the order of 1 second,
KELM employing a reduced cardinality training set is able to
achieve a performance equal to 78.37%, outperforming ELM
and AKELM algorithms achieving a performance equal to
67.32% and 73.84%, respectively. For training times of the
order of 10 and 102 seconds, the AKELM algorithm achieves
classification rates equal to 89.93% and 94.35%, respectively,
outperforming both ELM and KELM algorithms.

Overall, by observing Tables II-XII, it can be seen that the
proposed AKELM consistently outperforms ELM, in both the
standard and regularized cases, while it is able to outperform
KELM, when similar training times are allowed for each
algorithm (in the orders of 10m, m = 0, 1, 2. In addition, the
proposed AKELM algorithms scale well in both training/test
time and memory. The incorporation of the total and within-
class variance information of the training data in the feature
space generally results to increased performance.

V. CONCLUSIONS

In this paper, we proposed an approximate solution of the
kernel Extreme Learning Machine classifier that is able to
scale well in both training/test computational cost and memory.
We have extended the proposed Approximate Kernel Extreme
Learning Machine classifier, in order to exploit regularization
and the total and within-class variance of the training data in
the feature space. Extensive experimental evaluation denotes
that the proposed approach is able to operate extremely fast
in both the training and test phases and to provide satisfactory
performance, outperforming relating classification schemes in
most cases.
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APPENDIX I
TRAINING ERROR BOUNDS

Let us denote by b ∈ RL an indicator vector, having
elements equal to bi = 1, if ϕi ∈ Φ̃ and bi = 0, otherwise,
where ∥b∥1 = n. Let us denote by wk and w̃k the output
weights corresponding to the k-th one-versus-rest classification
problem of the KELM and AKELM algorithms, respectively.

The mean training error of the AKELM algorithm can be
expressed as follows:

L(Wout,b) = min
wk

1

N

C∑
k=1

∥Φwk − tk∥22

= min
ak

1

N

C∑
k=1

∥K(ak ◦ b)− tk∥22

= min
ak

1

N

C∑
k=1

[
(ak ◦ b)TKK(ak ◦ b)

− 2tkKK(ak ◦ b) + tTk tk

]
(38)

The expected value of the training error can be expressed as
follows:

E[L(Wout,b)] = E

[
min
ak

1

N

C∑
k=1

[
(ak ◦ b)TKK(ak ◦ b)

− 2tkKK(ak ◦ b) + tTk tk

]]

≤ min
ak

1

N
E

[
C∑

k=1

[
(ak ◦ b)TKK(ak ◦ b)

− 2tkKK(ak ◦ b) + tTk tk

]]

= min
ak

1

N

[
n

N
aTk

( n

N
KK+ dD

)
ak

− 2n

N
tTkKak + tTk tk

]
= J b

k , (39)

where d = 1− n
N and D = diag(KK). Solving for ∇ak

J b
k =

0, we obtain:

ak =
( n

N
KK+ dD

)−1

Ktk. (40)

Substituting (40) in (39), we obtain:

J b
k =

1

N

[
tTk tk − n

N
tTkK

(
n

N
KK− N − n

N
D

)−1

Ktk

]
.

(41)
Thus, by setting b = 1 where 1 ∈ RN is a vector of ones, the
training error of the KELM algorithm is equal to:

J 1
k =

1

N
tTk tk − 1

N
tTkK(KK)−1Ktk. (42)

From (42) it can be seen that, in the case where K is invertible,
KELM achieves zero training error. For the training error
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bound of AKELM algorithm we have:

E[L(Wout,b)]− L(Wout,1) =
1

N
tTk tk

− n

N2
tTkK

(
n

N
KK+

N − n

N
D

)−1

Ktk

=
1

N
tTk tk − 1

N
tTkK

(
KK+

N − n

n
D

)−1

Ktk

= 1− 1

N
tTkKK

(
KK+

1− p

p
D

)−1

tk

≤ 1− 1

N
tTkKK

(
KK+

1− p

p
I

)−1

tk

= 1− 1

N
tTkUΛ

(
Λ+

1− p

p
I

)−1

UT tk, (43)

where we have set n = pN , Λ = diag(λ1, . . . , λN ) is a
diagonal matrix containing the eigenvalues of KK (and thus
Λ = diag(l21, . . . , l

2
N ), where li is the i-th eigenvalue of K)

and U ∈ RN×N is an orthogonal matrix containing the cor-
responding eigenvectors. As can be seen in (43), the training
error bound of the AKELM algorithm has a regularization
form. In the case where p = 1, the training error bound of
AKELM is equal to zero. For any other value of 0 < p < 1, the
training error bound is a function of p and of the eigenvalues
λi, i = 1, . . . , N .

To illustrate the result of (43), consider the special case
where KK has its eigenvalues equal to αn = αpN . In this
case, the error bound of the AKELM algorithm is equal to:

E[L(Wout,b)]− L(Wout,1) ≤ 1− αp2N

αp2N − p+ 1
. (44)

Thus, for any value ϵ > 0, the minimum value of p satisfying
E[L(Wout,b)]− L(Wout,1) ≤ ϵ is given by:

p =
(ϵ− 1) +

√
(1− ϵ)2 + 4αN(1− ϵ)

2αN
. (45)

For example, for a training error bound ϵ = 0.001, when α =
10 and N = 100000, a value of p = 0.001 should be used.
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