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ABSTRACT 

Purpose 

In the era of climate change, industrial organizations are under increasing pressure from consumers 

and regulators to reduce greenhouse gas emissions. The paper examines the effectiveness of product 

mix as a strategy to deliver the low carbon supply chain under the cap-and-trade policy. 

Design/methodology/approach 

We incorporate the cap-and-trade policy into the green product mix decision models by using 

game-theoretic approach and compare these decisions in a decentralized model and a centralized 

model respectively. The research explores potential behavioural changes under the cap-and-trade in 

the context of a two-echelon supply chain. 

Findings 

Our analysis results show that the channel structure has significant impact on both economic and 

environmental performances. An integrated supply chain generates more profits. In contrast, a 

decentralized supply chain has lower carbon emissions. The cap-and-trade policy makes a different 

impact on the economic and environmental performances of the supply chain. Balancing the trade-offs 

is critical to ensure the long term sustainability.   

Originality/value 

The research offers many interesting observations with respect to the effect of product mix strategy on 

operational decisions and the trade-offs between costs and carbon emissions under the cap-and-trade 

policy. The insights derived from our analysis do not only help firms to make important operational 

and strategic decisions to reduce carbon emissions while maintaining their economic competitiveness, 

but also make meaningful contribution to governments’ policy making for carbon emissions control. 
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1 Introduction 

Climate change has brought about many problems, such as rising sea level, heat waves, storm 

surges, and reduction of human life expectation (Cheryl et al., 2013). The increasing carbon 

emissions are regarded as one important human factor that contributes to global warming. To 

combat man-made climate change, more than 190 countries reached a final deal for the most 

comprehensive international agreement ever to reduce their greenhouse gas emissions in 2015. 

According to the United Nation, over 140 countries of 197 Parties including the top emitters 

e.g. China, the United States, and India, have ratified the Paris climate agreement. Now, it is 

their responsibility to take immediate actions to reduce global greenhouse gas emissions (e.g. 

carbon emission) and transparently report the results. Many carbon emissions control policies 

such as mandatory carbon emissions capacity, carbon emissions tax, cap-and-trade, and 

investment in the carbon offsets are available to governments to achieve the national targets 

set in the agreement (Song and Leng, 2012; Choi, 2013; Konur and Schaefer 2004; Chen and 

Hao, 2015). Among them, cap-and-trade is a policy approach that attracts much attention. The 

approach first sets an overall cap, and allows companies to trade the unused portion of their 

cap to other companies with high greenhouse gas emissions. Accompanied by complementary 

regulatory measures, cap-and-trade is a sufficient or necessary condition for carbon emission 

reduction (Hanemann, 2010). In practice, many countries or regions, like the United States, 

European Union and China have used the policy to reduce carbon emissions. Cap-and-trade 

policies, such as European Union Emissions Trading Scheme, have been proven to be an 

important tool to address climate change, and become a major choice for investors to 

decentralize their investment risks (Zhu and Wei, 2013). 

     Managing carbon emissions has become an important area of policy making and 

research against the background of increasing political and societal concerns about climate 

change. Although, carbon reporting has become a mandatory requirement for companies in 

many countries, it is often not enough for individual firms to report and reduce their own 

carbon emissions. Because, whatever progress is made “in house”, a large proportion of 

carbon emissions typically occur outside the direct control of reporting companies but within 

the operations of suppliers in their procurement networks (Bhattacharya et al. 2014; Kumar et 
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al. 2015; Tidy et al. 2016). Therefore, to achieve the low carbon objective, it is essential to 

reduce carbon emissions across the whole supply chain. In the UK, major supermarket chains 

such as Tesco and Sainsbury’s set carbon emission reductions targets for both store and 

distribution operation as well as their supply chains. Individual firms have to respond with 

innovative and effective strategies in achieving the carbon emission reduction targets while 

maintain economic competitiveness (Luo et al. 2016; Uyarra et al. 2016). One popular 

strategic response from the firms is to produce a mixture of green and standard products. 

Green products deliver the environmental benefit as they generate less carbon emissions but 

with higher operational costs. In contrast, standard products provide the economic benefit as 

they produce higher carbon emissions with lower operational costs. It is important for firms to 

balance the tradeoff between the economic and environmental objectives for the sustainable 

development (Lee et al. 2012; Fahimnia et al. 2015; Tseng et al. 2015; Wang 2015).  

This research focuses on the cap-and-trade policy, and investigates their effects on 

supply chain decisions, profits and carbon emissions reduction. In this paper, a two-echelon 

supply chain that consists of a supplier and a manufacturer is considered. The manufacturer 

purchases materials from the supplier and then produces mixed products to sell to end users in 

order to reduce carbon emissions. The manufacturer is imposed by the cap-and-trade policy. 

The research questions in this paper are as follows:  

(1) What are the supplier’s optimal wholesale price, the manufacturer’s optimal retail 

prices and production quantities for mixed products in the cases of without and with 

cap-and-trade?  

(2) What effect does channel structure (integrated channel or decentralized channel) have 

on the supply chain’s decisions, profits and carbon emissions reduction?  

(3) What effect does the cap-and-trade policy have on the supply chain’s decisions, profit 

and carbon emissions reduction? 

In order to answer these questions, we develop carbon efficient supply chain game 

models with mixed products under the cap-and-trade policy. This paper contributes to the 

existing literature by providing model-based insights on the impact that cap-and-trade policy 

have on supply chain decisions and performances. We incorporate the cap-and-trade policy 
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into the green product mix decision models by using game-theoretic approach and compare 

these decisions in a decentralized model and a centralized model respectively. We offer 

interesting observations with respect to the effect of the cap-and-trade policy on supply chain 

decisions and the tradeoff between costs and carbon emissions. The results derived from the 

proposed models provide many interesting management insights and important policy 

implications that enable governments and regulators to examine current policies on carbon 

emission control.    

The remainder of this paper is organized as follows. Section 2 surveys related literature 

on carbon efficient supply chain management in particular the effort of the cap-and-trade 

policy on supply chain decisions and performances. Section 3 presents the model formulation 

and assumptions. Section 4 investigates the integrated channel model under the cap-and-trade 

policy, and derives the central controller’s optimal retail prices and production quantities of 

mixed products. In Section 5 we discuss the decentralized channel model under the 

cap-and-trade policy, and derive the supplier’s optimal wholesale price, the manufacturer’s 

optimal retail prices and production quantities of mixed products. Section 6 examines the 

effect of channel structure and cap-and-trade policy on the supplier’s and manufacturer’s 

decisions, profits and the supply chain’s carbon emissions reduction. In Section 7 we present 

the concluding remarks and highlight possible future work. 

 

2 Literature review 

Low carbon supply chain management is an important issue in operations management. 

Relevant studies on the carbon emission reduction problem have been well reported in the 

literature. Comprehensive literature reviews on “green”, “environmental”, “sustainable” 

operation and supply chain management can be found in Kleindorfer et al. (2005), Corbett and 

Klassen (2006), Srivastava (2007), Seuring and Müller (2008). To highlight our contributions, 

we only review the literature that is representative and particularly relevant to our study.  

     Driven mainly by carbon emissions reduction, more and more scholars have taken the 

carbon emissions-related issues into consideration. For instance, Song and Leng (2012) 

adopted Newsboy model to analyze the single-period problem under carbon emissions 
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policies. Ramudhin et al. (2010) considered trade carbon emissions using a multi-objective 

mixed integer programming model. Some literature has discussed the carbon emissions tax 

policy. Penkuhn et al. (1997) presented an optimization production planning model by 

integrating emission taxes for the process industries. Lee and Cheong (2011) and Lee (2012) 

used the case study of Korean automotive manufacturers to explore the roles and usefulness 

of carbon footprint and carbon accounting for carbon management in the automotive supply 

chain. Through case studies of Walmart and ZETA Communities, Plambeck (2012) provided 

examples of how companies can profitably reduce greenhouse gas emission through 

operations and supply chain management. Meng et al. (2013) adopted a computable general 

equilibrium model to simulate the effects of the carbon tax on the environment and economy 

in Australia. Another stream of literature discusses the green supply chain design. Chan et al. 

(2013) developed a comprehensive framework for eco-design evaluation. In their research, 

environmental performance measures including carbon emissions throughout a product life 

cycle were considered in assessing alternative product designs. Chen and Hao (2015) 

employed game theory models to study two competing firms with carbon emissions tax. Jiang 

and Chen (2016) proposed a newsvendor model that incorporates strategic customer behavior 

and carbon emissions-sensitive random demand. However, most of the above studies do not 

examine the impact of the cap-and-trade policy on firms’ decisions and the associated carbon 

emissions reduction performance, which is the focus of this study.    

Among the few studies that concentrate on the effect of the cap-and-trade policy on 

operation decisions, one stream of research tackles the carbon emission problem through 

operations decisions at firm level which is under its direct control. Hua et al. (2011) 

investigated firms that manage carbon footprints in inventory management under the carbon 

emissions trading mechanism. They derived the optimal order quantity, and examined the 

impacts of carbon trade factors on order decisions, carbon emissions, and total cost. He et al. 

(2012) compared the effectiveness and efficiency of cap-and-trade and carbon taxes through a 

case study of electricity generation expansion planning decisions in a competitive market. 

Their finding showed that both policies have their relative advantages and disadvantages with 

respect to different criteria. Zhang and Xu (2013) investigated the multi-item production 
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planning problem under carbon cap-and-trade mechanism. They built a profit-maximization 

model and provided an efficient solution method with linear computational complexity to 

solve the optimal production policy and carbon trading decisions. Using stochastic customer 

demand, Chen and Wang (2016) investigated the retailer’s optimal ordering and transportation 

mode selection problem under the cap-and-trade policy. Chen et al. (2016) examined the 

impact of the cap-and-trade policy on firm’s behavior change in making warehouse 

management decisions. The above literatures only discuss the cap-and-trade policy from the 

view of one single firm and do not take its supply chain into consideration.  

Another stream of research related to this paper centres on the effect of the cap-and-trade 

policy on supply chain decisions and carbon emission reduction performance. Benjaafar et al. 

(2013) presented a series of models to analyze the effect of different carbon emission policies, 

including cap-and-trade, on supply chain management decisions. Their numerical studies 

showed that adjustments to the ordering policy can significantly reduce emissions without 

considerably increasing cost. Their research also indicated that the presence of carbon 

emission policy can significantly increase the value of supply chain collaboration. Jaber et al. 

(2013) investigated the European Union Emissions Trading System from the perspective of 

the user, and presented a two-level supply chain model accounting for GHG emissions from 

manufacturing processes. They argued that when emissions and penalty costs are considered, 

a combination policy of carbon tax and emissions penalty was the most effective one, and 

supply chain coordination can minimize the overall cost. Jin et al. (2014) developed 

optimization models for major retailers to design their supply chains under various carbon 

policies including carbon tax, inflexible cap, and cap-and-trade. Their research found that the 

supply chain network design is highly sensitive to the carbon price for the cap-and-trade 

policy. Similarly, Palak et al. (2014) examined different carbon policies on supplier and mode 

selection decisions in the context of the biofuel supply chain. Their findings showed that 

cap-and-trade is a more efficient mechanism compared to other policies such as carbon offset. 

Du et al. (2013) studied emission-dependent supply chain consisting of one 

emission-dependent manufacturer and one emission permit supplier in the cap-and-trade 

system. Based on game-theoretically analysis, they derived the optimal supply chain decisions 
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in a cap-and-trade system and showed that it was possible to coordinate the supply chain with 

a certain condition. In the above literature, there is only one product considered in their 

models.  

Many studies have looked product mix as an effective strategy for firms to improve the 

environmental performance while maintaining economic competitiveness. Among them, 

Letmathe and Balakrishnan (2005) proposed a liner program model and a mixed integer liner 

program model that can be employed by firms to estimate their optimal decision for product 

mix and production quantities considering typical production constraints as well as various 

environmental constraints. Incorporating capacity expansion features, Tsai et al. (2012) 

presented green product mix decision model to evaluate the benefits of various options of 

capacity expansion. Tsai et al. (2013) developed a mathematical programming model to 

evaluate the financial performance of green manufacturing technology investments and 

product mix decision through a combination of the theory of constraints and activity based 

costing. Galal and Moneim (2015) presented a mixed integer non-linear programming model 

for a manufacturing facility to maximize a sustainability index, which is comprised of the 

economic, environmental and social dimensions of sustainability. However, above studies 

explored the role of product mix strategy in addressing the environmental challenge from 

single firm’s point of view. Chen et al. (2015) studied a production model consisted of one 

manufacturer which produces a standard product and the green product that can be used as a 

substitute of the standard product. They investigated the effect of substitution and government 

carbon emissions reduction policies on the sustainable optimal production policy and the 

expected profit of the manufacturer. In this paper, the manufacturer’s decision variable is 

production policy only and the pricing policy is not taken into consideration. Different to 

them, out paper investigate the product mixt strategy from the supply chain point of view 

taking in consideration of the cap-and-trade policy. 

 

3 Model formulation and assumptions 

We consider a two-echelon supply chain that consists of a supplier and a manufacturer. Raw 

material is purchased from the supplier. The manufacturer produces two kinds of products and 
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sells to the end-users. Product 1 is green product and product 2 is standard product. Before the 

production period, the manufacturer receives an initial allocation of emission allowances from 

the government. They can also buy additional allowances from or sell them to outside market. 

At the end of a compliance period, the manufacturer should not discharge more emissions 

than the allowance they hold. We assume that the supplier is the Stackelberg leader and the 

manufacturer is the follower. The sequence of events is as follows. Firstly, the supplier 

decides her wholesale price for the material. Then, the manufacturer decides the product 

quantities and the retail prices of product 1 and product 2 and carbon emissions trading 

quantity according to the customers’ demands and supplier’s wholesale price. 

We denote our parameters and variables for model development as the following 

notations in Table 1. 

Table 1 Parameters and variables 

Notation Descriptions 

𝑞1 and 𝑞2 The manufacturer’s production quantities or customer demands for product 

1 and 2 respectively. 

𝑐1 and 𝑐2 Unit production cost of product 1 and 2 respectively. 

𝑝1 and 𝑝2 Unit retail selling price of product 1 and 2 respectively.  

𝐾 Initial carbon emission allowances from government. 

𝑘1 and 𝑘2 Unit carbon emission of product 1 and 2 respectively. 

𝑐 

𝐸 

Unit price of carbon emissions trading with outside market. 

Manufacturer’s carbon emissions trading quantities with outside market. 

w 

𝑐0 

Wholesale price for unit material. 

Production cost for unit material. 

In addition, to make the model more practical, the parameters must satisfy certain 

conditions for the model to make sense, so we assume: 

(1) 𝑝𝑖 = 𝛼 − 𝛽𝑞𝑖 − 𝛾𝑞𝑗 , 𝑖, 𝑗 = 1,2  and 𝑖 ≠ 𝑗 , where 𝛼  denotes the maximum unit 

retail selling price of product 𝑖, 𝛽 is the self-demand sensitivity, and 𝛾 is the cross-demand 

sensitivity. This is a linear inverse demand function, which is commonly used in the 

marketing and operations research literature (Padmanabhan and Png 1997; Shin and Tunca, 
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2010; Shang et al. 2016). Through the inverse demand function, the objective functions for 

both products are concave and hence the optimal decisions can be found with basic algebra. If 

this demand function is converted into a conventional linear price-demand function, it will 

turn in to a demand function which is sensitive to both the standard product price and the 

green product price with the different coefficient beta and gamma. 

(2) 𝑝𝑖 > 𝑤 + 𝑐𝑖 > 0 for 𝑖 = 1,2 and 𝑤 > 𝑐0. The first condition states that there is a 

positive profit margin for each product if it is sold to consumer market, and the second 

condition means that there is a positive profit margin for unit material if it is sold to the 

manufacturer.  

(3) 𝑝𝑖 − 𝑤 − 𝑐𝑖 − 𝑐 > 0. This assumption ensures that the manufacturer has incentive to 

produce products. Otherwise, the manufacturer will sell directly her initial carbon emission 

allowances from government to outside market. 

(4) 𝑐1 > 𝑐2 and 𝑘1 < 𝑘2 . Because product 1 is produced by green techniques and 

product 2 is produced by standard techniques, so the unit production cost of product 1 is 

higher than that of product 2, and the unit carbon emission of product 1 is lower than that of 

product 2. 

(4) 𝛽 > 𝛾 > 0. This assumption is reasonable because retail price is relatively more 

sensitive to demand for its product than that of for competing product. 

 

4 The integrated channel model with cap-and-trade 

In this section, we discuss the integrated channel model with cap-and-trade. This is a basic 

benchmark. In the integrated channel, the decision problem faced by central controller is to 

decide the production quantity and retail price of product 1 and product 2 so as to maximize 

the profit, denoted by 𝜋𝐼(𝑞1, 𝑞2, 𝑝1, 𝑝2). With the consideration that 𝜋𝐼(𝑞1, 𝑞2, 𝑝1, 𝑝2) equals 

to 𝜋𝐼(𝑞1, 𝑞2),  the central controller’s profit with cap-and-trade in an integrated channel is 

𝜋𝐼(𝑞1, 𝑞2) = (𝑝1 − 𝑐0 − 𝑐1)𝑞1 + (𝑝2 − 𝑐0 − 𝑐2)𝑞2 − 𝑐𝐸 

The first term is the central controller’s sale revenue from product 1 and the second term 

is the central controller’s sale revenue from product 2. Then 

𝜋𝐼(𝑞1, 𝑞2) = (𝛼 − 𝛽𝑞1 − 𝛾𝑞2 − 𝑐0 − 𝑐1)𝑞1 + (𝛼 − 𝛽𝑞2 − 𝛾𝑞1 − 𝑐0 − 𝑐2)𝑞2 − 𝑐𝐸 
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𝑠. 𝑡 𝑘1𝑞1 + 𝑘2𝑞2 − 𝐸 = 𝐾 (1) 

The equal equation constraint condition means that the central controller’s total mixed 

products carbon emission minus the carbon emissions trading quantities with outside market 

is equal to the government’s initial carbon emission allowances. 𝐸 > 0 means that the 

central controller will buy carbon emission allowances from the outside market, 𝐸 = 0 

means that the central controller will not trade with outside market, and 𝐸 < 0 means that 

the central controller will sell carbon emission allowances to the outside market. 

From (1), we get 𝐸 = 𝑘1𝑞1 + 𝑘2𝑞2 − 𝐾. Replace 𝐸 to 𝜋𝐼(𝑞1, 𝑞2), we get 

𝜋𝐼(𝑞1, 𝑞2) = (𝛼 − 𝛽𝑞1 − 𝛾𝑞2 − 𝑐0 − 𝑐1)𝑞1 + (𝛼 − 𝛽𝑞2 − 𝛾𝑞1 − 𝑐0 − 𝑐2)𝑞2 − 𝑐(𝑘1𝑞1 +

𝑘2𝑞2 − 𝐾) (2) 

We investigate the central controller’s optimal production quantities (denoted by 𝑞1
𝐼  and 

𝑞2
𝐼 ) and retail prices (denoted by 𝑝1

𝐼  and 𝑝2
𝐼 ) of product 1 and 2, and the optimal carbon 

emissions trading quantities with outside market (denoted by 𝐸𝐼) with cap-and-trade in an 

integrated channel, and obtain the following proposition: 

Lemma 1 𝒒𝟏
𝑰 =

𝜶−𝒄𝟎

𝟐(𝜷+𝜸)
−

𝒄𝟏+𝒄𝟐

𝟒(𝜷+𝜸)
−

𝒄𝟏−𝒄𝟐

𝟒(𝜷−𝜸)
−

(𝒌𝟏+𝒌𝟐)𝒄

𝟒(𝜷+𝜸)
+

(𝒌𝟐−𝒌𝟏)𝒄

𝟒(𝜷−𝜸)
, 𝒒𝟐

𝑰 =
𝜶−𝒄𝟎

𝟐(𝜷+𝜸)
−

𝒄𝟏+𝒄𝟐

𝟒(𝜷+𝜸)
+

𝒄𝟏−𝒄𝟐

𝟒(𝜷−𝜸)
−

(𝒌𝟏+𝒌𝟐)𝒄

𝟒(𝜷+𝜸)
−

(𝒌𝟐−𝒌𝟏)𝒄

𝟒(𝜷−𝜸)
, 𝒑𝟏

𝑰 =
𝜶+𝒄𝟎

𝟐
+

𝒄𝟏

𝟐
−

𝒌𝟏𝒄

𝟐
, 𝒑𝟐

𝑰 =
𝜶+𝒄𝟎

𝟐
+

𝒄𝟐

𝟐
−

𝒌𝟐𝒄

𝟐
 and 𝑬𝑰 = 𝒌𝟏𝒒𝟏

𝑰 +

𝒌𝟐𝒒𝟐
𝑰 − 𝑲. 

This proposition indicates that in the case of an integrated channel, there exist unique 

central controller’s optimal production quantities and retail prices of product 1 and 2, and 

optimal carbon emissions trading quantities with outside market. Since the cap-and-trade 

policy just affects the two products’ integrated cost, that is the cost of production cost and the 

cost of consuming carbon emissions allowances that can be sold for revenue or bought at cost, 

so the initial carbon emission allowances from government have no impact on the central 

controller’s optimal production quantities and retail prices of product 1 and 2. But they have 

an impact on the central controller’s optimal carbon emissions trading quantities with outside 

market and profit, that is, the central controller’s optimal carbon emissions trading quantities 

with outside market and profit both are an increasing function of initial carbon emission 

allowances from government in the case of an integrated channel. 

Because 𝑐1 > 𝑐2 and 𝑘1 < 𝑘2, so we get the following corollary from proposition 1: 



11 
 

Corollary 1 (1) If 𝒄 ≥
𝒄𝟏−𝒄𝟐

𝒌𝟐−𝒌𝟏
, then 𝒒𝟏

𝑰 ≥ 𝒒𝟐
𝑰 ; if 𝒄 <

𝒄𝟏−𝒄𝟐

𝒌𝟐−𝒌𝟏
, then 𝒒𝟏

𝑰 < 𝒒𝟐
𝑰 . (2) 𝒑𝟏

𝑰 > 𝒑𝟐
𝑰 . 

The first result of this corollary means that in the case of an integrated channel, if the 

unit price of carbon emissions trading with outside market is higher (𝑐 ≥
𝑐1−𝑐2

𝑘2−𝑘1
), then the 

central controller will produce more green products. This is reasonable from the practice point 

of view. More green products mean less carbon emissions. Then the central controller will 

spend less to buy carbon emission allowances from the outside market when the initial carbon 

emission allowances from government is used up, or gain more revenue from selling the 

carbon emission allowances to the outside market when there is a surplus of the initial carbon 

emission allowances from government. 

The second result of this corollary means that in the case of an integrated channel, the 

central controller will set higher retail price for green product (product 1) than that for 

standard product (product 2). This intuition is clear. Because the unit production cost of green 

product (product 1) is higher than that of standard product (product 2).  

 

5 The decentralized channel model with cap-and-trade 

Now, we examine the decentralized channel model with cap-and-trade. The manufacturer’s 

problem is investigated first. 

5.1 The manufacturer’s problem 

The decision problem faced by the manufacturer is to decide the production quantities and 

retail prices of product 1 and product 2, and to decide the carbon emissions trading quantity 

with outside market so as to maximize the profit, denoted by 𝜋𝑚(𝑞1, 𝑞2, 𝑝1, 𝑝2). With the 

consideration that 𝜋𝑚(𝑞1, 𝑞2, 𝑝1, 𝑝2) equals to 𝜋𝑚(𝑞1, 𝑞2), so the manufacturer’s profit with 

cap-and-trade in a decentralized channel is 

𝜋𝑚(𝑞1, 𝑞2) = (𝑝1 − 𝑤 − 𝑐1)𝑞1 + (𝑝2 − 𝑤 − 𝑐2)𝑞2 − 𝑐𝐸 

𝑠. 𝑡 𝑘1𝑞1 + 𝑘2𝑞2 − 𝐸 = 𝐾 (3) 

The equal equation constraint condition means that the manufacturer’s total mixed 

products carbon emission minus the carbon emissions trading quantities with outside market 

is equal to the government’s initial carbon emission allowances. 𝐸 > 0 means that the 
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manufacturer will buy carbon emission allowances from the outside market, 𝐸 = 0 means 

that the manufacturer will not trade with outside market, and 𝐸 < 0  means that the 

manufacturer will sell carbon emission allowances to the outside market. 

From (3), we get 𝐸 = 𝑘1𝑞1 + 𝑘2𝑞2 − 𝐾. Replace 𝐸 to 𝜋𝑚(𝑞1, 𝑞2), we get 

𝜋𝑚(𝑞1, 𝑞2) = (𝑝1 − 𝑤 − 𝑐1)𝑞1 + (𝑝2 − 𝑤 − 𝑐2)𝑞2 − 𝑐(𝑘1𝑞1 + 𝑘2𝑞2 − 𝐾) (4) 

Regarding the manufacturer’s optimal production quantities (denoted by 𝑞1
∗ and 𝑞2

∗) 

and retail prices (denoted by 𝑝1
∗  and 𝑝2

∗) of product 1 and 2, and the optimal carbon 

emissions trading quantities with outside market (denoted by 𝐸∗) with cap-and-trade in a 

decentralized channel, we have the following proposition: 

Lemma 2 𝒒𝟏
∗ =

𝜶−𝒘

𝟐(𝜷+𝜸)
−

𝒄𝟏+𝒄𝟐

𝟒(𝜷+𝜸)
−

𝒄𝟏−𝒄𝟐

𝟒(𝜷−𝜸)
−

(𝒌𝟏+𝒌𝟐)𝒄

𝟒(𝜷+𝜸)
+

(𝒌𝟐−𝒌𝟏)𝒄

𝟒(𝜷−𝜸)
, 𝒒𝟐

∗ =
𝜶−𝒘

𝟐(𝜷+𝜸)
−

𝒄𝟏+𝒄𝟐

𝟒(𝜷+𝜸)
+

𝒄𝟏−𝒄𝟐

𝟒(𝜷−𝜸)
−

(𝒌𝟏+𝒌𝟐)𝒄

𝟒(𝜷+𝜸)
−

(𝒌𝟐−𝒌𝟏)𝒄

𝟒(𝜷−𝜸)
, 𝒑𝟏

∗ =
𝜶+𝒘

𝟐
+

𝒄𝟏

𝟐
−

𝒌𝟏𝒄

𝟐
, 𝒑𝟐

∗ =
𝜶+𝒘

𝟐
+

𝒄𝟐

𝟐
−

𝒌𝟐𝒄

𝟐
 and 𝑬∗ = 𝒌𝟏𝒒𝟏

∗ +

𝒌𝟐𝒒𝟐
∗ − 𝑲. 

The proof of this proposition is similar to that of proposition 1. This proposition indicates 

that in the case of a decentralized channel, there exist unique manufacturer’s optimal 

production quantities and retail prices of product 1 and 2, and optimal carbon emissions 

trading quantities with outside market. Since the cap-and-trade policy just affects the two 

products’ integrated cost, that is the cost of production cost and the cost of consuming carbon 

emissions allowances that can be sold for revenue or bought at cost, so the initial carbon 

emission allowances from government have no impact on the manufacturer’s optimal 

production quantities and retail prices of product 1 and 2. But they have an impact on the 

manufacturer’s optimal carbon emissions trading quantities with outside market and profit, 

that is, the manufacturer’s optimal carbon emissions trading quantities with outside market 

and profit both are an increasing function of initial carbon emission allowances from 

government in the case of a decentralized channel. 

Because 𝑐1 > 𝑐2 and 𝑘1 < 𝑘2, so we get the following corollary from proposition 2: 

Corollary 2 (1) If 𝒄 ≥
𝒄𝟏−𝒄𝟐

𝒌𝟐−𝒌𝟏
, then 𝒒𝟏

∗ ≥ 𝒒𝟐
∗ ; if 𝒄 <

𝒄𝟏−𝒄𝟐

𝒌𝟐−𝒌𝟏
, then 𝒒𝟏

∗ < 𝒒𝟐
∗ . (2) 𝒑𝟏

∗ > 𝒑𝟐
∗ . 

The proof of this corollary is similar to that of corollary 1. The first result of this 

corollary means that in the case of a decentralized channel, if the unit price of carbon 
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emissions trading with outside market is higher (𝑐 ≥
𝑐1−𝑐2

𝑘2−𝑘1
), then the manufacturer will 

produce more green products. This is reasonable from the practice point of view. More green 

products mean less carbon emissions. Then the manufacturer will spend less to buy carbon 

emission allowances from the outside market when the initial carbon emission allowances 

from government is used up, or gain more revenue from selling the carbon emission 

allowances to the outside market when there is a surplus of the carbon emission allowances 

from government. 

The second result of this corollary means that in the case of a decentralized channel, the 

manufacturer will set higher retail price for green product (product 1) than that for standard 

product (product 2). This intuition is clear. Because the unit production cost of green product 

(product 1) is higher than that of standard product (product 2).  

5.2 The supplier’s problem 

The decision problem faced by the supplier in the case of decentralized channel and 

cap-and-trade is to decide the wholesale price of material so as to maximize the profit. The 

supplier’s profit with cap-and-trade in a decentralized channel, denoted by 𝜋𝑠(𝑤), is 

𝜋𝑠(𝑤) = (𝑤 − 𝑐0)(𝑞1
∗ + 𝑞2

∗) (5) 

We explore the supplier’s optimal wholesale price with decentralized channel and 

cap-and-trade (denoted by 𝑤∗), and obtain the following proposition: 

Lemma 3 𝒘∗ =
𝜶+𝒄𝟎

𝟐
−

𝒄𝟏+𝒄𝟐

𝟒
−

(𝒌𝟏+𝒌𝟐)𝒄

𝟒
. 

This proposition indicates that there exists a unique supplier’s optimal wholesale price in 

the case of cap-and-trade in a decentralized channel. 

From lemma 2 and 3, we get the manufacturer’s optimal produce quantities and retail 

prices in the case of cap-and-trade in a decentralized channel as following: 

𝑞1
∗ =

𝛼−𝑐0

4(𝛽+𝛾)
−

𝑐1+𝑐2

8(𝛽+𝛾)
−

𝑐1−𝑐2

4(𝛽−𝛾)
−

(𝑘1+𝑘2)𝑐

8(𝛽+𝛾)
+

(𝑘2−𝑘1)𝑐

4(𝛽−𝛾)
 (6) 

𝑞2
∗ =

𝛼−𝑐0

4(𝛽+𝛾)
−

𝑐1+𝑐2

8(𝛽+𝛾)
+

𝑐1−𝑐2

4(𝛽−𝛾)
−

(𝑘1+𝑘2)𝑐

8(𝛽+𝛾)
−

(𝑘2−𝑘1)𝑐

4(𝛽−𝛾)
 (7) 

𝑝1
∗ =

3𝛼+𝑐0

4
+

3𝑐1−𝑐2

8
−

(5𝑘1+𝑘2)𝑐

8
 (8) 

𝑝2
∗ =

3𝛼+𝑐0

4
+

3𝑐2−𝑐1

8
−

(𝑘1+5𝑘2)𝑐

8
 (9) 
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6 Discussion 

In this section, we discuss the effects of channel structure and cap-and-trade on the supply 

chain’s decisions, carbon emissions and profits.  

6.1 The effect of channel structure 

Take the effect of cap-and-trade on the supply chain decisions into consideration, we get the 

following proposition: 

Proposition 1 𝒒𝟏
∗ < 𝒒𝟏

𝑰 , 𝒒𝟐
∗ < 𝒒𝟐

𝑰 , 𝒑𝟏
∗ > 𝒑𝟏

𝑰  and 𝒑𝟐
∗ > 𝒑𝟐

𝑰 . 

This proposition means that under the cap-and-trade policy, the production quantities of 

both green product and standard product in the decentralized channel are lower than that in 

the integrated channel, and the retail prices of both green product and standard product in the 

decentralized channel are higher than that in the integrated channel. That is, double 

marginalization in the case of cap-and-trade is the same as that in the traditional case without 

cap-and-trade. The cap-and-trade policy just affects the two products’ integrated cost, that 

includes production cost and the cost of consuming carbon emissions allowances that can be 

sold for revenue or bought at cost, and has no effect on the double marginalization. 

With cap-and-trade, we define 𝜃𝐼 =
𝑞1

𝐼

𝑞1
𝐼 +𝑞2

𝐼 , which is the proportion of green product in 

the integrated channel, and define 𝜃∗ =
𝑞1

∗

𝑞1
∗+𝑞2

∗, which is the proportion of green product in the 

decentralized channel. Then we gain the following proposition: 

Proposition 2 If 𝒄 ≥
𝒄𝟏−𝒄𝟐

𝒌𝟐−𝒌𝟏
, then 𝜽∗ ≥ 𝜽𝑰; if 𝒄 <

𝒄𝟏−𝒄𝟐

𝒌𝟐−𝒌𝟏
, then 𝜽∗ < 𝜽𝑰. 

This proposition means that with cap-and-trade, the relationship of the proportion of 

green product in the decentralized channel and that in the integrated channel is decided by the 

unit price of carbon emissions trading with outside market. If the unit price of carbon 

emissions trading with outside market is higher, then the proportion of green product in the 

decentralized channel is higher than that in the integrated channel. That is, higher unit price of 

carbon emissions trading with outside market will enable the supply chains with decentralized 

channel to generate less carbon emissions. If the unit price of carbon emissions trading with 

outside market is lower, then the proportion of green product in the decentralized channel is 

lower than that in the integrated channel. That is, lower unit price of carbon emissions trading 
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with outside market will enable the supply chains with integrated channel to generate less 

carbon emissions as compared to the decentralized channel. These observations are interesting 

and can contribute to the policy maker’s decision makings. The policy maker can encourage 

the manufacturer to produce more green products and less standard product by adjusting the 

unit price of carbon emissions trade with outside world according to the industry’s supply 

chain structure, and as a result enable to achieve low carbon supply chains. 

In the case of cap-and-trade, the supply chain’s carbon emissions with integrated channel, 

denoted by 𝐾𝐼 , is 𝐾𝐼 = 𝑘1𝑞1
𝐼 + 𝑘2𝑞2

𝐼 , and the supply chain’s carbon emissions with 

decentralized channel, denoted by 𝐾1, is 𝐾1 = 𝑘1𝑞1
∗ + 𝑘2𝑞2

∗. As to the effect of channel 

structure on supply chain’s carbon emissions, the following proposition is obtained: 

Proposition 3 𝑲𝟏 < 𝑲𝑰. 

From this proposition, we know that with cap-and-trade, the supply chain’s carbon 

emissions in the decentralized channel are lower than that in the integrated channel. Recalling 

proposition 1, this intuition is clear. In the decentralized channel, compared to the integrated 

channel, the retail prices of products are higher, which leads to less production quantities. 

Therefore, the supply chain’s carbon emissions in the decentralized channel are lower. From 

the environment point of view, the decentralized supply chain is better than that in the 

integrated one. 

Regarding the effect of the cap-and-trade policy on the supply chain’s profit, the 

following proposition is obtained: 

Proposition 4 𝝅𝑰(𝒒𝟏
𝑰 , 𝒒𝟐

𝑰 ) > 𝝅𝒎(𝒒𝟏
∗ , 𝒒𝟐

∗ ) + 𝝅𝒔(𝒘∗). 

This proposition indicates that with cap-and-trade, the supply chain’s profit in the 

integrated channel is always higher than that in the decentralized channel. The result is the 

same as the case of without cap-and-trade. 

6.2 The effect of cap-and-trade 

Now, we discuss the effect of cap-and-trade on the supply chain’s decisions, carbon emissions 

and profit. Firstly, we discuss the decentralized channel model without cap-and-trade. This is 

a useful benchmark. The decision problem faced by the manufacturer is to decide the 

production quantity and retail price of product 1 and product 2 to maximize the profit, 
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denoted by 𝜋𝑚
0 (𝑞1, 𝑞2, 𝑝1, 𝑝2). Considering that 𝜋𝑚

0 (𝑞1, 𝑞2, 𝑝1, 𝑝2) equals to 𝜋𝑚
0 (𝑞1, 𝑞2), 

then the manufacturer’s profit without cap-and-trade is 

𝜋𝑚
0 (𝑞1, 𝑞2) = (𝑝1 − 𝑤 − 𝑐1)𝑞1 + (𝑝2 − 𝑤 − 𝑐2)𝑞2 

The first term is the manufacturer’s sale revenue from product 1 and the second term is 

the manufacturer’s sale revenue from product 2. Then 

𝜋𝑚
0 (𝑞1, 𝑞2) = (𝛼 − 𝛽𝑞1 − 𝛾𝑞2 − 𝑤 − 𝑐1)𝑞1 + (𝛼 − 𝛽𝑞2 − 𝛾𝑞1 − 𝑤 − 𝑐2)𝑞2  (10) 

Similarly, the decision problem faced by the supplier in the case of without cap-and-trade 

is to decide the wholesale price of material to maximize the profit. The supplier’s profit with 

decentralized channel without cap-and-trade, denoted by 𝜋𝑠
0(𝑤), is 

𝜋𝑠
0(𝑤) = (𝑤 − 𝑐)(𝑞1

0 + 𝑞2
0) (11) 

We investigate the manufacturer’s optimal production quantities (denoted by 𝑞1
0 and 𝑞2

0) 

and retail prices (denoted by 𝑝1
0 and 𝑝2

0) of product 1 and 2, and the supplier’s optimal 

wholesale price (denoted by 𝑤0) without cap-and-trade, and obtain the following lemma: 

Lemma 4 𝒒𝟏
𝟎 =

𝜶−𝒄𝟎

𝟒(𝜷+𝜸)
−

𝒄𝟏+𝒄𝟐

𝟖(𝜷+𝜸)
−

𝒄𝟏−𝒄𝟐

𝟒(𝜷−𝜸)
, 𝒒𝟐

𝟎 =
𝜶−𝒄𝟎

𝟒(𝜷+𝜸)
−

𝒄𝟏+𝒄𝟐

𝟖(𝜷+𝜸)
+

𝒄𝟏−𝒄𝟐

𝟒(𝜷−𝜸)
, 𝒑𝟏

𝟎 =
𝟑𝜶+𝒄𝟎

𝟒
+

𝟑𝒄𝟏−𝒄𝟐

𝟖
, 𝒑𝟐

𝟎 =
𝟑𝜶+𝒄𝟎

𝟒
+

𝟑𝒄𝟐−𝒄𝟏

𝟖
 and 𝒘𝟎 =

𝜶+𝒄𝟎

𝟐
−

𝒄𝟏+𝒄𝟐

𝟒
. 

The lemma means that in the decentralized channel, there exist unique manufacturer’s 

optimal production quantities and retail prices of product 1 and 2, and supplier’s optimal 

wholesale price in the case of without cap-and-trade. 

Take into consideration the effect of cap-and-trade on the supply chain decisions, that is, 

on the supplier’s optimal wholesale price, the manufacturer’s optimal retail prices and 

production quantities of fixed products, we gain the following proposition: 

Proposition 5 (1) 𝒘∗ < 𝒘𝟎. (2) If 𝒌𝟐 ≥ 𝒌𝟏 +
𝟐(𝜷−𝜸)

𝜷+𝟑𝜸
, then 𝒒𝟏

∗ ≥ 𝒒𝟏
𝟎; if 𝒌𝟏 < 𝒌𝟐 < 𝒌𝟏 +

𝟐(𝜷−𝜸)

𝜷+𝟑𝜸
, then 𝒒𝟏

∗ < 𝒒𝟏
𝟎. (3) 𝒒𝟐

∗ < 𝒒𝟐
𝟎, 𝒑𝟏

∗ < 𝒑𝟏
𝟎 and 𝒑𝟐

∗ < 𝒑𝟐
𝟎. 

This proposition means that the supplier will set lower wholesale price, and the 

manufacturer will set lower retail prices and produce less standard products in the case of 

cap-and-trade than without. The relationship of production quantity of green product is 

decided by their unit carbon emissions. If the unit standard product carbon emissions are 

higher, then the manufacturer will produce more green products in the case of cap-and-trade 
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than without, and vice versa. The intuition is clear. Under the cap-and-trade policy, it gives 

more incentive for the firms, who have high unit standard product carbon emissions, to 

produce more low carbon product in order to be economic viable.     

In the case of without cap-and-trade, the supply chain’s carbon emissions (denoted by 

𝐾0) is 𝐾0 = 𝑘1𝑞1
0 + 𝑘2𝑞2

0. Regarding the effect of the cap-and-trade policy on the supply 

chain’s profit and carbon emissions, the following proposition is obtained: 

Proposition 6 (1) 𝝅𝒔(𝒘∗) < 𝝅𝒔(𝒘𝟎). (2) 𝑲𝟏 < 𝑲𝟎. (3) If 𝑲 > 𝑲∗, then 𝝅𝒎(𝒒𝟏
∗ , 𝒒𝟐

∗ ) >

𝝅𝒎
𝟎 (𝒒𝟏

𝟎, 𝒒𝟐
𝟎); if 𝑲 = 𝑲∗, then 𝝅𝒎(𝒒𝟏

∗ , 𝒒𝟐
∗ ) = 𝝅𝒎

𝟎 (𝒒𝟏
𝟎, 𝒒𝟐

𝟎); if 𝑲 < 𝑲∗, then 𝝅𝒎(𝒒𝟏
∗ , 𝒒𝟐

∗ ) <

𝝅𝒎
𝟎 (𝒒𝟏

𝟎, 𝒒𝟐
𝟎), where 𝑲∗ = 𝑲𝟏 +

𝟏

𝒄
[𝝅𝒎

𝟎 (𝒒𝟏
𝟎, 𝒒𝟐

𝟎) − 𝝅𝒎
𝟎 (𝒒𝟏

∗ , 𝒒𝟐
∗ )]. 

From proposition 6, we know that the supplier’s profit in the case of cap-and-trade is 

always lower than without. The intuition is clear. Under the cap-and-trade policy, the 

manufacturer will produce less green product (product 1) and standard product (product 2), 

then the demand faced by the supplier is reduced. At the same time, the supplier will set lower 

wholesale price in the case of cap-and-trade than without. The reduction of both demand and 

wholesale price leads to lower profit for the supplier in the case of cap-and-trade than without. 

The relationship of manufacturer’s profit between the cases of with and without 

cap-and-trade is decided by the initial carbon emission allowances from government. That is, 

if the initial carbon emission allowance from government is high, then the manufacturer’s 

profit in the case of cap-and-trade is higher than without; if the initial carbon emission 

allowance from government is medium, then the manufacturer’s profit in the case of 

cap-and-trade is equal to without; if the initial carbon emission allowance from government is 

low, then the manufacturer’s profit in the case of cap-and-trade is lower than without. Since 

the threshold (𝐾∗) is higher than the supply chain’s actual carbon emissions (𝐾1), then the 

policy maker would set the initial carbon emission allowance from government lower than the 

supply chain’s actual carbon emissions (𝐾1) to let the cap-and-trade policy take effect. So, the 

manufacturer’s profit in the case of cap-and-trade is also lower than without. 

The supply chain’s carbon emissions in the case of cap-and-trade are lower than the case 

without the policy. In a word, the cap-and-trade policy can reduce the supply chain’s carbon 

emissions, but also have a significant impact of the economic performance of both the 
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supplier and the manufacturer. It is not a surprise that the cap-and-trade policy has a positive 

impact on supply chain carbon emission reduction as it is designed to tackle the carbon 

emissions challenge. Nevertheless, the detail in the design of the cap-and-trade policy such as 

the unit price of carbon emissions trade with outside world and the initial carbon emission 

allowance have significant implications to the supply chain firms. From governments’ point of 

view, it is important to achieve the carbon emissions reduction targets. However, such an 

achievement should not comprise the development of their economies. Therefore, in order to 

achieve the long-term sustainability, it is critical for policy makers around the world to 

balance the tradeoff between the economic and environmental objectives, and set up 

appropriate cap-and-trade policies according to different economic development stages and 

environmental statuses of their regions or countries.  

 

7 Conclusions 

In this paper, we investigate the incentive for a carbon efficient supply chain’s wholesale 

pricing, retail pricing and production policies under the cap-and-trade policy. A two-echelon 

supply chain is considered that consists of a supplier and a manufacturer. Based on game 

theory models, this research analytically explores potential behavioural changes in the context 

of a two-echelon supply chain when the cap-and-trade policy is applied to the manufacturing 

industry.  

    The research makes two main contributions. First, theoretically, it is important to reduce 

carbon emissions of the whole supply chain in order to achieve the low carbon objective. This 

research complements the existing literature by studying one widely adopted carbon 

emissions reduction policy, cap-and-trade, from the supply chain perspective. More 

specifically, we examine the effectiveness of product mix as a strategy to deliver a low carbon 

supply chain under the cap-and-trade policy. We analyse the impact of the integrated and 

decentralized channel structures on the supply chain economic and environmental 

performances under the cap-and-trade policy. Second, our research findings generate many 

interesting insights which do not only help firms to make important operational and strategic 

decisions to reduce carbon emissions while maintaining their economic competitiveness, but 
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also make meaningful contribution to governments’ policy making for carbon emissions 

control. For instance, our analysis results show that the channel structures have significant 

impacts on both economic and environmental performances. An integrated supply chain 

generates more profits. In contrast, a decentralized supply chain has lower carbon emissions. 

Furthermore, we found that the cap-and-trade policy harm the economic performance of both 

the supplier and the manufacturer while improving the supply chain’s environmental 

performance. With understanding of the policy impacts on supply chain decisions and 

performances, our findings will support policy makers to develop effective carbon emissions 

control policies that enable the sustainable development of their economy and environment. 

Indeed, we see this paper as an early attempt to understand the relationship between the 

cap-and-trade policy and supply chain decisions on mixed products. Similar to the models 

previously published in the literature, the present model also has its own limitations, which 

imply fruitful directions for future research. For example, our model assumed the two-echelon 

supply chain consisting of a supplier and a manufacturer with a deterministic demand. It 

would be interesting to consider multi suppliers and/or multi manufacturers with stochastic 

demand and analyze the effect of the cap-and-trade policy on the supply chain’s decisions, 

lateral competition, profits and carbon emissions reduction. Furthermore, consumers are 

becoming more sensitive towards low carbon products due to an increasing environmental 

awareness. One important research extension is to consider the carbon emission sensitive 

demand in the modelling (Chen et al. 2017). In addition, the emission allowance purchasing 

and selling prices are assumed to be the same in our model. In reality, these carbon emission 

trading prices are different due to the transaction costs (Gong and Zhou 2013). Therefore, one 

important research extension is to consider the different purchasing and selling costs for the 

carbon emissions trading in modelling the effect of the cap-and-trade policy. Another 

extension of our work is to analyze the supply chain management with mixed products under 

other carbon emissions policies, such as mandatory carbon emissions capacity, carbon tax, 

and investment in the carbon offsets, and discuss the effect of these different policies on the 

supply chain’s decisions, profits and carbon emissions reduction. 
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Appendix A 

Proof of Lemma 1 

(2) shows that 
𝜕𝜋𝐼(𝑞1,𝑞2)

𝜕𝑞1
= 𝛼 − 𝛽𝑞1 − 𝛾𝑞2 − 𝑐0 − 𝑐1 − 𝛽𝑞1 − 𝛾𝑞2 − 𝑐𝑘1 = 𝛼 − 2𝛽𝑞1 −

2𝛾𝑞2 − 𝑐0 − 𝑐1 − 𝑐𝑘1 , 
𝜕𝜋𝐼(𝑞1,𝑞2)

𝜕𝑞2
= 𝛼 − 𝛽𝑞2 − 𝛾𝑞1 − 𝑐0 − 𝑐2 − 𝛽𝑞2 − 𝛾𝑞1 − 𝑐𝑘2 = 𝛼 −

2𝛽𝑞2 − 2𝛾𝑞1 − 𝑐0 − 𝑐2 − 𝑐𝑘2 , then 
𝜕2𝜋𝐼(𝑞1,𝑞2)

𝜕𝑞1
2 = −2𝛽 < 0 , 

𝜕2𝜋𝐼(𝑞1,𝑞2)

𝜕𝑞1𝜕𝑞2 
=

𝜕2𝜋𝐼(𝑞1,𝑞2)

𝜕𝑞2𝜕𝑞1 
= −2𝛾 , 

𝜕2𝜋𝐼(𝑞1,𝑞2)

𝜕𝑞2
2 

= −2𝛽 < 0 , so we get |

𝜕2𝜋𝐼(𝑞1,𝑞2)

𝜕𝑞1
2 

𝜕2𝜋𝐼(𝑞1,𝑞2)

𝜕𝑞1𝜕𝑞2 

𝜕2𝜋𝐼(𝑞1,𝑞2)

𝜕𝑞2𝜕𝑞1 

𝜕2𝜋𝐼(𝑞1,𝑞2)

𝜕𝑞2
2 

| =
𝜕2𝜋𝐼(𝑞1,𝑞2)

𝜕𝑞1
2 

𝜕2𝜋𝐼(𝑞1,𝑞2)

𝜕𝑞2
2 

−

𝜕2𝜋𝐼(𝑞1,𝑞2)

𝜕𝑞1𝜕𝑞2 

𝜕2𝜋𝐼(𝑞1,𝑞2)

𝜕𝑞2𝜕𝑞1 
= 4𝛽2 − 4𝛾2 > 0. Therefore, 𝜋𝐼(𝑞

1
, 𝑞

2
) is a concave function of 𝑞1 

and 𝑞2.  

Let 
𝜕𝜋𝐼(𝑞1,𝑞2)

𝜕𝑞1
=

𝜕𝜋𝐼(𝑞1,𝑞2)

𝜕𝑞2
= 0 , we get 𝛼 − 2𝛽𝑞1 − 2𝛾𝑞2 − 𝑐0 − 𝑐1 − 𝑐𝑘1 = 0  and 𝛼 −

2𝛽𝑞2 − 2𝛾𝑞1 − 𝑐0 − 𝑐2 − 𝑐𝑘2 = 0. Then we get 𝑞1
𝐼 =

𝛼−𝑐0

2(𝛽+𝛾)
−

𝑐1+𝑐2

4(𝛽+𝛾)
−

𝑐1−𝑐2

4(𝛽−𝛾)
−

(𝑘1+𝑘2)𝑐

4(𝛽+𝛾)
+

(𝑘2−𝑘1)𝑐

4(𝛽−𝛾)
 and 𝑞2

𝐼 =
𝛼−𝑐0

2(𝛽+𝛾)
−

𝑐1+𝑐2

4(𝛽+𝛾)
+

𝑐1−𝑐2

4(𝛽−𝛾)
−

(𝑘1+𝑘2)𝑐

4(𝛽+𝛾)
−

(𝑘2−𝑘1)𝑐

4(𝛽−𝛾)
. So, 𝑝1

𝐼 = 𝛼 − 𝛽𝑞1
𝐼 −

𝛾𝑞2
𝐼 =

𝛼+𝑐0

2
+

𝑐1

2
−

𝑘1𝑐

2
 and 𝑝2

𝐼 = 𝛼 − 𝛽𝑞2
𝐼 − 𝛾𝑞1

𝐼 =
𝛼+𝑐0

2
+

𝑐2

2
−

𝑘2𝑐

2
, that is, 𝑝1

𝐼 =
𝛼+𝑐0

2
+

𝑐1

2
−

𝑘1𝑐

2
 and 𝑝2

𝐼 =
𝛼+𝑐0

2
+

𝑐2

2
−

𝑘2𝑐

2
.  Then we get 𝐸𝐼 = 𝑘1𝑞1

𝐼 + 𝑘2𝑞2
𝐼 − 𝐾.  

 

Proof of Corollary 1 

From lemma 1, we get 𝑞1
𝐼 − 𝑞2

𝐼 =
1

2(𝛽−𝛾)
[(𝑘2 − 𝑘1)𝑐 − (𝑐1 − 𝑐2)]. Recalling 𝑐1 > 𝑐2 and 

𝑘1 < 𝑘2, we get that if 𝑐 ≥
𝑐1−𝑐2

𝑘2−𝑘1
, then 𝑞1

∗ ≥ 𝑞2
∗; if 𝑐 <

𝑐1−𝑐2

𝑘2−𝑘1
, then 𝑞1

∗ < 𝑞2
∗. 

Similarly, from lemma 1, we get 𝑝1
𝐼 − 𝑝2

𝐼 =
𝑐1

2
−

𝑐2

2
+

𝑘2𝑐

2
−

𝑘1𝑐

2
. Recalling 𝑐1 > 𝑐2 and 𝑘1 <

𝑘2, we get that 𝑝1
𝐼 > 𝑝2

𝐼 .  
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Proof of Lemma 3 

From lemma 2, we get 
𝑑𝑞1

∗

𝑑𝑤
=

𝑑𝑞2
∗

𝑑𝑤
= −

1

2(𝛽+𝛾)
. Then, (5) shows 

𝑑𝜋𝑠(𝑤)

𝑑𝑤
= 𝑞1

∗ + 𝑞2
∗ +

(𝑤 − 𝑐0) (
𝑑𝑞1

∗

𝑑𝑤
+

𝑑𝑞2
∗

𝑑𝑤
) = 𝑞1

∗ + 𝑞2
∗ −

𝑤−𝑐0

𝛽+𝛾
, 

𝑑2𝜋𝑠(𝑤)

𝑑𝑤2 = −
2

𝛽+𝛾
< 0, so 𝜋𝑠(𝑤) is concave in 𝑤. 

Let 
𝑑𝜋𝑠(𝑤)

𝑑𝑤
= 0, we get 𝑤∗ =

𝛼+𝑐0

2
−

𝑐1+𝑐2

4
−

(𝑘1+𝑘2)𝑐

4
.  

 

Proof of Proposition 1 

Because 𝑤 > 𝑐0, from lemma 1 and 2, we directly get 𝑞1
∗ < 𝑞1

𝐼 , 𝑞2
∗ < 𝑞2

𝐼 , 𝑝1
∗ > 𝑝1

𝐼  and 

𝑝2
∗ > 𝑝2

𝐼 .  

 

Proof of Proposition 2 

From lemma 1, we get 𝑞1
𝐼 + 𝑞2

𝐼 =
𝛼−𝑐0

𝛽+𝛾
−

𝑐1+𝑐2

2(𝛽+𝛾)
−

(𝑘1+𝑘2)𝑐

2(𝛽+𝛾)
, and 𝜃𝐼 =

𝑞1
𝐼

𝑞1
𝐼 +𝑞2

𝐼 =
1

2
+

−
𝑐1−𝑐2

4(𝛽−𝛾)
+

(𝑘2−𝑘1)𝑐

4(𝛽−𝛾)

𝑞1
𝐼 +𝑞2

𝐼 . From lemma 2, we get 𝑞1
∗ + 𝑞2

∗ =
𝛼−𝑤

𝛽+𝛾
−

𝑐1+𝑐2

2(𝛽+𝛾)
−

(𝑘1+𝑘2)𝑐

2(𝛽+𝛾)
, and 𝜃∗ =

𝑞1
∗

𝑞1
∗+𝑞2

∗ =

1

2
+

−
𝑐1−𝑐2

4(𝛽−𝛾)
+

(𝑘2−𝑘1)𝑐

4(𝛽−𝛾)

𝑞1
∗+𝑞2

∗ . So, 𝜃∗ − 𝜃𝐼 = [−
𝑐1−𝑐2

4(𝛽−𝛾)
+

(𝑘2−𝑘1)𝑐

4(𝛽−𝛾)
] (

1

𝑞1
∗+𝑞2

∗ −
1

𝑞1
𝐼 +𝑞2

𝐼 ) . If −
𝑐1−𝑐2

4(𝛽−𝛾)
+

(𝑘2−𝑘1)𝑐

4(𝛽−𝛾)
≥ 0, that is, 𝑐 ≥

𝑐1−𝑐2

𝑘2−𝑘1
, then 𝜃∗ ≥ 𝜃𝐼. If −

𝑐1−𝑐2

4(𝛽−𝛾)
+

(𝑘2−𝑘1)𝑐

4(𝛽−𝛾)
< 0, that is, 𝑐 <

𝑐1−𝑐2

𝑘2−𝑘1
, 

then 𝜃∗ < 𝜃𝐼.  

 

Proof of Proposition 3 

From lemma 1 and 2, we get 𝐾1 − 𝐾𝐼 = 𝑘1𝑞1
∗ − 𝑘1𝑞1

𝐼 + 𝑘2𝑞2
∗ − 𝑘2𝑞2

𝐼 < 0, that is 𝐾1 < 𝐾𝐼.  

 

Proof of Proposition 4 

From (2), (4) and (5), we get 𝜋𝑚(𝑞1, 𝑞2) + 𝜋𝑠(𝑤) = 𝜋𝐼(𝑞1, 𝑞2). Considering the maximum 

of 𝜋𝐼(𝑞1, 𝑞2), we get 𝜋𝐼(𝑞1
𝐼 , 𝑞2

𝐼 ) > 𝜋𝐼(𝑞1
∗, 𝑞2

∗), that is, 𝜋𝐼(𝑞1
𝐼 , 𝑞2

𝐼 ) > 𝜋𝑚(𝑞1
∗, 𝑞2

∗) + 𝜋𝑠(𝑤∗).  

 

Proof of Lemma 4 

(10) shows 
𝜕𝜋𝑚

0 (𝑞1,𝑞2)

𝜕𝑞1
= 𝛼 − 𝛽𝑞1 − 𝛾𝑞2 − 𝑤 − 𝑐1 − 𝛽𝑞1 − 𝛾𝑞2 = 𝛼 − 2𝛽𝑞1 − 2𝛾𝑞2 − 𝑤 −
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𝑐1 , 
𝜕𝜋𝑚

0 (𝑞1,𝑞2)

𝜕𝑞2
= 𝛼 − 𝛽𝑞2 − 𝛾𝑞1 − 𝑤 − 𝑐2 − 𝛽𝑞2 − 𝛾𝑞1 = 𝛼 − 2𝛽𝑞2 − 2𝛾𝑞1 − 𝑤 − 𝑐2 , then 

𝜕2𝜋𝑚
0 (𝑞1,𝑞2)

𝜕𝑞1
2 

= −2𝛽 < 0, 
𝜕2𝜋𝑚

0 (𝑞1,𝑞2)

𝜕𝑞1𝜕𝑞2 
=

𝜕2𝜋𝑚
0 (𝑞1,𝑞2)

𝜕𝑞2𝜕𝑞1 
= −2𝛾, 

𝜕2𝜋𝑚
0 (𝑞1,𝑞2)

𝜕𝑞2
2 

= −2𝛽 < 0, so we get 

|

𝜕2𝜋𝑚
0 (𝑞1,𝑞2)

𝜕𝑞1
2 

𝜕2𝜋𝑚
0 (𝑞1,𝑞2)

𝜕𝑞1𝜕𝑞2 

𝜕2𝜋𝑚
0 (𝑞1,𝑞2)

𝜕𝑞2𝜕𝑞1 

𝜕2𝜋𝑚
0 (𝑞1,𝑞2)

𝜕𝑞2
2 

| = 4𝛽2 − 4𝛾2 > 0. Therefore, 𝜋1
0(𝑞1, 𝑞2) is a concave function of 

𝑞1 and 𝑞2.  

Let 
𝜕𝜋𝑚

0 (𝑞1,𝑞2)

𝜕𝑞1
=

𝜕𝜋𝑚
0 (𝑞1,𝑞2)

𝜕𝑞2
= 0, we get 𝛼 − 2𝛽𝑞1 − 2𝛾𝑞2 − 𝑤 − 𝑐1 = 0  and 𝛼 − 2𝛽𝑞2 −

2𝛾𝑞1 − 𝑤 − 𝑐2 = 0, then we get 𝑞1
0 =

𝛼−𝑤

2(𝛽+𝛾)
−

𝑐1+𝑐2

4(𝛽+𝛾)
−

𝑐1−𝑐2

4(𝛽−𝛾)
 and 𝑞2

0 =
𝛼−𝑤

2(𝛽+𝛾)
−

𝑐1+𝑐2

4(𝛽+𝛾)
+

𝑐1−𝑐2

4(𝛽−𝛾)
. Then 𝑝1

0 = 𝛼 − 𝛽𝑞1
0 − 𝛾𝑞2

0 =
𝛼+𝑤

2
+

𝑐1

2
 and 𝑝2

0 = 𝛼 − 𝛽𝑞2
0 − 𝛾𝑞1

0 =
𝛼+𝑤

2
+

𝑐2

2
, that is, 

𝑝1
0 =

𝛼+𝑤

2
+

𝑐1

2
 and 𝑝2

0 =
𝛼+𝑤

2
+

𝑐2

2
. 

𝑑𝑞1
0

𝑑𝑤
=

𝑑𝑞2
0

𝑑𝑤
= −

1

2(𝛽+𝛾)
. Then, (11) shows 

𝑑𝜋𝑠
0(𝑤)

𝑑𝑤
= 𝑞1

0 +

𝑞2
0 + (𝑤 − 𝑐0) (

𝑑𝑞1
0

𝑑𝑤
+

𝑑𝑞2
0

𝑑𝑤
) = 𝑞1

0 + 𝑞2
0 −

𝑤−𝑐0

𝛽+𝛾
, 

𝑑2𝜋𝑠
0(𝑤)

𝑑𝑤2 = −
2

𝛽+𝛾
< 0, so 𝜋𝑠

0(𝑤) is concave 

in 𝑤. Let 
𝑑𝜋𝑠

0(𝑤)

𝑑𝑤
= 0, we get 𝑤0 =

𝛼+𝑐0

2
−

𝑐1+𝑐2

4
. Replace 𝑤0 to 𝑞1

0, 𝑞2
0, 𝑝1

0 and 𝑝2
0, we 

get 𝑞1
0 =

𝛼−𝑐0

4(𝛽+𝛾)
−

𝑐1+𝑐2

8(𝛽+𝛾)
−

𝑐1−𝑐2

4(𝛽−𝛾)
, 𝑞2

0 =
𝛼−𝑐0

4(𝛽+𝛾)
−

𝑐1+𝑐2

8(𝛽+𝛾)
+

𝑐1−𝑐2

4(𝛽−𝛾)
, 𝑝1

0 =
3𝛼+𝑐0

4
+

3𝑐1−𝑐2

8
 and 

𝑝2
0 =

3𝛼+𝑐0

4
+

3𝑐2−𝑐1

8
.  

 

Proof of Proposition 5 

(1) From lemma 3 and 4, we get directly that 𝑤∗ < 𝑤0.  

(2) From lemma 4 and (6), we get 𝑞1
∗ − 𝑞1

0 =
𝑐

8(𝛽+𝛾)(𝛽−𝛾)
[(𝛽 + 3𝛾)(𝑘2 − 𝑘1) − 2(𝛽 − 𝛾)𝑘1], 

so, if 𝑘2 ≥ 𝑘1 +
2(𝛽−𝛾)

𝛽+3𝛾
, then 𝑞1

∗ ≥ 𝑞1
0; if 𝑘1 < 𝑘2 < 𝑘1 +

2(𝛽−𝛾)

𝛽+3𝛾
, then 𝑞1

∗ < 𝑞1
0.  

(3) From lemma 4 and (7), we get 𝑞2
∗ < 𝑞2

0. From lemma 1 and (8), we get 𝑝1
∗ < 𝑝1

0. From 

lemma 4 and (9), we get 𝑝2
∗ < 𝑝2

0.  

 

Proof of Proposition 6 

(1) From lemma 4, (6) and (7), we get 𝑞1
∗ + 𝑞2

∗ = 𝑞1
0 + 𝑞2

0 −
(𝑘1+𝑘2)𝑐

4(𝛽+𝛾)
< 𝑞1

0 + 𝑞2
0 . From 

proposition 5, we get 𝑤∗ < 𝑤0. Then from (11), (5), lemma 3 and 4, we get 𝜋𝑠(𝑤∗) −
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𝜋𝑠(𝑤0) = (𝑤∗ − 𝑐0)(𝑞1
∗ + 𝑞2

∗) − (𝑤0 − 𝑐0)(𝑞1
0 + 𝑞2

0) < 0, that is, 𝜋𝑠(𝑤∗) < 𝜋𝑠(𝑤0). 

(2) From lemma 4, (6) and (7), we get 𝐾1 − 𝐾0 = 𝑘1𝑞1
∗ + 𝑘2𝑞2

∗ − 𝑘1𝑞1
0 − 𝑘2𝑞2

0 =

−
(𝑘1+𝑘2)2𝑐

8(𝛽+𝛾)
−

(𝑘2−𝑘1)2𝑐

4(𝛽−𝛾)
< 0, then 𝐾1 < 𝐾0. 

(3) If 𝐾 ≤ 𝑘1𝑞1
∗ + 𝑘2𝑞2

∗ , from (4) and maximum of 𝜋𝑚
0 (𝑞1, 𝑞2) , we get 𝜋𝑚(𝑞1

∗, 𝑞2
∗) =

𝜋𝑚
0 (𝑞1

∗, 𝑞2
∗) − 𝑐(𝑘1𝑞1

∗ + 𝑘2𝑞2
∗ − 𝐾) ≤ 𝜋𝑚

0 (𝑞1
∗, 𝑞2

∗) < 𝜋𝑚
0 (𝑞1

0, 𝑞2
0) , that is, 𝜋𝑚(𝑞1

∗, 𝑞2
∗) <

𝜋𝑚
0 (𝑞1

0, 𝑞2
0) . If 𝐾 ≥ 𝑘1𝑞1

0 + 𝑘2𝑞2
0 , from (4) and maximum of 𝜋𝑚(𝑞1, 𝑞2) , we get 

𝜋𝑚(𝑞1
0, 𝑞2

0) = 𝜋𝑚
0 (𝑞1

0, 𝑞2
0) − 𝑐(𝑘1𝑞1

0 + 𝑘2𝑞2
0 − 𝐾) < 𝜋𝑚(𝑞1

∗, 𝑞2
∗) , that is, 𝜋𝑚(𝑞1

∗, 𝑞2
∗) >

𝜋𝑚
0 (𝑞1

0, 𝑞2
0). Since 𝐾1 < 𝐾0, then there always exists a 𝐾∗ ∈ (𝐾1, 𝐾0) satisfies 𝜋𝑚(𝑞1

∗, 𝑞2
∗) =

𝜋𝑚
0 (𝑞1

0, 𝑞2
0) , that is, 𝜋𝑚

0 (𝑞1
∗, 𝑞2

∗) − 𝑐(𝑘1𝑞1
∗ + 𝑘2𝑞2

∗ − 𝐾∗) = 𝜋𝑚
0 (𝑞1

0, 𝑞2
0) , so 𝐾∗ = 𝐾1 +

1

𝑐
[𝜋𝑚

0 (𝑞1
0, 𝑞2

0) − 𝜋𝑚
0 (𝑞1

∗, 𝑞2
∗)]. 𝜋𝑚(𝑞1, 𝑞2) increases in 𝐾, so, if 𝐾 > 𝐾∗, then 𝜋𝑚(𝑞1

∗, 𝑞2
∗) >

𝜋𝑚
0 (𝑞1

0, 𝑞2
0) ; if 𝐾 = 𝐾∗ , then 𝜋𝑚(𝑞1

∗, 𝑞2
∗) = 𝜋𝑚

0 (𝑞1
0, 𝑞2

0) ; if 𝐾 < 𝐾∗ , then 𝜋𝑚(𝑞1
∗, 𝑞2

∗) <

𝜋𝑚
0 (𝑞1

0, 𝑞2
0).  
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