-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Explore Bristol Research

-% University of
OPEN (o) ACCESS BRISTOL

losifidis, A., Tefas, A., & Pitas, |. (2017). Approximate Kernel Extreme
Learning Machine for Large Scale Data Classification. Neurocomputing,
219, 210-220. https://doi.org/10.1016/j.neucom.2016.09.023

Peer reviewed version

License (if available):
CCBY-NC-ND

Link to published version (if available):
10.1016/j.neucom.2016.09.023

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Elsevier at http://www.sciencedirect.com/science/article/pii/S0925231216310402. Please refer to any
applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published

version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://core.ac.uk/display/96781204?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.neucom.2016.09.023
https://doi.org/10.1016/j.neucom.2016.09.023
https://research-information.bris.ac.uk/en/publications/approximate-kernel-extreme-learning-machine-for-large-scale-data-classification(4e6d8d4c-edcb-43bb-9d1f-f2fdf155b2b6).html
https://research-information.bris.ac.uk/en/publications/approximate-kernel-extreme-learning-machine-for-large-scale-data-classification(4e6d8d4c-edcb-43bb-9d1f-f2fdf155b2b6).html

Approximate Kernel Extreme Learning Machine
for Large Scale Data Classification

Alexandros Iosifidis, Anastasios Tefas, and Ioannis Pitas

Abstract— In this paper, we propose an approximation scheme
of the Kernel Extreme Learning Machine algorithm for Single-
hidden Layer Feedforward Neural network training that can be
used for large scale classification problems. The Approximate
Kernel Extreme Learning Machine is able to scale well in
both computational cost and memory, while achieving good
generalization performance. Regularized versions and extensions
in order to exploit the total and within-class variance of the
training data in the feature space are also proposed. Extensive
experimental evaluation in medium-scale and large-scale classi-
fication problems denotes that the proposed approach is able
to operate extremely fast in both the training and test phases
and to provide satisfactory performance, outperforming relating
classification schemes.

Index Terms— Extreme Learning Machine, Large Scale Learn-
ing, Facial Image Classification.

I. INTRODUCTION

Extreme Learning Machine (ELM) is a fast algorithm for
Single-hidden Layer Feedforward Neural (SLFN) networks
training that requires low human supervision [1]. Conventional
SLFN network training approaches, like the Backpropagation
[2] and the Levenberg-Marquardt [3] algorithms, adjust the
input weights and the hidden layer bias values by following
an optimization process, e.g., by applying gradient descend-
based optimization. However, such learning techniques are
generally slow and may decrease the generalization ability of
the network, since the solution may be trapped in local min-
ima. In standard ELM approaches the input weights and the
hidden layer bias values of the SLFN network are randomly
assigned and the network output weights are, subsequently,
analytically calculated. ELMs not only tend to reach the
smallest training error, but also the smallest output weight
norm as well. For feedforward networks reaching a small
training error, smaller output weight norm results in better
generalization performance [4]. Despite the fact that the de-
termination of the network hidden layer outputs is based on
randomly assigned input weights, it has been proven that ELM
networks have the properties of global approximators [5], [6].
Due to its effectiveness and its fast learning process, the ELM
network has been adopted in many classification problems
and many ELM variants have been proposed in the last few
years, extending the ELM network properties along different
directions [7], [8], [9], [10], [11], [12], [13].

A. losifidis is with the Department of Signal Processing, Tampere Uni-
versity of Technology, Finland and the Department of Informatics, Aristotle
University of Thessaloniki, Greece. e-mail: alexandros.iosifidis @tut.fi
A. Tefas is with the Department of Informatics, Aristotle University of
Thessaloniki, Greece. e-mail: tefas@aiia.csd.auth.gr
I. Pitas is with the Department of Electrical and Electronic Engineering,
University of Bristol, UK and the Department of Informatics, Aristotle
University of Thessaloniki, Greece.

Recently, kernel versions of the ELM algorithm have been
proposed [14], [15], which have been shown to outperform
the standard ELM approach that uses random input param-
eters [16]. A possible explanation of this fact is that kernel
ELM networks have connections to infinite single-hidden
layer feedforward networks [16]. However, the superiority in
performance of kernel ELM formulations is accompanied by a
higher computation cost and memory requirements, rendering
the exploitation of kernel ELM networks prohibitive in large
scale classification problems. Specifically, for a dataset con-
sisting of N training data, kernel ELM approaches require the
calculation of a matrix K € RV*¥ having a quadratic O(N?)
computational complexity with respect to N. The calculation
of the network parameters requires the inversion of K, having
a cubic O(N?3) computational complexity with respect to N
[14], [16]. In order to make the application of ELM-based
classification in large scale classification problems possible,
an SMO-based optimization algorithm has been proposed in
[15] for the case where the hinge loss of the prediction error is
exploited. This method has the drawbacks that it still requires
the calculation of the entire kernel matrix K and that the opti-
mization process is still very slow for large scale datasets. For
squared loss criteria, the regularized ELM approach exploiting
random hidden layer parameters has been proposed in [14]. It
has the disadvantage that, by employing randomly sampled
hidden layer parameters, the obtained performance is inferior,
when compared to the kernel approach [16].

Approximation approaches have been found to be both
efficient and effective. A line of work in approximate methods
determines a low-rank approximation of a Gram matrix of the
form K ~ Q = CQCT, where C € RVN*" and Q € R"*".
C is formed by n (uniformly or data-dependent nonuniformly
sampled) columns of K and Q is a matrix formed by the inter-
section between those n columns of K and the corresponding
n rows of K [17]. By using such matrix approximation
approaches, approximate Linear Algebra methods, like matrix
multiplication and Singular Value Decomposition, and their
application in kernel machines have been proposed that have
provable guarantees on the quality of obtained approximate
solution [18], [19], [20], [21], [17]. In addition, it has been
recently shown that the adoption of such an approximate
approach can be exploited in kernel-based clustering [22],
[23], [24] with state-of-the-art performance. While the above-
described approximate approach has the advantage that the
entire kernel matrix needs not be computed, for KELM-based
classification the the inversion of the corresponding approx-
imate kernel matrix Q € RM*¥ still has a computational
complexity equal to O(N?3). Another approximate approach
exploits a so-called “randomized kernel”, which is constructed

by randomly sampling a small set n of the IV training data
[20], [25], [26]. This approach has the disadvantage that the
corresponding methods exploit information appearing only in
the subset of the training data employed for the calculation of
the randomized kernel.

In this paper, we propose a novel approximate kernel
ELM (noted as AKELM hereafter) formulation. We show
that the proposed approach is able to scale well in memory
and operates extremely fast, when compared to the kernel
ELM approach, while achieving comparable, or even better,
performance with that of kernel ELM. Extensions of the
proposed AKELM approach exploiting regularization and in
order to exploit the total and within-class variance of the
training data in the feature space, are also proposed. We
evaluate the proposed approach in medium and large scale
classification problems, where we compare its performance
with that of a) ELM and regularized ELM exploiting random
hidden layer parameters [1], [14], b) kernel ELM applied on
a subset of the training set and c) kernel ELM applied on the
entire training set [14].

The novel contributions of the paper are the following ones:

« A novel approximate kernel ELM algorithm that is able to
scale well in memory and operate extremely fast during
both training and testing is proposed.

e The proposed Approximate Kernel Extreme Learning
Machine (AKELM) algorithm is extended, in order to
exploit regularization and the total and within-class vari-
ance of the training data in the feature space.

The rest of the paper is organized as follows. In Section II,
we provide an overview of the ELM, regularized ELM and
kernel ELM algorithms. The proposed AKELM algorithm is
described in Section III. Regularized AKELM algorithm and
AKFELM exploting the total and within-class variance of the
training data in the feature space are described in Subsections
IV and III-B. Experimental results evaluating the performance
of the proposed approach in medium and large scale datasets
are described in Section IV. Finally, conclusions are drawn in
Section V.

II. OVERVIEW OF EXTREME LEARNING MACHINES

In this section, we briefly describe the ELM, regularized
ELM and kernel ELM proposed in [1] and [14]. Subsequently,
we discuss the kernel ELM method proposed in [14] and
compare it with the original kernel definition [27], [28], [29].

Let us denote by X a set of N vectors x; € RP and by
c the corresponding class labels ¢; € {1,...,C}, which will
be used in order to train a SLFN network using the ELM
algorithm. An ELM network is essentially a combination of
C one-versus-rest classifiers. It consists of D input (equal to
the dimensionality of x;), L hidden and C output (equal to
the number of classes involved in the classification problem)
neurons. The number of hidden layer neurons is usually
selected to be much greater than the number of classes [14],
[30], i.e., L > C'. The elements of the network target vectors
t; = [ti1,...,tic]T, each corresponding to a training vector
x;, are set to t;; = 1 for vectors belonging to class k, i.e.,
when ¢; = k, and to t;; = —1 when ¢; # k. In ELM-based

approaches, the network input weights W;,, € RP*Z and the
hidden layer bias values b € R” are randomly assigned, while
the network output weights W,,; € REXC are analytically
calculated.

Let us denote by q;, W, wy; the j-th column of W, the
k-th row of W,,; and the j-th element of wy, respectively.
Given an activation function ®(-) for the network hidden
layer and using a linear activation function for the network
output layer, the response o; = [0;1, . . ., oiC]T of the network
corresponding to x; is calculated by:

L
Oik:Zwkj @(qj,bj,xi), k=1,..,0C. (1)
j=1

It has been shown that almost any nonlinear piecewise contin-
uous activation functions ®(-) can be used for the calculation
of the network hidden layer outputs, e.g. the sigmoid, sine,
Gaussian, hard-limiting, Radial Basis Function (RBF), RBF-
X2, Fourier series, etc [6], [31], [14], [32]. By storing the
network hidden layer outputs ¢, € R” corresponding to all

the training vectors x;, ¢ = 1,...,N in a matrix ® =
[b1,...,¢p], or
®(qq,b1,%1) ®(q1,b1,%xnN)
®(qr,br,x1) ®(qr,br,XN)

equation (1) can be expressed in a matrix form as:

0o=W. & 3)

out &

where O € RE*Y is a matrix containing the network re-
sponses for all training data x;.

A. Extreme Learning Machine

ELM assumes zero training error [1], by assuming that o; =
t;, ¢=1,..., N, or in a matrix notation:

oO="T, “)

where T = [t1,...,tx] is a matrix containing the network
target vectors. By using (3), the network output weights W,
can be analytically calculated by:

Wour = & T,)

where &t = (‘IZ'(I)T)fl ® is the generalized pseudo-inverse
of @7, After the calculation of the network output weights
W1, the network response for a vector x; € RP is given
by:

o1 =W, (6)

where ¢; is the network hidden layer output for x;.

B. Regularized and kernel Extreme Learning Machine

The calculation of the network output weights W,
through (5) is sometimes inaccurate, since the matrix dPpT
may be singular. A regularized version of the ELM algorithm
that allows small training errors and tries to minimize the
norm of the network output weights W,,; has been proposed

in [14], where the network output weights are calculated by
solving the following optimization problem:

N
. 1 2 A 2
Minimize: JrerLym = §||Woutl|F + 3 2:1 €112 (D
i

Subject to: WZ,p, =t; — &, i=1,...,N, ®)

where &; € R is the error vector corresponding to x; and \ is
a parameter denoting the importance of the training error in the
optimization problem, satisfying A > 0. Based on the Karush-
Kuhn-Tucker (KKT) theorem [33], the network output weights
W+ can be determined by solving the dual optimization
problem:

1 Pyl
JID,RELM = §||WoutH%+§ZH€ng
i=1

N
- D> a(Wiudi—ti+&), O

i=1
which is equivalent to (7). By calculating the derivatives of
Jp.rELM With respect to W,,;, &, and a; and setting them

equal to zero, the network output weights W ,,; are obtained
by:

-1
1
Wout = (<I><I>T +)\I) T, (10)
or
1 —1
Wour = ® <<I>T<I> + AI) T!
1 —1
= & <K + AI> T7, (11)

where K € RVN*N i the ELM kernel matrix, having elements
equal to K];; = ¢>1T¢)j [34]. By using (11), the network
response for a given vector x; € R” is given by:

-1
1
o Wl .0, =T (K + AI) o’ g,

1 —1
= T(K+ =1 k
< +)\> 15

where k; € RY is a vector having its elements equal to k; ; =
T .
¢i¢l’lz]‘7""N'

12)

C. Discussion on kernel Extreme Learning Machines

The kernel ELM method described above follows the
analysis used in regularized ELM and exploits the kernel
matrix definition K = ®7®, in order to derive an equation
involving o; and K (i.e. Eq. (12)). Since in this analysis
¢, € RE, K is also defined in RL. Thus, the network output
weights wy, k = 1,...,C are defined in R” too. Kernel
formulations define data representations in a feature space F
of arbitrary (even infinite) dimensions, having the properties of
Hilbert spaces [27], [28], [29]. Subsequently, they restrict the
respective parameters to lie on the span of the training data
representations in . That is, according to the Representer
theory following the Mercer conditions, we should restrict

the network output weights to be a linear combination of the
training data (when represented in F) [35], [36], i.e.:

Wous = @ATv (13)

where ® € RIIXN denotes the training data representations
in 7 and A € R“* is a matrix containing the reconstruction
weights of W,,; with respect to ®. Clearly, the case where
F is defined to be the feature space determined by the outputs
of the network hidden layer outputs R”, is a special case of
the proposed approach. In this case, the dimensionality of the
network hidden layer space L may be either finite or infinite,
ie., L — oo [16].

By adopting the above ELM kernel definition, we can revisit
the ELM and regularized ELM formulations. ELM solves (3),
subject to the constraints in (4). This can be expressed as
follows:

Wi, ®=A%"®=AK.

out

T = (14)

In the case where K is non-singular!, the optimal reconstruc-
tion matrix A is given by:

A=TK ! (15)

The network output for a vector x; € R” is given by:
o, =WZI b =AdT¢, = Ak,. (16)
That is, by using the Representer theory [27], [28], [29],

the ELM network can be approached as a kernel machine,
while by following the analysis in Section II-A this was
not possible. It should be noted here that the above KELM
algorithm achieves zero training error. This may degrade its
generalization performance if the training set contains outliers.

Regularized ELM, minimizes (7), subject to the constraints
in (8). By substituting (8) in (7) and using W,,; = ®AT, we
obtain:

1 A
JRELM = §||‘I>ATH%+§HA‘I’T‘I’_TH2F

1

= 5Tr(AKAT)+%HAK—T\|2F. (17)

In the case where K is non-singular, by solving VA Jrerym =
0, the reconstruction weights matrix A are given by:

1 —1
A=T(K+:I] .
(x37)

The network output for a vector x; € R” is given by:

(18)

-1

0 =WI! . ¢,=A8"T¢p, =T <K + i\I) k. (19
By comparing (19) and (12), it can be seen that, for the
regularized ELM case, the approach followed in [14] provides
the same network output with the one obtained by employing
the Representer theory-based formulation in (19). However,
as will be shown in the next Section, the adoption of the
Representer theory-based analysis can be exploited in order
to appropriately formulate approximate kernel ELM networks
in both the ELM and the regularized ELM cases.

'In the case of independent and identically distributed training samples
Xi, © = 1,..., N, this assumption is always valid.

III. APPROXIMATE KERNEL EXTREME LEARNING
MACHINE

In this Section, we describe in detail the proposed Ap-
proximate Kernel ELM (AKELM). In order to obtain an
approximate solution, we assume that the network output
weights W,,,; lie on the span of a subset of the training data
(represented in F), i.e. Wy = ®AL, where & ¢ RIFIx7,
where A € RE*™ is a matrix containing the reconstruction
weights of W,,,; with respect to &. The columns of & are
randomly selected from the columns of @, i.e.:

& = PEM, (20)

where E is a random (column) permutation matrix and M €
RN>" js a matrix with elements M;; = 1 and M;; = 0,4 # j.
AKELM solves (3), by setting O = T. This can be expressed
as follows:

T=W! &=A8"®% = AK,

out

2n

where K € R"*V is a submatrix of the original kernel matrix
K € RV*N_ The optimal reconstruction weight matrix A is

given by: .

A= TK” (KKT) (22)

and the network output for a vector x; € R is given by:

1
o1 =W7,¢, = AT ¢, = TK (KKT) k. (23)

It should be noted here that the calculation of A through (22)
is always possible, since n < N. Analysis concerning the
training error bound of the proposed AKELM algorithm is
provided in the Appendix.

Comparing (15) and (23), it can be seen that the proposed
AKFELM algorithm has a much lower time complexity, when
compared to the KELM in (15). Specifically, the KELM
algorithm in (15) requires the following processing steps:

o Kernel matrix K calculation, having time complexity

equal to O(DN?).

o Kernel matrix K inversion, having time complexity equal

to O(N3).

o Reconstruction weights matrix A calculation, having time

complexity equal to O(CN?).
The proposed AKELM algorithm requires the following pro-
cessing steps:

« Calculation of the matrix K having time complexity equal

to O(nDN).

« Calculation of the matrix KK7, having time complexity

equal to O(n?N).
o Reconstruction weights matrix A calculation, having time
complexity equal to O((n? + C)N).
From the above, the computational complexity of the KELM
algorithm is equal to O(N® + (D + C)N?), while the time
complexity of the proposed AKELM algorithm is equal to
O((2n? + nD + C)N). By setting n = pN and D = mN,
the time complexity of the KELM algorithm is equal to
O((m+1)N3+CN?) and the time complexity of the proposed
AKELM algorithm is equal to O((2p? +p) N3+ CN). Taking
into account that, for large scale classification problems,

m < 1 and that satisfactory performance can be achieved
by using a value p < 1, as shown in the experimental
evaluation provided in Section IV, the computational cost
of the proposed AKELM algorithm in the training phase is
significantly lower than the one of the KELM algorithm. For
example, in the Youtube Faces database [37], the proposed
AKELM algorithms achieves a good performance by using
a value of p = 1.6 - 1073, In that database, where m =
6 - 1073, the acceleration achieved by applying the proposed
AKELM algorithm versus KELM is in the order of 103. In
the test phase, the time complexity of KELM algorithm is
equal to O(CN? + D2N) = O(CN? + m2N3), while the
time complexity of the proposed AKELM algorithm is equal
to O(Cn? + D?*n) = O(Cp*N? + m2pN?). Thus, in the
test phase the computational cost of the proposed AKELM
algorithm is significantly lower from that of KELM too.
Regarding memory requirements, KELM employs a matrix of
N x N dimensions, while the proposed AKELM a matrix of
pN x N dimensions.

A. Regularized Approximate Kernel Extreme Learning Ma-
chine

Following a similar analysis as above, a regularized version
of the proposed AKELM algorithm can be obtained by solving
for:

L& aT2
SIBATZ +

A -
JRAKELM = §||A‘I>T‘I’ - T|%

_ 1 FT & T A Ve 2
= St (A®TEAT) + JJAK — T}

I R)
= Str (AKA)+§||AK—T||F7 (24)

where tr(-) denotes the trace operator and K € R"*". By
solving VA Jrax ey = 0, the reconstruction weights matrix
A is given by:

- s 1.\ 1
A =TK" (KKT + AK)) (25)

The network output for a vector x; € R” is given by:

-1
o,=WI! ¢, =A8T¢p, = TK” (RRT + iK) k;.

(26)
The calculation of A through (25) is always possible, since
n < N. It should be noted here that, compared to the AKELM
algorithm described in the previous section, the calculation of
the reconstruction weights matrix A through (26) requires an
additional n X n matrix addition operations. Thus, its time
complexity is equal to O((2p* +p) N3 +p?N? + CN), which
is significantly lower than that of KELM algorithm. This is due
to the fact that the matrix K is a sub-matrix of K and, thus, the
elements of K need not to be computed. The computational
cost during testing and the memory requirements of the
regularized AKELM algorithm (noted as RAKELM hereafter)
are the same with that of AKELM algorithm.

B. Approximate Kernel Extreme Learning Machine exploiting
Variance Regularizer

By using a sufficiently large number of hidden layer neu-
rons, ELM classification, when approached from a Subspace
Learning (SL) point of view, can be considered to be a
learning process formed by two processing steps. The first
step corresponds to a (nonlinear) mapping process of the input
space R to a high-dimensional feature space R’ (the so-
called ELM space), preserving some properties of interest for
the training data. In the second step, an optimization process
is employed for the determination of a linear projection of
the high-dimensional data to a low-dimensional feature space,
where classification is performed by a linear classifier. Based
on this observation, the ELM algorithm has been recently
extended, in order to incorporate the within-class variance of
the training data [32] and the variance of the entire training set
[30] (expressed in the ELM space) in its optimization process,
leading to enhanced classification performance.

In order to exploit variance criteria of the training data in
F, the following optimization problem is solved:

1, 1 A
IMVAKELM = §||SéwoutH%' + §||Wgutq’ - T|% @7)

where S € RIIXI71 is a matrix (of arbitrary dimensions)
expressing variance criteria in JF. By exploiting a Graph
Embedded-based approach [38], we can assume that the train-
ing data representations in JF are used in order to form the
vertex set of a graph G = {®,V}, where V € RV*V g
a similarity matrix whose elements denote the relationships
between the graph vertices ®. S can be defined by S =
®LPT, where L € RV*N is the graph Laplacian matrix
defined by L = D — V, D being the diagonal degree matrix
of G having elements D;; = Z;\;l Vij. (27) can now be
expressed as follows:

_ 1 ST T AT L A (T AT Ao
IMVAKELM = 2t7“ (AKLK A) + 2tr (KA AK)
— At (KATT) +1r (T7T) | (28)
By solving VaJmvakerm = 0, A is given by:
- s 1~ N\t
A = TKT (KKT -)\KLKT) : (29)

As can be seen from (29), subspace learning criteria de-
signed in the context of Graph Embedding framework can be
incorporated in the calculation of the reconstruction weights
matrix A. However, the adoption of general graph structures
would require a prohibitive additional computational cost
and memory usage, since LY >/, Fortunately, the Laplacian
matrices used to define the total and within-class variance of
the training data in Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA), respectively, have the

form:))
Lr = ¥ (I - NeeT> (30)
and
L, = I—Zeke{>, (31)
k=1 Ni

where e € RY is a vector of ones, e; € RY is a vector with
elements equal to ex; = 1 when ¢; = k and e;; = 0 when
¢; # k. Ny denotes the cardinality of class k. By substituting
(30) and (31) in (29), we obtain:

~ AN +1)\ ~ ~ 1 ~ ~ -1
_ T T T
Ap =TK K N)KK ANQ(Ke)(eK)}

and
-1

A — TRT (AN+1

AN

T < 1 = T

) KK” — ; /\—Nk(Kek)(ekK)]

(33)
The calculation of A through (32) and (33) is always possible,
since n < N. Compared to the RAKELM algorithm described
in the previous section, the calculation of the reconstruction
weights matrix A through (32) and (33) requires an additional
multiplication of a n x N matrix with a vector of N elements
and the calculation of a symmetric matrix through the multipli-
cation of two vectors of IV elements. Thus, its time complexity
is equal to O((2p? +p)N3 + (p? + p+0.5) N2+ CN), which
is significantly lower than that of KELM algorithm. The com-
putational cost during testing and the memory requirements of
the AKELM algorithms exploiting variance criteria (noted as
MVAKELM and MCVAKELM for the formulations in (32)
and (33), respectively) are the same with that of AKELM and
RAKELM algorithms.

C. Discussion

In the following, we highlight the difference between the
proposed approach and those followed in [14], [39], where
the optimization problem (7) is solved by using its dual
formulation (9), in order to derive the two solutions for W ,;
given in (10) and (11). From these two solutions, one way to
derive an ELM solution of reduced dimensions involving K is
to use a subset of the training data X C X as input weights,
employ the kernel function k(-, -) instead of ®(-) and calculate
the network output weights through:

- - 1\ !
Wout = (KKT + /\I) KT (34)
Subsequently, the network output for a vector x; € R” is
given by:
o) = WT

-1
T k =TK" (KKT + /1\I> k. (35
Comparing (25) and (34), it can be seen that the adopted
regularization terms are different. This is due to the fact
that (25), by following the Representer theory, regularizes
the network output weights W,,; in the feature space F.
However, in (34) the network output weights are regularized in
the space determined by the network hidden layer outputs R”.
A second observation is that the network output calculation
for x; through (35) involves the matrix K and the vector
k; defined in the space determined by the network hidden
layer outputs R” and not in the feature space F of arbitrary
dimensionality. Both these differences are due to the fact
that the solution in (34) corresponds to a regularized ELM

network, where some of the training data are employed, in
order to form the input weight matrix, i.e. W;,, = X, where
X = XEM. A similar approach has also been proposed in
[39], where the input data are mapped to a subspace of the
kernel space following a Nystrom-based kernel apPrommatlon
This representation is obtained by d = KK~ . Using &,
optimization problems proposed for different ELM variants
are subsequently solved [32], [40].

IV. EXPERIMENTS

In this Section, we present experiments conducted in or-
der to evaluate the performance of the proposed AKELM
algorithm. We have employed four publicly available facial
image datasets to this end. A brief description of the datasets
is provided in the subsection IV-A. Experimental results are
provided in subsection IV-B. In all our experiments we com-
pare the performance and efficiency of the proposed AKELM
algorithms with that of ELM [1], RELM [14] and Kernel
ELM (KELM) [14] algorithms. All the experiments have been
conducted on a 4-core, 7 — 4790, 3.6GHz PC with 32GB
RAM using single floating point precision and a MATLAB
implementation.

A. Data sets

1) JAFFE dataset [41]: consists of 210 facial images
depicting 10 Japanese female persons performing emotions:
anger, disgust, fear, happyiess, sadness, surprise and neutral.
Each of the persons is depicted in 3 images for each expres-
sion. Example images of the dataset are illustrated in Figure

e
\=J ke

Fig. 1. Facial images depicting a person of the JAFFE dataset. From left
to right: neutral, anger, disgust, fear, happy, sad and surprise.

2) COHN-KANADE dataset [42]: consists of facial images
depicting 210 persons of age between 18 and 50 performing
the seven emotions. Each facial expression is depicted in 35
facial images. Example images of the dataset are illustrated in
Figure 2.

E b
e
=

Fig. 2. Facial images from the COHN-KANADE dataset. From left to right:
neutral, anger, disgust, fear, happy, sad and surprise.

3) BU dataset [43]: consists of facial images depicting
over 100 persons performing the seven emotions. The persons
of the comes from a variety of ethnic/racial background,
including White, Black, East-Asian, Middle-East Asian and
Hispanic Latino. In our experiments, we have employed the
images depicting the most expressive intensity of each facial
expression. Example images of the dataset are illustrated in
Figure 3.

Fig. 3. Facial images depicting a person of the BU dataset. From left to
right: neutral, anger, disgust, fear, happy, sad and surprise.

TABLE I
TRAINING SET CARDINALITY N ON EACH EVALUATION ROUND FOR THE

JAFFE, COHN-KANADE AND BU DATASETS.

JAFFE | COHN-KANADE BU
4200 4900 14000

4) Youtube Faces dataset [37]: consists of 621126 facial
images depicting 1595 persons. All images have been down-
loaded from YouTube. In our experiments we have employed
the facial images depicting persons in at least 500 images,
resulting to a dataset of 370319 images and 340 classes.
Example images of the dataset are illustrated in Figure 4.

Fig. 4. Facial images depicting persons of the YouTube dataset.

B. Experimental Results

In our first set of experiments, we have applied the various
ELM algorithms on the JAFFE, COHN-KANADE and BU
datasets. Since there is not a widely adopted experimental
protocol for these datasets, we perform the five-fold cross-
validation procedure [44], by taking into account the facial
expression labels. That is, we randomly split the facial images
depicting the same emotion in five sets and we use four
splits of all the emotions for training and the remaining splits
for evaluation. This process is performed five times, one for
each evaluation split. On each evaluation round, we enrich
the training set by following the approach proposed in [45].
Specifically, each training facial image was translated, rotated
and scaled according to 25 different geometric transforma-
tions. Each eye has five possible positions: original position,
one-pixel left, right, up and down (resulting into 25 pairs).
Therefore, the cardinality of the training set on each evaluation
round is multiplied by a factor of 25, since the enriched version
of each training set consists of the original training (centered)
facial images and the 24 shifted images for each centered

TABLE 11

PERFORMANCE ON TH

E JAFFE DATASET.

LN ELM KELM | AKELM RELM | RAKELM || MVAKELM | MCVAKELM

25 33.81% | 35.24% 51.43% 35.71% 54.29% 54.29% 54.29%

50 43.81% | 45.71% 51.43% 39.52% 54.76% 54.76% 55.24%
100 45.24% | 49.05% 54.29% 4476% 55.71% 56.19% 57.14%
250 50% 50.95% 56.19% 50.48% 57.62% 58.1% 58.57%
500 4767% | 58.1% 60% 55.71% 60.48% 60.48% 60.95%
4200 - 60% - - - - -

TABLE III

PERFORMANCE ON THE COHN-KANADE DATASET.

L.n,N ELM KELM | AKELM RELM

RAKELM || MVAKELM | MCVAKELM

25 48.98% | 29.39% 49.8% 48.98% 49.8% 49.8% 50.61%

50 58.78% | 39.59% 56.73% 60% 60 % 60% 61.63%
100 64.9% | 47.76% 63.67% 64.08% 65.31% 65.63% 66.94%
250 67.76% | 55.92% 69.8% 69.8% 71.02% 71.02% 71.84%
500 68.16% | 66.53% 70.2% 71.43% 76.73% 76.94% 76.94%
4900 - 73.47% - - - - -

TABLE IV
PERFORMANCE ON THE BU DATASET.

LN ELM KELM | AKELM RELM | RAKELM || MVAKELM | MCVAKELM
25 47.14% | 28.43% 47.71% 47.14% 47.711% 47.711% 48.07%
50 51.14% 38% 56.43% 52.29% 56.43% 56.71% 56.71%
100 60.57% | 46.43% 62.43% 60.86% 62.43% 62.43% 62.71%
250 67.43% | 51.57% 69.29% 67.86% 69.57% 69.57% 70.29%
500 67.86% | 57.57% 69.14% 69.19% 70.43% 1% 71.22%

14000 - 68.29% - - - - -

image. The cardinality /N of the training set used on each
evaluation round for the JAFFE, COHN-KANADE and BU
datasets is illustrated in Table I.

In all the experiments, we have resized the facial images
in 40 x 30 pixel images and vectorized these images in
order to create vectors x; € R!200, For the ELM methods
exploiting a kernel formulation we have employed the RBF
kernel function:

2

K(x;, ;) = exp(- %) (36)
The value of o is set equal to the mean Euclidean distance
between the training vectors x; that corresponds to the natural
scaling value for each dataset. In the case of ELM formulations
exploiting random input weights q;, we have employed the
RBF activation function:

2

®(xi,qj,b) = exp(%) (37)
where the value b is set equal to the mean Euclidean distance
between the training data x; and the network input weights
q;-

We test the performance of the ELM algorithms exploiting
random input weights for a number of hidden layer neurons
L = {25,50,100,250,500}. We determine the cardinality
of the reference data in the proposed AKELM algorithms
accordingly, i.e. n = {25, 50,100, 250, 500}. For the KELM
approach, we test the original approach exploiting the en-
tire training set in order to calculate the network weights
through (11) and an approximate KELM approach, exploiting

a subset of the training data for network weights calcu-
lation through (11). We set the cardinality of the reduced
training set similar to the ELM and AKELM approaches,
ie. N = {25, 50,100, 250,500}. For fair comparison, in all
the experiments, we use the same subset for the proposed
AKELM methods and the KELM approach using a reduced
training set. Regarding the optimal value of the regularization
parameter A used in all the regularized ELM formulations, it
has been determined by following a line search strategy, which
is applied on the training data, using the values A = 10", r =
—6,...,6.

Experimental results obtained by applying the competing
algorithms on the JAFFE, COHN-KANADE and BU datasets
are illustrated in Tables II, III and IV, respectively. As can be
seen, the proposed AKELM approach outperforms both the
ELM approach exploiting random input parameters and the
KELM approach employing a subset of the training data in all
cases. In addition, the proposed AKELM algorithm provides
performance comparable with that of KELM applied in the
entire training set. The incorporation of variance criteria in
MVAKELM and MCVAKELM algorithms further enhances
performance, since these two algorithms achieve the best
performance in all the cases.

In Tables V, VI and VII we provide the computational cost
and memory requirements of the ELM, KELM and AKELM
algorithms, when applied to the JAFFE, COHN-KANADE and
BU datasets. As can be seen, during testing the computational
cost and the memory requirements of the proposed AKELM
algorithm are the same with that of ELM. The computational
cost of the proposed AKELM algorithm during training is

TABLE V
TRAINING AND TEST TIMES AND MEMORY DURING TRAINING IN JAFFE DATASET.

Training time (sec) Test time (sec) Memory (MB)
Ln,N | ELM | KELM | AKELM | ELM | KELM | AKELM | ELM | KELM | AKELM
25 0.047 0.001 0.047 0.001 0.001 0.001 0.897 0.006 0.897
50 0.054 0.002 0.054 0.001 0.001 0.001 1.794 0.024 1.794
100 0.07 0.004 0.071 0.001 0.001 0.001 3.364 0.084 3.364
250 0.12 0.018 0.121 0.002 0.002 0.002 8.075 0.484 8.075
500 0.21 0.08 0.211 0.005 0.005 0.005 16.15 1.938 16.15
4200 - 9.24 - - 0.258 - - 134.58 -
TABLE VI

TRAINING AND TEST TIMES AND MEMORY DURING TRAINING IN COHN-KANADE DATASET.

Training time (sec) Test time (sec) Memory (MB)
Ln,N | ELM | KELM | AKELM | ELM | KELM | AKELM | ELM | KELM | AKELM
25 0.058 0.001 0.058 0.001 0.001 0.001 1.05 0.006 1.05
50 0.065 0.002 0.066 0.001 0.001 0.001 2.09 0.024 2.09
100 0.079 0.004 0.08 0.001 0.001 0.001 3.93 0.084 3.93
250 0.145 0.018 0.147 0.003 0.003 0.003 9.42 0.484 9.42
500 0.243 0.08 0.245 0.005 0.005 0.005 18.84 1.938 18.84
4900 - 12.11 - - 0.314 - - 183.18 -
TABLE VII
TRAINING AND TEST TIMES AND MEMORY DURING TRAINING IN BU DATASET.
Training time (sec) Test time (sec) Memory (MB)
Ln,N | ELM | KELM | AKELM | ELM | KELM | AKELM | ELM | KELM | AKELM
25 0.179 0.001 0.18 0.002 0.001 0.002 2.67 0.006 2.67
50 0.197 0.002 0.198 0.002 0.001 0.002 5.34 0.024 5.34
100 0.237 0.004 0.239 0.002 0.001 0.002 10.68 0.084 10.68
250 0.414 0.018 0.416 0.004 0.003 0.004 26.7 0.484 26.7
500 0.704 0.08 0.706 0.009 0.005 0.009 53.41 1.938 53.41
14000 - 152.17 - - 1.265 - - 1495.4 -
TABLE VIII

slightly higher than that of ELM, but the differences are
insignificant. On the other hand, the computational cost during
both training and testing and the memory requirements of
the KELM algorithm are significantly higher than the ones
of ELM and AKELM.

In Table VIII, we also compare the performance obtained
by applying AKELM-based classification with that of other,
recently proposed, methods evaluating their performance on
the BU, Jaffe and Kanade databases. As can be seen, the
proposed AKELM methods achieve satisfactory performance
in all the cases. Specifically, AKELM-based classification
outperforms [46] and [47] in all cases, while MMRP proposed
in [48] provides the best performance on the Cohn-Kanade
dataset. This may be explained by the fact that the resolution
of the facial images used in [48] was equal to 150 x 200 pixels,
i.e., five times the resolution of the facial images used in our
experiments. Even in this case, it can be seen that AKELM
outperforms MMP and SVM-based facial image classification.

In our second set of experiments, we have applied the
competing algorithms in Youtube Faces dataset. In these ex-
periments, we have employed the facial image representation
suggested in [37]. Specifically, the bounding box of the face
detector output has been expanded by 2.2 of its original size
and cropped from the video frame. The expanded bounding
box is resized to an image of 200 x 200 pixels. We then use
the centered 100 x 100 pixels to obtain the facial image, which

COMPARISON OF OUR RESULTS WITH SOME STATE-OF-THE-ART METHODS
ON THE BU, JAFFE AND KANADE DATASETS.

BU Jaffe Kanade
Method [46] - 56.72% | 69.05%
Method [47] 66.4% - 72.9%
Method [48] - MMP - - 70.3%
Method [48] - RP - - 75.2%
Method [48] - SVM - - 73.4%
Method [48] - MMRP - - 80.1%
AKELM 69.14% 60% 70.2%
RAKELM 70.43% | 60.48% | 76.73%
MVAKELM 71% 60.48% | 76.94%
MCVAKELM 71.22% | 60.95% | 76.94%

is converted to grayscale. Facial images are subsequently
aligned by fixing the coordinates of automatically detected
facial feature points [49] and the Local Binary Patter (LBP)
description [50] was employed, leading to a facial image
representation x; of D = 1770 dimensions. The RBF kernel
function in (36) and the RBF activation function in (37) have
been employed for the kernel ELM algorithms and the ELM
algorithms exploiting random input parameters, respectively.
Since there is no widely adopted experimental protocol on
the YouTube Faces dataset for multi-class classification, we
retain 80% of the facial images for training and the remaining
20% for testing, by taking into account the ID labels of the
persons in the dataset. That is, we keep 80% of the facial

TABLE IX

PERFORMANCE (CR) ON TH

E YOUTUBE FACES DATASET.

L.n ELM AKELM RELM | RAKELM || MVAKELM | MCVAKELM
25 7.57T% 23.93% 17.9% 23.93% 24.77% 26.19%
50 31.3% 36.28% 31.31% 36.28% 37.09% 40.4%
100 45.18% | 51.16% 45.18% 51.17% 52.32% 59.16%
250 67.32% | 73.84% 67.37% 73.84% 77.45% 77.85%
500 54.72% | 84.45% 54.74% 84.47% 85.12% 86.64%

1000 || 73.81% | 85.08% 73.84% 85.12% 87.32% 87.45%

2000 || 77.03% | 89.93% 77.03% 89.99% 90.18% 91.36%

5000 || 86.61% | 94.35% 86.64% 94.38% 95.69% 97.79%

TABLE XI

TRAINING AND TEST TIMES AND MEMORY DURING TRAINING IN YOUTUBE FACES DATASET.

Training time (sec) Test time (sec) Memory (MB)
Ln/N ELM KELM AKELM | ELM KELM | AKELM ELM KELM AKELM
25/- 3.26 - 3.27 0.78 - 0.78 28.25 - 28.25
50/500 3.57 0.06 3.52 0.84 2.02 0.84 56.51 3.81 56.51
100/1000 4.59 0.22 4.64 0.96 3.21 0.96 113.01 15.26 113.01
250/2000 6.11 1.40 591 1.35 5.55 1.35 282.53 95.37 282.53
500/5000 10.01 23.68 9.64 1.95 13.06 1.95 565.94 381.47 565.94
1000/10000 21.82 182.81 21.51 3.22 25.85 3.22 1131.9 1525.4 1131.9
2000/20000 42.96 1411.8 41.41 5.63 50.47 5.63 2263.9 1525.4 2263.9
5000/296257 | 322.52 | 4-10° 322.06 13.07 | 820.9 13.07 45376 | 3-10% 4537.6
TABLE X
PERFORMANCE (CR) OF KELM ON THE YOUTUBE FACES DATASET algorithm. For example, KELM achieves a classification rate
) equal to 90.18% for N = 20000, while AKELM achieves a
N 500 1000 2000 5000 10000 20000 similar performance, 89.93%, for n = 2000. This fact also
CR | 67.15% | 76.61% | 78.37% | 83.14% | 85.12% | 90.18%

images depicting each person for training and the remaining
facial images for evaluation.

We test the performance of the ELM algorithms ex-
ploiting random input weights for a number of hidden
layer neurons L = {25, 50,100, 250, 500, 1000, 2000, 5000}.
We determine the cardinality of the reference data in
the proposed AKELM algorithms accordingly, i.e. n
{25, 50, 100, 250, 500, 1000, 2000, 5000}. For KELM, we test
the approximate KELM approach, exploiting a subset of the
training data for network weights calculation through (11).
Since in this classification problem the number of classes is
equal to 340, we set the cardinality of the reduced training
setto N = {500, 1000, 2000, 5000, 10000, 20000}. Regarding
the optimal value of the regularization parameter A used in
all the regularized ELM formulations, it has been determined
by following a line search strategy, which is applied on the
training data, using the values A = 10", r = —6,...,6.

Experimental results obtained by applying the competing
algorithms on the YouTube Faces dataset are illustrated in
Table IX. As can be seen, the proposed AKELM algorithm
outperforms the ELM algorithm exploiting random input pa-
rameters in all cases. Since the number of classes in this
classification problem is equal to 340, we test the performance
of the KELM algorithm that exploits a subset of the training
data using the values N = {1000, 2000, 5000, 10000, 20000}.
The performance of KELM for different training set cardinal-
ities NV is illustrated in Table X. KELM requires a relatively
large training set in order to achieve performance comparable
with the one obtained by applying the proposed AKELM

increases its computational cost in the test phase, since test
kernel vectors have a higher dimension, i.e. k; € RN , N > n.
Overall, by using a value of n = 5000, the proposed AKELM
algorithm achieves a classification rate equal to 94.35%, thus
outperforming ELM providing a classification rate equal to
86.61% and KELM applied on a subset of N 20000
training data providing a classification rate equal to 90.18%.
The proposed RAKELM algorithm outperforms both RELM
in all the cases, while the adoption of variance criteria in
MVAKELM and MCVAKELM algorithm further enhances
classification performance.

In Table XI we provide the computational cost and memory
requirements of the ELM, KELM and AKELM algorithms,
when applied to the YouTube Faces dataset. As can be
seen, the computational cost during testing and the memory
requirements of the proposed AKELM algorithm is the same
with that of ELM. The computational cost of the proposed
AKELM algorithm during training is similar to that of ELM.
On the other hand, the computational cost during both training
and testing of KELM are significantly higher than the ones of
ELM and AKELM for N > 10000. It is expected that the
application of the KELM algorithm on the YouTube Faces
dataset would require the storage of a matrix of 3 - 10°
MB and its training process would require 4 - 10° seconds
(approximately 4.5 days). In addition, testing by using the
KELM classifier trained on the entire training set would
require 820 seconds. Even for the case where KELM is trained
on a subset of N = 20000 training vectors, the training and
test times of the KELM algorithm are significantly higher from
those of the proposed AKELM algorithm.

Finally, in Table XII, we compare the performance of the
ELM, KELM and AKELM algorithms in the case where each

TABLE XII
PERFORMANCE ON THE YOUTUBE FACES DATASET WITH RESPECT TO THE
TRAINING TIME.

Training time (sec) ELM KELM AKELM
100 67.32% | 7837% | 73.84%
10T 77.03% | 83.14% | 89.93%
102 86.61% | 85.12% | 94.35%

algorithm is allowed to exploit a constant training time for
training. By exploiting a training time of the order of 1 second,
KELM employing a reduced cardinality training set is able to
achieve a performance equal to 78.37%, outperforming ELM
and AKELM algorithms achieving a performance equal to
67.32% and 73.84%, respectively. For training times of the
order of 10 and 10? seconds, the AKELM algorithm achieves
classification rates equal to 89.93% and 94.35%, respectively,
outperforming both ELM and KELM algorithms.

Overall, by observing Tables II-XII, it can be seen that the
proposed AKELM consistently outperforms ELM, in both the
standard and regularized cases, while it is able to outperform
KELM, when similar training times are allowed for each
algorithm (in the orders of 10™, m = 0, 1, 2. In addition, the
proposed AKELM algorithms scale well in both training/test
time and memory. The incorporation of the total and within-
class variance information of the training data in the feature
space generally results to increased performance.

V. CONCLUSIONS

In this paper, we proposed an approximate solution of the
kernel Extreme Learning Machine classifier that is able to
scale well in both training/test computational cost and memory.
We have extended the proposed Approximate Kernel Extreme
Learning Machine classifier, in order to exploit regularization
and the total and within-class variance of the training data in
the feature space. Extensive experimental evaluation denotes
that the proposed approach is able to operate extremely fast
in both the training and test phases and to provide satisfactory
performance, outperforming relating classification schemes in
most cases.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement number 316564 (IM-
PART).

APPENDIX I
TRAINING ERROR BOUNDS

Let us denote by b € R’ an _indicator vector, having
elements equal to b; = 1, if ¢, € ® and b; = 0, otherwise,
where ||b||; = n. Let us denote by wj and W;, the output
weights corresponding to the k-th one-versus-rest classification
problem of the KELM and AKELM algorithms, respectively.

The mean training error of the AKELM algorithm can be
expressed as follows:

C
1
L(Wout7 b) = Hv}zl,flﬁ kz_l H(I)Wk - tk”g

C
o1
— n;inﬁl; |K(ay ob) — t3

B T
= mmN ; [aob)'KK(a;ob)
~ 26,KK(ay ob) + t]t] (38)

The expected value of the training error can be expressed as
follows:

c

L Z[a ob)TKK(a; o b)

k=1

E[L(Wout,b)] = E

min—
ag

~ 26, KK(azob) + t{tkw

c

Z{ (a, o b)TKK (ay o b)
k=1

IN

mln—

— 2t,KK(a,ob) + tftk}

1
= H;inﬁ [;ag (%KK + dD) a

P
— ZTKay, + tTt

N =7, (39)

where d = 1— % and D = diag(KK). Solving for V,, JP =
0, we obtain:

n —1
aj, = (NKK + dD) Kty,. (40)
Substituting (40) in (39), we obtain:
1 n n N—n -1
TP = N [tftk — Nt{K <NKK - D) Kty |.
(41)

Thus, by setting b = 1 where 1 € R is a vector of ones, the
training error of the KELM algorithm is equal to:

1 1 _
Tt = Nt{tk — Nt{K(KK) Kty (42)

From (42) it can be seen that, in the case where K is invertible,
KELM achieves zero training error. For the training error

bound of AKELM algorithm we have:

1
E[L(Wour, b)] = L(Wour, 1) = 1ti t

n N —n

-z
1

1
= thtk — Nth (KK +

—1
tTK <;KK + D) Kt

N —n
n

—1
D) Kty
1 1—p. \ "'
=1- tTKK KK+ —=D] ¢t
N < L) g

-1
1 1—p
<1- —t/'KK|[KK+—=1I) ¢t
< N < + ») k

1 1-p\ "
—1- —tTUA (A n pI) UTty, 43)
N p
where we have set n = pN, A = diag(A,...,Ay) is a

diagonal matrix containing the eigenvalues of KK (and thus
A = diag(13,...,1%), where ; is the i-th eigenvalue of K)
and U € R¥*¥ is an orthogonal matrix containing the cor-
responding eigenvectors. As can be seen in (43), the training
error bound of the AKELM algorithm has a regularization
form. In the case where p = 1, the training error bound of
AKELM is equal to zero. For any other value of 0 < p < 1, the
training error bound is a function of p and of the eigenvalues
Ai, i=1,...,N.

To illustrate the result of (43), consider the special case
where KK has its eigenvalues equal to an = apN. In this
case, the error bound of the AKELM algorithm is equal to:

2
N
L(Wou, 1) <1— — 2P

E[L(Wous,b)] — < N —ptl

(44)

Thus, for any value € > 0, the minimum value of p satisfying
E[L(W,ut,b)] — L(Wus, 1) < € is given by:

C(e=1D+/(1—-e2+4aN(1—¢)
B 2aN ’

For example, for a training error bound € = 0.001, when o =
10 and N = 100000, a value of p = 0.001 should be used.

(45)

REFERENCES

[11 G. Huang, Q. Zhu, and C. Siew, “Extreme Learning Machine: a new
learning scheme of feedforward neural networks,” Proc IEEE Int Jt Conf
Neural Netw, vol. 2, pp. 985-990, 2004.

[2] D. Rumelhart, G. Hinton, and R. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533-536,
1986.

[3] M. Hagan and M. Menhaj, “Training feedforward networks with the
marquardt algorithm,” IEEE Trans. Neural Netw, vol. 5, no. 6, pp. 989—
993, 1994.

[4] P. Bartlett, “The sample complexity of pattern classification with neural
networks: the size of the weights is more important than the size of the
network,” IEEE Trans. Inf. Theory, vol. 44, no. 2, pp. 525-536, 1998.

[5] R. Zhang, Y. Lan, G. Huang, and Z. Zu, “Universal approximation of
Extreme Learning Machine with adaptive growth of hidden nodes,” IEEE
Trans Neural Netw. Learn. Syst., vol. 23, no. 2, pp. 365-371, 2012.

[6] G. Huang, L. Chen, and C. Siew, “Universal approximation using
incremental constructive feedforward networks with random hidden
nodes,” IEEE Trans Neural Netw., vol. 17, no. 4, pp. 879-892, 2006.

[71 G. Huang, D. Wang, and Y. Lan, “Extreme Learning Machine: a survey,”
Int. J. of Mach. Learn. and Cybern., vol. 2, no. 2, pp. 107-122, 2011.

[8] G. Huang, “Extreme Learning Machine,” Springer, 2013.

[9]

[10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]
[19]
[20]

(21]

[22]

(23]

[24]
(25]
[26]
[27]
[28]
[29]

(30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

——, “An insight into Extreme Learning Machines: Random neurons,
random features and kernels,” Cognitive Computation, vol. 6, no. 3, pp.
376-390, 2014.

J. Cao, T. Chen, and J. Fan, “Fast online learning algorithm for landmark
recognition based on bow framework,” IEEE Conf. Industr. Electr. Appl.,
2014.

A. Tosifidis, A. Tefas, and I. Pitas, “DropELM: Fast neural network
regularization with Dropout and DropConnect,” Neurocomputing, vol.
162, pp. 57-66, 2015.

A. Josifidis, “Extreme learning machine based supervised subspace
learning,” Neurocomputing, vol. 167, pp. 158-164, 2015.

L. Zhang and D. Zhang, “Domain adaptation extreme learning machines
for drift compensation in E-Nose systems,” IEEE Trans. Instrum. Meas.,
vol. 64, no. 7, pp. 1790-1801, 2015.

G. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme Learning Machine
for regression and multiclass classification,” IEEE Trans. Syst., Man,
Cybern. B, Cybern, vol. 42, no. 2, pp. 513-529, 2012.

Z. Bai, G. Huang, W. Wang, H. Wang, and M. Westover, “Sparse
Extreme Learning Machine for classification,” IEEE Trans Cybern.,
vol. 44, no. 10, pp. 1858-1870, 2014.

A. losifidis, A. Tefas, and I. Pitas, “On the kernel Extreme Learning
Machine classifier,” Pattern Recogn. Lett., vol. 54, pp. 11-17, 2015.

P. Drineas and M. Mahoney, “On the Nystrom Method for Approxi-
mating a Gram Matrix for Improved Kernel-based Learning,” J. Mach.
Learn. Res., vol. 6, pp. 2153-2275, 2005.

J. Smola and B. Scholkopf, “Sparse greedy matrix approximation for
machine learning,” Int. Conf. Mach. Learn., 2000.

C. Williams and M. Seeger, “The effect of the input density distribution
on kernel-based classifiers,” Int. Conf. Mach. Learn., 2000.

——, “Using the Nystrom method to speed up kernel machines,” Adv.
Neural Inf. Process. Syst., 2001.

P. Drineas, R. Kannan, and M. Mahoney, “Fast Monte Carlo algorithms
for matrices ii: Computing a low-rank approximation to a matrix,” SIAM
J. Comput., vol. 36, no. 1, pp. 158-183, 2006.

C. Fowlkes, S. Belongie, F. Chung, and J. Malik, “Spectral grouping
using the Nystrom method,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 26, no. 2, pp. 214-225, 2004.

R. Chitta, R. Jin, T. Havens, and A. Jain, “Approximate kernel k-means:
solution to large scale kernel clustering,” Int. Conf. Knowl. Disc. and
Data Mining, 2011.

P. Drineas, R. Kannan, and M. Mahoney, “Scalable kernel clustering:
Approximate kernel k-means,” arXiv:1402.3849v1, pp. 1-15, 2014.

D. Achilioptas, G. McSherry, and B. Scholkopf, “Sampling techniques
for kernel methods,” Adv. Neural Inf. Process. Syst., 2002.

M. Belabbas and P. Wolfe, “Spectral methods in machine learning and
new strategies for very large datasets,” Proc. Nat. Acad. of Sciences, vol.
106, no. 2, pp. 369-374, 2009.

A. Smola, Z. Ovari, and R. Williamson, “Regularization with dot-
product kernels,” Adv. Neural Inf. Process. Syst., 2000.

B. Scholkpf and A. Smola, “Learning with kernels,” 2001, MIT Press.
K. Muller, S. Mika, G. Ratsch, K. Tsuda, and B. Scholkopf, “An
introduction to kernel-based learning algorithms,” IEEE Trans Neural
Netw., vol. 12, no. 2, pp. 181-201, 2001.

A. Tosifidis, A. Tefas, and I. Pitas, “Minimum variance Extreme Learning
Machine for human action recognition,” IEEE Int. Conf. Acoust., Speech
and Sign. Proc., 2014.

G. Huang and L. Chen, “Convex incremental Extreme Learning Ma-
chine,” Neurocomputing, vol. 70, no. 16, pp. 3056-3062, 2008.

A. Tosifidis, A. Tefas, and I. Pitas, “Minimum class variance Extreme
Learning Machine for human action recognition,” IEEE Trans. Circuits
Syst. Video Technol., vol. 23, no. 11, pp. 1968-1979, 2013.

R. Fletcher, Practical Methods of Optimization: Volume 2 Constrained
Optimization. Wiley, 1981.

B. Frenay and M. Verleysen, “Using svms with randomised feature
spaces: An extreme learning approach,” Europ. Symp. Art. Neural Netw.,
2010.

B. Scholkopf, R. Herbrich, and A. Smola, “A generalized representer
theorem,” Conference on Computational Learning Theory, 2001.

A. Argyriou, C. Micchelli, and M. Pontil, “When is there a representer
theorem? vector versus matrix regularizers,” J. Mach. Learn. Res.,
vol. 10, pp. 2507-2529, 2009.

L. Wolf, T. Hassner, and 1. Maoz, “Face recognition in unconstrained
videos with matched background similarity,” Comp. Vision and Patt.
Recogn., 2011.

S. Yan, D. Xu, B. Zhang, and H. Zhang, “Graph embedding and
extensions: A general framework for dimensionality reduction,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 29, no. 1, pp. 40-51, 2007.

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

A. Tosifidis and M. Gabbouj, “On the kernel Extreme Learning Machine
speedup,” Pattern Recogn. Lett., vol. 68, pp. 205-210, 2015.

A. Tosifidis, A. Tefas, and 1. Pitas, “Graph embedded extreme learning
machine,” IEEE Trans. Cyb., vol. 46, no. 1, pp. 311-324, 2016.

M. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba, “Coding facial
expressions with Gabor wavelets,” IEEE Int. Conf. on Autom. Face and
Gest. Recogn., 1998.

T. Kanade, Y. Tian, and J. Cohn, “Comprehensive database for facial
expression analysis,” IEEE Int. Conf. on Autom. Face and Gest. Recogn.,
2000.

L. Yin, X. Wei, Y. Sun, J. Wang, and M. Rosato, “A 3d facial expression
database for facial behavior research,” IEEE Int. Conf. on Autom. Face
and Gest. Recogn., 2006.

P. Devijver and J. Kittler, Pattern Recognition: A Statistical Approach.
Prentice-Hall, 1982.

A. Maronidis, D. Bolis, A. Tefas, and I. Pitas, “Improving subspace
learning for facial expression recognition using person dependent and
geometrically enriched training sets,” Neural Networks, vol. 24, no. 8,
pp. 814-823, 2011.

S. Nikitidis, A. Tefas, and I. Pitas, “Subclass discriminant nonnegative
matrix factorization for facial image analysis,” Pattern Recognition,
vol. 45, pp. 4080—4091, 2012.

——, “Projected gradients for subclass discriminant nonnegative sub-
space learning,” IEEE Trans Cybern., vol. 44, no. 12, pp. 2806-2819,
2014.

——, “Maximum margin projection subspace learning for visual data
analysis,” IEEE Trans. Image Process., vol. 23, no. 10, pp. 4413-4425,
2014.

M. Everingham, J. Sivic, and A. Zisserman, ‘““Hello! My name
is...Buffy” - Automatic naming of characters in TV video,” Brit. Mach.
Vision Conf., 2006.

T. Ahonen, A. Hadid, and P. M., “Face description with local binary
patterns: Application to face recognition,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 28, no. 12, pp. 2037-2041, 2006.

