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Abstract 

Dependent effect sizes are ubiquitous in meta-analysis. Using Monte Carlo simulation, we 

compared the performance of two methods for meta-regression with dependent effect sizes—

robust variance estimation (RVE) and three-level modeling—with the standard meta-analytic 

method for independent effect sizes. We further compared bias-reduced linearization and 

jackknife estimators as small-sample adjustments for RVE, and Wald-type and likelihood ratio 

tests for three-level models. The bias in the slope estimates, width of the confidence intervals 

around those estimates and empirical Type I error and statistical power rates of the hypothesis 

tests from these different methods, were compared for mixed-effects meta-regression analysis 

with one moderator either at the study or at the effect size level. All methods yielded nearly 

unbiased slope estimates under most scenarios, but as expected, the standard method ignoring 

dependency provided inflated Type I error rates when testing the significance of the moderators. 

RVE methods yielded the best results in terms of Type I error rate, but also the widest 

confidence intervals and the lowest power rates, especially when using the jackknife 

adjustments. Three-level models showed a promising performance with a moderate to large 

number of studies, especially with the likelihood ratio test, and yielded narrower confidence 

intervals around the slope and higher power rates than those obtained with the RVE approach. 

All methods performed better when the moderator was at the effect size level, the number of 

studies was moderate to large, and the between-studies variance was small. Our results can help 

meta-analysts deal with dependency in their data.   

Key-words: meta-analysis, meta-regression, dependency, robust variance estimation, three-level 

model. 
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Assessing meta-regression methods for examining moderator relationships with dependent 

effect sizes: A Monte Carlo simulation 

Introduction 

Heterogeneous effect sizes are common in meta-analyses of intervention studies and identifying 

moderator variables that may account for some of that variability is often an important objective 

of a meta-analysis (Hedges and Olkin, 1985; Lipsey and Wilson, 2001; Sánchez-Meca and 

Marín-Martínez, 2010). For example, a meta-analyst may be interested in the relationships 

between the effect sizes and such moderator variables as the type of intervention, characteristics 

of the participant samples, methodological procedures such as randomization or the 

operationalization of dependent variables, and characteristics of the research context such as 

where an intervention was delivered (Lipsey, 2009). Indeed, many meta-analysts are moving 

away from asking only about average effect sizes (“does the intervention work?”) to also 

exploring moderators of effect sizes (“for whom and under what conditions does the intervention 

work best?”). 

The most appropriate meta-analytic model for examining moderator relationships is a carefully 

conducted and interpreted meta-regression (Baker et al., 2009; Thompson and Higgins, 2002). 

Like multiple regression analysis with primary data, standard meta-regression analysis assumes 

that, after controlling for the predictor effects, residuals within a given analysis are statistically 

independent (e.g., Stevens and Taylor, 2009). But dependency among effect size estimates can 

occur in many ways and is quite common (Ahn et al., 2012; Becker, 2000; Hedges et al., 2010; 

Van den Noortgate et al., 2013, 2015). An especially common type of dependency arises when 

multiple effect sizes are extracted from the same participant sample on similar outcome 

constructs (i.e., multiple effect sizes are clustered within studies). For instance, a meta-analysis 

looking at the effectiveness of cognitive-behavioral interventions for depressed adults might find 

that some studies report depression scores on multiple scales, so that multiple effect sizes can be 

extracted from the same study. If the variance between clusters of effect sizes is not accounted 

for in the analysis, the standard errors of the regression coefficients may be underestimated, 

leading to statistical significance tests that are spuriously liberal. 
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Some methods for handling this kind of dependency require knowing the covariance structure of 

the outcome variables on which the multiple effect sizes are based in each study (Gleser and 

Olkin, 2009; Tipton, 2013).  However, that information is rarely reported in primary studies or 

otherwise available. To satisfy the assumption of independent effect sizes when dependencies 

exist, most meta-analysts historically have created one effect size per cluster by averaging effect 

sizes within each cluster or applying some rule for selecting one effect size from the cluster 

(Hedges and Olkin, 1985; Marín-Martínez and Sánchez-Meca, 1999; Rosenthal and Rubin, 

1986).  Other meta-analysts, however, have ignored the dependencies and incorrectly analyzed 

the whole set of effect sizes using standard methods (as noted in Gleser and Olkin, 2009; see also 

Jackson et al., 2011).  

Because these strategies involve a loss of information or an increased risk of misleading 

findings, an important advance has been the development of new statistical methods for dealing 

with dependent effect sizes. Two such methods—robust variance estimation (RVE) and 

multilevel modeling—are sufficiently well developed and accessible to offer attractive options 

for researchers undertaking a meta-analysis of intervention studies that report effects on multiple 

outcomes of interest. Neither the RVE nor the multilevel approach requires knowledge of within-

study correlations, which is an important advantage that allows these methods to be implemented 

widely in meta-regression applications.  

The rationales for RVE and multilevel approaches are different, and these approaches estimate 

different parameters. Namely, the RVE method allows use of a straightforward mixed-effects 

meta-regression models and estimates only one variance parameter, the between-studies variance 

(see Hedges et al., 2010), but makes adjustments in the standard errors to better represent the 

interdependence of the clustered effect sizes. On the other hand, multilevel models are often used 

to analyze clustered data (e.g., effect sizes nested in studies) by decomposing the variance in the 

dependent variable into between and within clusters variance components, which need to be 

estimated separately (e.g., Cheung, 2014; Konstantopoulos, 2011). If the variance between 

clusters is larger than zero, the dependent variable values within clusters are more similar than 

those from different clusters. By modeling both variance components, these within-cluster 

dependencies are thus accounted for.  
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Given these differences, a meta-analyst planning to perform meta-regression on a database with 

dependent effect sizes might well ask whether these two approaches can be expected to yield the 

same results and, if not, which provides more accurate results under what circumstances. A 

particular complication in such applications is the multilevel nature of potential moderator 

variables, some of which occur at the study level (e.g., sample characteristics) and some of 

which occur at the within-study (or effect size) level (e.g., measurement characteristics for the 

multiple effect sizes within a study). Assessing the relative performance of the RVE vs. 

multilevel modeling approaches for moderator analysis under these circumstances requires 

comparison of their respective results across a range of realistic meta-analytic scenarios. Of 

particular importance for practical application are any differences in the accuracy with which 

these methods estimate the regression coefficients for study level and effect size level 

moderators, and the validity of the associated statistical significance tests.  

Objectives and hypotheses of this study 

The study reported here uses Monte Carlo simulation techniques to examine three alternative 

methods for conducting meta-regression with dependent effect sizes derived from intervention 

studies. We focus solely on the common situation in which dependency arises from correlated 

error terms due to individual effect sizes clustered within studies and consider both moderators 

that vary across studies and those that vary across effect sizes within studies. Our simulations 

include a wide range of scenarios by manipulating the number of studies, the number of 

outcomes extracted from each study, the overlap among outcomes within the same study, and the 

degree of heterogeneity in the effects across studies, with the aim to provide some guidance 

about choice of statistical method for a range of realistic conditions.  

The first analysis strategy we examine is the use of standard mixed-effects meta-regression 

models that ignore the dependency structure of the effect sizes clustered within studies. While 

this approach is not appropriate in the face of such dependencies, we include it, first, to assess 

the extent of the errors it produces and, second, to provide something of a baseline against which 

to compare the performance of the other two approaches. We expect this analysis strategy to 

yield standard error estimates that are too small (Becker, 2000; Van den Noortgate et al., 2013, 
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2015) with the statistical tests of the moderator relationships, therefore, showing unacceptably 

inflated Type I error rates. 

The other two analysis strategies examined here are the RVE and the multilevel model 

approaches. For the multilevel approach, we focus on three-level models. Both analysis 

approaches attempt to account for the dependency structure of the multiple within-study effect 

sizes included in the meta-regression. Consequently, we expect both methods to outperform the 

standard method in terms of accuracy of the statistical tests as dependency increases. Remaining 

questions for any meta-analyst dealing with dependent effect sizes are whether these approaches 

also perform well for estimating and testing moderators at the effect size or study level, and 

which of these approaches performs best. To our knowledge, this is the first simulation study 

comparing both RVE and three-level model approaches. Further details of each approach are 

provided in the next section. 

The criteria we used to examine the results of the different methods focused on the 

considerations likely to be most important to meta-analysts using these methods. An initial 

concern, of course, is the accuracy with which the regression coefficients for the moderator 

variables are estimated. The expectation is that all the methods will estimate the coefficients 

without bias, while the different ways of handling the statistical dependencies will affect the 

standard errors for those coefficients. Misestimation of the standard errors would produce 

erroneous conclusions from statistical significance tests, so we examined the empirical Type I 

error rates when the true regression coefficient was zero and compared them with the nominal 

alpha = .05 rate stipulated in the significance tests. Additionally, we examined the statistical 

power rates when the true regression coefficient was different from zero. We further examined 

the width of the confidence intervals for the estimates of the regression coefficients. While 

related to the Type I error and statistical power rates, the width of the confidence interval more 

directly reflects the precision of the estimate.  

Mixed-effects meta-regression models 

The present study is focused on standardized mean difference effect sizes with experimental and 

control groups compared in terms of their mean scores on a continuous dependent variable 

representing an intervention effect of interest. Assuming a common population standard 
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deviation under both conditions, an unbiased estimator of the standardized mean difference in the 

ith study, 
i

d , can be obtained with the expression (Hedges and Olkin, 1985) 

3
1

4( ) 9

iE iC

i

iE iC i

Y Y
d

n n S

  −
= − 

+ − 
,         (1) 

where 
iE
n  and 
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n  are the sample sizes for the experimental and control groups, 

iE
Y  and 

iC
Y  

represent their means, and 
i
S  is the pooled standard deviation, computed as 
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 ,         (2) 

with 2

iE
S  and 2

iC
S  being the variances for the scores of the respective groups. An estimate of the 

within-study variance for the ith study,
i
v , is then obtained with 

2

.
2( )

iE iC i

i

iE iC iE iC

n n d
v

n n n n

+
= +

+

         (3) 

In the remainder of this section, we present different alternatives for fitting mixed-effects meta-

regression models. First, we briefly outline the standard meta-analytic method that assumes 

independent effect sizes. Next we describe the RVE and three-level hierarchical models for 

meta-regression with dependent effect sizes. For all these methods, the model is presented first, 

followed by its estimators and statistical tests. 

Standard meta-analytic method 

Although alternatives are available in the literature (e.g., Hunter and Schmidt, 2004), the meta-

regression approach considered here is that proposed by Hedges and Olkin (1985) because it has 

been the most widely employed when dealing with standardized mean difference effect sizes. 

According to this approach, in a meta-analytic database with r rows (with r being the total 

number of effect sizes), let T be an (r x 1) vector of effect sizes, and X an [r x (p + 1)] design 

matrix with a column of ones, and a column for each of p moderator variables. Then, a mixed-

effects meta-regression model is defined with the expression   
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,= + +T Xb u e           (4) 

Where T  is the (r x 1) vector with  the observed effect sizes, b  is a [(p + 1) x 1] vector 

containing the population regression coefficients { }0 1
, ,...,

p
β β β  , u  is an (r x 1) vector of 

random study-specific effects with distribution N(0, 2
τ ), and e  is an (r x 1) vector of within-

study errors with distribution N(0, 
i
v ), with 

i
v  assumed to be known and defined in Equation 3. 

The parameter 2
τ  therefore refers to the amount of residual between-studies variance, which is 

the variability in the true effects not accounted for by the moderators included in the model. A 

weighted least squares (WLS) estimator of b  can be computed with the formula  

( )ˆ ˆ ˆ' ' ,
STD

−

=

1

b X WX X WT          (5) 

where Ŵ  is an (r x r) diagonal weighting matrix. In a mixed-effects model, the weights that 

maximize the precision are  

( )21
i i

w v τ= + .           (6) 

The value of  2
τ  needs to be estimated, and the most widely employed estimator in random 

effects meta-regression models is the method of moments (DerSimonian and Laird, 1986), given 

by the expression (Raudenbush, 2009) 

2 ( 1)
ˆ ,

( )

STD

E

STD

Q r p

tr
τ

− − −

=

M
         (7) 

where tr denotes the trace of a matrix and M  is obtained with 

1
( ' ) ' ,

−

= −M W WX X WX X W         (8) 

with {1
i
v } elements for W. Moreover, the residual heterogeneity test statistic, STD

E
Q , is computed 

as 

.

STD

E
Q = T'MT            (9) 
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The variance-covariance matrix for the model regression coefficient estimates can be estimated 

with the expression 

1ˆ ˆ( ' ) .
STD

−

=Σ X WX           (10) 

Then, a 100(1 - α)% confidence interval assuming a standard normal distribution can be 

calculated with 

1 /2

ˆ ˆ( )
STD STD

j j
z V

α
β β

−

± ,         (11) 

where STD

jβ̂  is the element (j + 1) of the 
STD

b̂  vector, computed with Equation 5, 
1 /2
z

α−
 is the 100(1 

- α/2) percentile of the standard normal distribution, α is the significance level, and )ˆ(
STD

jV β  is 

the diagonal element (j + 1)  of the 
STD

Σ̂  matrix, defined in Equation 10. Finally, the statistical test 

for the effect of the jth moderator variable can be obtained with the Wald-type formula 

ˆ

ˆ( )

STD

j

j
STD

j

z

V

β

β
= .           (12) 

 

Robust variance estimation (RVE) 

In the RVE framework (Hedges, Tipton, and Johnson, 2010; Tipton, 2013), Equation 4 is 

modified to account for the fact that data are grouped in k clusters (i.e., studies). Thus, the model 

is defined with the formula 

     
     
     
     

= +     
     
     
          
     

1 1 1

2 2 2

c c c

k k k

T X ε

T X ε

... ... ...
b

T X ε

... ... ...

T X ε

,         (13) 



MODERATORS WITH DEPENDENT EFFECT SIZES 11 

where 
c
T  is an (ac x 1) vector, ac being the number of effect sizes in cluster c (any of the k 

clusters); 
c

X  is the [ac x (p + 1)] design matrix for data in cluster c,  
c

ε  is the (ac x 1) vector of 

residuals from cluster c. The estimator of the model regression coefficients, b , is expressed now 

as 

'ˆ ˆ ˆ
k

c

−

=

= ∑
1

RVE c c

c 1

b U X WT ,         (14) 

and Û is given by 

'ˆ ˆ
k

c

=

=∑ c c

c 1

U X W X .          (15) 

Weights are the non-zero elements for each diagonal matrix ˆ
c
W . They are defined as 

( )2

.
ˆ ˆ1
ic c RVE

w v τ= + , where 
.c ic c
v v a=∑  is the average sampling variance within the cth cluster, 

and 2
ˆ
RVE
τ  is estimated with the expression 
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where the weights employed for the U and 
c
W  matrices are initial weights using the inverse of 

the within-study variance, that is,  
.

1
ic c

w v= . Moreover, RVE

E
Q  is now defined as (Hedges et al., 

2010) 

RVE

E
Q

−

= = =

 
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∑ ∑ ∑
k k k

' ' 1 '
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with {
.

1
ic c

w v= } elements for both U and 
c
W  . (Note that RVE

E
Q  is an extension of STD

E
Q , so it 

could also be defined as 
k

RVE

E
Q

=

=∑
'

c c c

c 1

TM T . However, in practice this would imply solving k 
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matrices and, because one or more of those are likely to be singular, this solution is not efficient). 

Moreover, ρ̂  is a scalar quantifying the correlation between effect sizes in the same cluster 

(assuming a common correlation between all pairs of effect sizes). Although some methods for 

computing ρ̂ have recently been proposed (Ahn et al., 2012), Hedges and colleagues (2010) 

found that this is not a major issue in the calculation of 2
ˆ
RVE
τ  because the value of ρ̂  has little 

effect on the resulting estimate.   

The variance-covariance matrix for the model regression coefficients then can be obtained with 

the expression 

ˆ ˆˆ ˆ ˆ ˆ ˆˆ ˆ

k

− −

=

 
=  

 
∑

1 ' ' 1

RVE c c c c c c c c

c 1

V U X WA e e A W X U ,       (18) 

with ( )2

.
ˆ ˆ1
ic c RVE

w v τ= +  weights for both Û  and 
c
W , ˆˆ = −

c c c RVE
e T X b , and ˆ

c
A  stands for an 

adjustment factor to be discussed below in this section. A 100(1 - α)% confidence interval 

assuming a t-distribution can be obtained with 

( )1 /2

ˆ ˆRVE RVE

j df jt V
α

β β
−

± .          (19) 

Furthermore, the statistical test is given by 

( )

ˆ

ˆ

RVE

j

RVE

j

T

V

β

β

= ,          (20) 

which is compared with critical values of the t-distribution with k – p – 1 degrees of freedom. 

However, this test has been found to provide inflated Type I error rates in various scenarios 

(Sidik and Jonkman, 2005; Viechtbauer et al., 2015) and various adjustments have been 

proposed (Cribari-Neto and Da Silva, 2011; MacKinnon and White, 1985). Tipton (2015) 

studied the performance of several such adjustments and found that those that performed best 

corrected both the standard errors (obtained from Equation 18) and the degrees of freedom for 

the t-test (Equation 20). In particular, she found that the bias reduced linearization estimator 

(MBBS) that was proposed by Bell and McCaffrey (2002) and extended to weighted least 
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squares by McCaffrey and colleagues (2001) and the jackknife estimator (JKS) provide accurate 

rejection rates across a wide range of scenarios. We therefore included both in our comparison of 

different approaches for handling dependent effect sizes in meta-regression.  

 RVE meta-regression can be implemented in R (using the robumeta package) or using macros 

developed for SPSS and Stata (see Fisher and Tipton, 2014; Tanner-Smith and Tipton, 2014). 

Three-level model 

The multilevel meta-analytic approach builds on the inherently multilevel structure of meta-

analytic data, which has participants clustered within studies (e.g., Raudenbush and Bryk, 2002; 

Van den Noortgate and Onghena, 2003). Whereas traditional random effects models can be 

considered as two-level models (participants within studies), three-level models have been 

proposed as a way to deal with dependent effect sizes (Beretvas and Pastor, 2003; Van den 

Noortgate et al., 2013). These models include an intermediate level to represent the clustering of 

effect sizes within studies.  

In three-level hierarchical models the ith effect size in the cth cluster (e.g., study), 
ic
T , is equal to 

the population effect size value,  θic,  for the respective outcome and cluster plus a random 

deviation due to studying a sample of participants rather than the whole population: 

ic ic ic
T eθ= + ,           (21) 

where 
ic
e  is the error term at Level 1, with distribution ( )0,

ic
N v . When the three-level approach 

is applied to a meta-analytic database, as in the two previous approaches, the usual practice is to 

constrain the sampling variances of the effect size estimates (the level-1 variances) to their 

estimated value (Equation 3). The population effect for outcome i in cluster c can vary, both 

randomly and as a function of the characteristics of the outcomes: 

0 1 1
...

ic c c ic Pc Pic ic
X X hθ β β β= + + + + ,        (22) 

where 
1
,...,

ic Pic
X X  denote each of the P effect size level moderators, and ( )2~ 0,

ic h
h N σ , with 

2

h
σ  being the residual variance between outcomes from the same study. At Level 3, model 
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coefficients from Equation 22, 
0 1
, ,...,

c c Pc
β β β , are allowed to vary among different clusters. For 

example, the predicted values for the intercepts of the outcomes within the cth cluster, 
0c

β , vary 

as a function of 

ccPPcc
lZZ
0''0101000

... ++++= γγγβ ,        (23) 

where 
00 0
,...,

P
γ γ  are the level 3 regression coefficients and 

1 '
,...,

c P c
Z Z  denote each of the P’ 

study level moderators. The same rationale would apply for the remaining model coefficients, 

1 '
,...,

c P c
β β  but for this study, we assumed that the regression coefficients 

1 '
,...,

c P c
β β  are the 

same over all clusters, that is
0pc p

β γ=  with p = 1, 2, …, P. Finally, 2

l
σ  denotes the variance 

between clusters in the intercept.  

Parameter estimation in three-level models requires iterative computation using either Maximum 

Likelihood (ML) or Restricted Maximum Likelihood (REML) algorithms. The estimates of the 

model coefficients and their standard errors can be used to calculate a 100(1 – α)% confidence 

interval assuming a standard normal distribution, as in Equation 11, although a 100(1 – α)% 

likelihood-based confidence interval can also be obtained (Cheung, 2014). A more detailed 

description of the estimation process can be found elsewhere (Konstantopoulos, 2011; 

Raudenbush and Bryk, 2002). For the present study, we employed ML algorithms because they 

are more appropriate than REML algorithms when the aim is to compare different models that 

also differ in the fixed part, and each effect size is weighted by its inverse total variance.  

Several alternatives are available to the researcher for testing the statistical significance of the 

regression model coefficients in three-level models. In this study, we examined the results from 

two widely implemented tests in multilevel modelling, namely a z-based and a likelihood-based 

strategy (Cheung, 2014; Raudenbush and Bryk, 2002; Snijders and Bosker, 1999). The former is 

based on a Wald-type z-test, as defined in Equation 12, whereas the latter entails implementing a 

likelihood ratio test, which compares the change in the deviance of two nested models and is 

computed with the expression (Raudenbush and Bryk, 2002): 

1

02
ln2

L

L
−=χ ,                                                                         (24) 



MODERATORS WITH DEPENDENT EFFECT SIZES 15 

where
0

L  is the likelihood of the null model (not including the jth moderator) and 
1
L  is the 

likelihood of the model including the jth moderator. The result is compared against the critical 

value of a Chi-square distribution with one degree of freedom (i.e., 3.84 for α = 0.05). The three-

level model has been found to outperform the standard method ignoring dependency in the 

estimation of standard errors when the meta-analytic database includes dependent effect sizes 

(Van den Noortgate et al., 2013; 2015). What has not yet been investigated is its performance for 

meta-regression or how that performance compares with that of the RVE approach when both are 

applied to the same data.  

For general application, three-level models for dependent effect sizes clustered within studies 

can be implemented in R, using the metaSEM (see Cheung, 2014 for some example code) or the 

metafor packages, and also in SAS (Proc Mixed, see Van den Noortgate et al., 2015).  

An illustrative example 

To illustrate the potential variation in results and conclusions a meta-analyst might draw from 

using the meta-regression methods outlined above, we applied these methods to a meta-analysis 

of intervention programs for preventing antisocial behavior (Wilson et al., 2003; Wilson and 

Lipsey, 2007). The analytic dataset used in this example contained 870 standardized mean 

difference effect sizes (ranging from -4.34 to 6.28 with a mean of 0.26) extracted from 316 

studies with, therefore, a mean of 2.8 effect sizes per study. 

We fitted several simple meta-regression models for two moderators selected from the database, 

one at the study level and the other at the effect size level. The study-level moderator represented 

the existence of implementation problems in the study (0= No, 1= Yes); the effect size level 

moderator was the degree of content overlap (alignment) between the outcome measure and the 

intervention components (0=Low, 1=High). 

All analyses were conducted in the R statistical environment. For the standard method, the 

metafor package was used (Viechtbauer, 2010), running the analysis as if the effect sizes were 

independent and using weights as defined in Equation 6 and the DerSimonian and Laird method 

to estimate τ2. For the RVE method, the analyses used the MBBS corrections implemented in the 

robumeta package (Fisher and Tipton, 2014), as well as the JKS corrections as implemented in 
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Tipton (2015). For this method, we set a value of .50 for the correlation between effect sizes, ρ̂ . 

(We conducted additional analyses using a value of .80 for this correlation and the results were 

almost identical). Lastly, analyses for the three-level models were computed as described in the 

previous section using the metaSEM package (Cheung, 2015), which makes use of OpenMx 

(Boker et al., 2011). For the three-level approach, maximum likelihood estimation algorithms 

were employed weighting each effect size by its inverse sampling variance estimate.  

The estimates of the regression coefficients, the widths of the confidence intervals for those 

estimates and the p-values of the statistical tests are presented in Table 1. Note that two different 

results are presented for the RVE method, due to the different approaches for small-sample 

corrections considered in this study (MBBS and JKS). Likewise, for the three-level approach we 

compared the performance of confidence intervals with Wald-type z-tests and likelihood-based 

confidence intervals with likelihood ratio tests. 

TABLE 1 HERE 

As shown in Table 1, there were remarkable differences in the results obtained for the different 

methods. For the study level moderator, the estimates of the regression coefficient were 0.106 for 

the standard method ignoring dependency, 0.224 for the RVE method and 0.257 for the three-

level method. The confidence interval for the estimate was substantially narrower for the 

standard method, whereas the widest intervals were obtained with the RVE method using the 

JKS corrections. Only the statistical test of the standard method reached statistical significance, 

whereas the tests of the three-level model yielded marginally significant results and the tests of 

the RVE method showed p-values above 0.10. For the effect size level moderator, the estimates 

of the coefficients were 0.109 for the standard method, 0.201 for the RVE method and 0.155 for 

the three-level method.  Here also the narrowest confidence interval was obtained with the 

standard method, followed by the three-level method. The widest interval was again obtained 

when using the JKS corrections for the RVE method. Statistical significance for this moderator 

was reached when using the standard method and both of the three-level method variations, but 

not for the RVE method. 

This illustration with data from an actual meta-analysis revealed clear differences in the 

coefficient estimates, but most importantly in the conclusions that would be drawn from these 
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three methods both with regard to the confidence intervals of the estimates of the regression 

coefficients and their statistical significances. We turn now to a description of the simulations we 

conducted to better understand the performance of the three methods under different conditions.  

Simulation studies 

The simulations were conducted to compare the alternative methods described above for fitting 

meta-regression models with multiple standardized mean difference effect sizes clustered within 

studies. Two separate simulations were undertaken in which the sole difference was the use of 

either a study-level or an effect size-level moderator in the meta-regression models. The 

simulations were programmed in the R statistical environment, using random number generators 

to produce the matrices of raw scores within each study.  

We manipulated several factors in our simulations. First, we used values of k = {5, 10, 20, 40, 

80} for the number of studies. Second, the number of clustered effect sizes per study was 

manipulated to simulate a range and distribution representative of what is generally found in 

intervention studies. The average number of effect sizes per study was set to values of a = {2, 4, 

8}, so that scenarios with low, medium, and high average cluster sizes were present in the 

simulations. Variation across studies around those means was generated by drawing random 

values from Chi-square distributions (with 2, 4 and 8 degrees of freedom, respectively) and 

rounding them to the nearest integer. Because of the positive asymmetry in the Chi-square 

distribution, for example, a mean value of 8 effect sizes per study averages over a few studies 

providing one or two effect sizes, a majority of studies providing between 3 and 12 effect sizes, 

and the few remaining studies contributing between 13 and approximately 30 effect sizes.  

A two-group design was defined for all of the simulated studies, where the first (experimental, E) 

group received an intervention and the other (control, C) group was not treated. The participant 

sample size varied across studies but, within each study, 
E
n  = 

C
n  was assumed. In a review of 

several meta-analyses from journals focused on behavioral sciences, Sánchez-Meca and Marín-

Martínez (1998) found that participant sample size distributions are usually not symmetric, and 

they reported an average asymmetry value of +1.46. Therefore, for the present simulations, 

participant sample sizes were generated from an asymmetric (log-normal) distribution with a 

mean of 25 participants per group and an asymmetry level of +1.46, resulting in an approximate 
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range of between 5 and 100 participants per study. In order to explore the influence of sample 

size, we also generated scenarios with a mean of 500 participants per group and present results as 

supplementary figures. 

For each study, raw data were generated from a multivariate standard normal distribution, 

referring to the scores that could have been observed for a number of participants on multiple 

outcomes. The strength of the correlation among outcomes was also manipulated in our 

simulations. Namely, values for the intercorrelations among the dependent variables on which 

the effect sizes were based within each study were obtained from uniform distributions with a 

range of values of either [.10, .50] or [.50, .90], with the aim to reflect conditions of low to 

moderate and moderate to large amounts of dependency among effect sizes within the same 

study. In order to simulate an intervention effect, a population effect size was added to the scores 

of half of the participants (those belonging to the experimental group). In this way, the expected 

standardized mean difference between the experimental and control group is equal to the chosen 

population effect size. The population effect size for the cth study, δc, was calculated using a 

regression model including the moderator variable and a random study effect 

0 1c c c
Xδ β β η= + + ,           (25) 

where 
0

β  is the intercept of the regression model, set equal to 0.5, 
1

β  is the model slope, another 

manipulated factor, which was set to values of 0 or 0.2 along the simulated conditions; 
c

X  

represents a column vector with the moderator values for the cth study, and 
c

η  is the error term 

for the cth study, with distribution N~(0, 2
τ ). Likewise, when the simulated moderator was at 

the effect size level, the regression equation to generate final scores for the experimental group 

was 

0 1c ic c
Xδ β β η= + + ,          (26) 

where 
ic

X  is now a column vector with the moderator values for the ith outcome from the cth 

study, and the rest remains as in Equation 25. In order to simulate realistic scenarios, a 

conditional statement was added so that effect sizes stemming from highly correlated variables 

within the same study were more likely to have the same moderator value. Both the study and 
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effect size level moderators were continuous variables randomly generated from a standard 

normal distribution. 

The residual between-studies variance (e.g., unexplained variance at the study level after the 

effect moderators have been included in the model) was also manipulated, with values 2
τ  = {0, 

0.08, 0.32}. A value of 0 means that there are no differences in the effect sizes between studies 

once the moderator effects have been accounted for, as assumed by the fixed-effect model (e.g., 

Borenstein et al., 2010), whereas the two remaining values reflect conditions with moderate and 

large heterogeneity, respectively1. 

For each combination of the 3 values of k, 3 values of a , 2 ranges of correlations among 

outcomes, 2 values of 
1

β , and 3 values of 2
τ 1,000 meta-analytic data sets were generated, 

leading to 108,000 simulated meta-analyses for each of the two simulations (one with moderator 

at the study level, one with moderator at the effect size level). Each meta-analytic database was 

analyzed using the same approaches described in the example.  

The accuracy of the slope estimates produced by each method was assessed by the bias for each 

condition. A comparison between the observed bias and the true value of the slope provides 

information on relative bias (e.g. percentage of bias), which can be useful to assess the 

magnitude of bias and the potential implications of the results for applied meta-analyses using 

the methods examined in this study. Bias was computed with  

( ) ( )1 1 1

ˆ ˆBIAS MEANβ β β= − .         (27) 

To assess the performance of the statistical significance tests for both study-level and effect size 

level moderators, we used the empirical Type I error rate (when 
1

0β = ). Because the statistical 

tests in the simulation studies were computed assuming a 5% significance level, rejection rates 

close to 0.05 indicate a good performance for the statistical method when the true value for the 

model coefficient is zero. To assess the adequacy of the confidence intervals for the regression 

coefficients estimated by each meta-regression method, we considered the width of the 

confidence intervals obtained with each method. Once the Type I error rate is accurate (0.05 for 

95 % confidence intervals), narrower confidence intervals represent more precise estimates of 
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the respective coefficients and higher power, and thus better performance for the meta-regression 

method being assessed. Last, we examined the statistical power rates of the different methods 

when 
1

0.2β = , considering rates above 0.8 as reflecting adequate power (Cohen, 1988).  

Results 

In this section, we compare the performance of the different meta-regression methods based on 

the criteria described above. First, we examine the accuracy of the estimates of the regression 

coefficients produced by each method through examining the bias in each condition. Next, we 

assess the performance of the statistical tests as shown by the empirical Type I error rates. Then 

we assess the accuracy of the confidence intervals for the regression coefficient estimates by 

looking at the interval width. Last, we examine the statistical power of the statistical tests. Given 

the large number of simulation conditions and results generated, only a subset is presented here, 

although additional figures (for conditions with an average of 500 participants per group) and the 

full data set of results are provided as Web Appendices. Because different factors were 

manipulated in the simulations, we present exhaustive tables containing results for each method 

in each condition for bias, whereas to report Type I error, confidence width results and statistical 

power we use graphs showing average values on the performance criteria for one factor at a time.  

Bias in the slope estimates 

Bias results for the different methods and simulated conditions at the study and effect size level 

are presented in Table 2 and Table 3, respectively. Here we only present bias results for the 

scenarios with 
1

0.2β =  2
0.08τ = , although the remaining conditions yielded very similar 

results. 

TABLE 2 HERE 

Table 2 presents the bias of the slope estimates for the moderator at the study level. Most 

estimates were negatively biased on average, although bias only exceeded 5% in a few instances 

that are marked in bold. All of those instances correspond to conditions with five studies. Most 

of these values were also found when the range of correlations among outcomes in the same 

study was between 0.5 - 0.9, and when the slope was estimated using the standard method 
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ignoring dependency. Nonetheless, all methods provided accurate slope estimates across most 

scenarios. 

TABLE 3 HERE 

Regarding bias at the effect size level, values in Table 3 suggest that all three methods provided 

reasonably accurate estimates of the model slope across conditions. Once again, most estimates 

were negatively unbiased, although the percentage of bias was always below 5%.  

Empirical Type I error rates 

The empirical Type I error rates for the range of values on each of the factors of interest when 

testing a moderator at the study or at the effect size level, are presented in Figure 1 and Figure 2, 

respectively.  

FIGURE 1 HERE 

At the study level, average Type I error rates (Figure 1) for the standard method were greater 

than 0.2 in most conditions, and error rates for this method increased as the average number of 

outcomes per study (Figure 1A), the correlation among outcomes (Figure 1B) and the residual 

between-studies variance (Figure 1D) also increased. Rates for the three-level models were also 

too high unless the number of studies was at least 20, with the likelihood ratio test performing 

somewhat better than the Wald-type (z) test. For the RVE method, the jackknife estimator 

provided somewhat conservative results across all examined conditions (mainly in the .03 range), 

whereas the MBBS estimator consistently performed close to the nominal .05 significance level, 

albeit slightly conservative. Results for the methods accounting for dependency were relatively 

consistent across the different values of the different factors except for the number of studies 

(Figure 1C). With up to 20 studies, all the Type I error rates were somewhat more extreme in the 

direction of their general bias, fairly typical of their general bias with 40 studies, and less biased 

with 80 studies. Results with an average of 500 participants per group led to the same 

conclusions (Suppl. Figure 1). 

FIGURE 2 HERE 
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Concerning results at the effect size level, the Type I error rates (Figure 2) showed similar trends 

as those found at the study level, with the standard method yielding rates over .1 for most 

conditions and leading to the wrong statistical conclusion even more often as the average number 

of outcomes per study (Figure 2A), the strength of the correlation among outcomes in the same 

study (Figure 2B) and the residual between-studies variance (Figure 2D) increased. Rates for the 

three-level models were slightly over .05 in the conditions with small databases (either small 

number of studies or small number of outcomes per study). Last, results for the RVE method 

were consistently close to the nominal level when the MBBS estimator was implemented with at 

least 20 studies, whereas rates were again far below .05 with the jackknife estimator unless the 

number of studies was 80 (Figure 2C). We observed the same findings in the scenarios with an 

average of 500 participants per group (Suppl. Figure 2). 

Confidence interval width  

We now discuss how the different methods performed in terms of interval estimation of the slope 

coefficients across the simulated conditions. We only present conditions with 
1

0.2β = , although 

we found the same trends when the parameter value was 
1

0β = . Provided that the point 

estimation of the slope parameter was reasonably accurate for most methods (see bias section), 

an average width over 0.4 would suggest that the confidence intervals regularly included the null 

value (
1

0β = ), which would result in poor statistical power rates. 

FIGURE 3 HERE 

Figure 3 shows the mean width of the confidence intervals computed for the regression 

coefficient estimates across the various conditions for a study-level moderator with each of the 

meta-regression methods. The standard method ignoring dependency, as expected, yielded the 

narrowest intervals, followed by the three-level methods. The RVE methods (the jackknife 

estimator in particular) always resulted in the widest intervals. All methods showed narrower 

intervals in conditions where the number of studies was large and the between-studies 

heterogeneity was small (see Figures 3C and 3D). These figures show that both RVE methods 

yielded confidence intervals with an average width far above 0.4 for the conditions with less than 

40 studies. In particular, the jackknife estimator yielded intervals with an average width of 8.7 
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with 5 studies. We observed the same trends in the scenarios with an average of 500 participants 

per group, although all methods yielded narrower intervals (Suppl. Figure 3).  

FIGURE 4 HERE 

For models with a moderator at the effect size level (Figure 4), all the meta-regression methods 

provided narrower confidence intervals than for a moderator at the study level, and the average 

width across the different conditions was always below 0.4. Remarkably, the three-level methods 

provided the narrowest intervals across most conditions, followed by the method ignoring 

dependency. The RVE methods (especially the jackknife estimator) consistently yielded the 

widest intervals. The narrowest intervals for all methods were obtained with larger numbers of 

studies (Figure 4C), more outcomes per study (Figure 4A), and smaller between-studies 

heterogeneity (Figure 4D). Furthermore, all methods yielded narrower intervals – although with 

the same trends – in the scenarios with an average of 500 participants per group (Suppl. Figure 

4). 

Statistical power 

Last, we discuss the statistical power rates of the hypothesis tests. Rates for the different methods 

at the study and at the effect size level are displayed in Figure 5 and Figure 6, respectively. Note 

that we are only interested in power when the Type I error rate is adequately controlled. 

Therefore, in this section we focus on the methods accounting for dependency. 

FIGURE 5 HERE 

Regarding meta-regression models with a moderator at the study level, three-level methods 

consistently provided higher power rates than RVE methods, with the z test yielding higher rates 

than the likelihood ratio test across all scenarios, and the jackknife estimator always obtaining 

the lowest rejection rates. Statistical power was substantially higher for all methods in scenarios 

with a large number of studies (Figure 5C) and small between-studies heterogeneity (Figure 5D). 

Nonetheless, power rates for most methods were only around the desirable value of 0.8 with at 

least 40 studies, with the jackknife estimator showing adequate power rates only with 80 studies. 

These trends were also observed in the scenarios with an average of 500 participants per group, 

although the power rates were higher for all methods (Suppl. Figure 5). 
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FIGURE 6 HERE  

Concerning models with a moderator at the effect size level, all methods yielded power rates 

higher than those observed at the study level. The three-level methods even outperformed the 

standard method in most scenarios, with the z-test reaching power rates over 0.8 with as few as 

10 studies. The RVE methods showed again the lowest power values, only exceeding the 

threshold of 0.8 with 40 and 80 studies. Again, all methods showed higher power rates in 

conditions with a large number of studies (Figure 6C) and small heterogeneity between studies 

(Figure 6D), with the jackknife estimator being the most conservative method across all 

scenarios. The ranking remained the same, although with improved power rates for all methods, 

in the simulated scenarios with an average of 500 participants per group (Suppl. Figure 6). 

Discussion 

Dependency among effect sizes is a common situation in meta-analysis. The present study 

provides the first direct comparison of standard meta-analytic methods, which assume 

independent effect sizes, and RVE and three-level models that both account for dependency 

structures. We used Monte Carlo simulation to assess the accuracy of the estimation algorithms 

and statistical tests when fitting mixed-effects meta-regression models with dependency among 

effect sizes. Results did not yield any large difference in the estimates of the slope coefficients in 

the model, although some noticeable discrepancies were observed among the inferential results. 

When examining the bias of the slope estimates, results for all estimation methods under most 

conditions showed a slight negative bias, although in most cases the percentage of bias was 

below 5% and hence all methods can be regarded as yielding nearly unbiased slope estimates 

from meta-regression models. This pattern was found both when the moderator was at the study 

and at the effect size level. For a few conditions, bias of the moderator effect at the study level 

slightly exceeded 5%, especially when the number of studies was small. 

Some important differences were found among the methods when testing the statistical 

significance of the regression model slopes. Average empirical Type I error rates indicated a 

great number of overly liberal statistical conclusions, with the standard method always 

performing much too liberally – as would be expected because this method does not account for 
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the dependency structure among the effect sizes. The RVE methods showed an appropriate 

control of Type I error, with the MBBS estimator providing rates closer to the nominal 

significance level and the jackknife estimator yielding more conservative results, as pointed out 

by Tipton (2015). At the study level, the three-level model provided rates over the nominal with 

a small number of studies but yielded appropriate rejection rates as k increased, with the 

likelihood ratio test showing more accurate results than the Wald-type z-test. Results for three-

level methods were more accurate when the moderator was at the effect size level, in particular 

with the likelihood ratio test, which performed close to nominally across all simulated scenarios 

with at least 10 studies. 

Regarding confidence intervals around the slope estimates, wider intervals were consistently 

yielded by RVE methods than for the other approaches at both the study and the effect size 

levels. In scenarios with small number of studies or large heterogeneity variance at the study 

level, the average width yielded by the RVE approaches suggests that intervals obtained with 

these methods regularly included the null value, which would substantially limit their ability to 

detect a true relationship in such scenarios. The jackknife adjustment provided the widest 

intervals, which again suggests that this method is more conservative than the others and has 

lower power. An examination of the statistical power rates confirmed these shortcomings for 

RVE methods. At the study level, the narrowest confidence intervals were obtained with the 

standard method, although this method also showed highly inflated Type I error rates which 

discourage its use in this context. Remarkably, three-level methods yielded the narrowest 

intervals for most conditions at the effect size level. In general, narrower intervals were yielded 

by all methods when the number of studies was large and the between-studies variance was 

small. Moreover, all methods yielded narrower intervals when the moderator was at the effect 

size level than at the study level.  

Limitations and usefulness of this study 

This study was conducted with the aim of helping meta-analytic researchers deal with 

dependency in their data, namely when more than one effect size is available in several studies. 

Traditionally, meta-analytic researchers have applied the standard methods proposed by Hedges 

and Olkin (1985) for independent effect sizes by averaging all outcomes from the same cluster or 
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choosing only one of them, which may lead to a loss of relevant information (Becker, 2000). 

Other meta-analysts ignore dependency by analyzing a whole dataset as if the effect sizes were 

independent. In light of new methods that allow modeling of this dependency, we explored the 

performance of some of them under a wide range of conditions. Our data suggest that all 

methods can be expected to provide nearly unbiased estimates of the coefficients from a meta-

regression model, but the method for testing the significance of the model moderators may have 

an important influence on the results.  

Out of the different methods, the standard method ignoring dependency showed highly inflated 

Type I error rates across all simulated scenarios, suggesting that researchers should avoid using 

this method when they intend to implement meta-regression models with inferential purposes on 

a meta-analytic database with dependent effect sizes. The RVE approach showed an appropriate 

control of the Type I error rate, especially when correcting the residuals of the variance estimator 

and the degrees of freedom using the MBBS estimator. However, the confidence intervals 

around the slope estimate yielded by these methods were very wide in some scenarios, especially 

for study-level moderators, and the statistical power was lower than desirable unless the number 

of studies was at least 40. Note that some other correction factors have been suggested for this 

statistical test (see Cribari-Neto and Da Silva, 2011), so it will be important to assess their 

performance in future simulation studies. Moreover, the underlying regression model in the 

current study was constant, and the slope values were kept fixed, so future studies should 

examine the performance of the RVE method under different regression models and a wide range 

of slope values. 

Regarding three-level models, the estimation algorithms using the maximum likelihood criterion 

can also be obtained using SAS. For moderators at the study level, the likelihood ratio test 

provided empirical Type I error rates closer to the nominal level than the z-test. However, both 

methods showed inflated rejection rates when the number of studies was small to moderate, and 

hence it would be interesting to explore the performance of other statistical tests for this 

approach in the future. Conversely, results at the effect size level suggested an appropriate 

performance for these methods with at least 10 studies, and particularly for the likelihood ratio 

test. 
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It is not possible to recommend a single approach across all scenarios, as both RVE and three-

level methods have their merits. On the one hand, three-level models offer an interesting 

performance in terms of statistical power, although they need may yield too many false positives 

unless the number of studies is large enough, namely 20 studies (study level moderator) and 10 

studies (effect size level moderator) for the likelihood ratio test. On the other hand, the RVE 

method with the MBBS estimator consistently controls the Type I error rate, although our results 

suggest that it might be underpowered with less than 40 studies. Nonetheless, our conclusions are 

limited to a single value of 0.2 for the slope, so that future studies should explore how the 

statistical power of these methods varies according to different slope values.  

As a result of the algorithms employed to simulate our data, conditions with a higher clustering 

level also had a larger number of effect sizes. However, the influence of the number of studies 

was controlled in all analyses. This allowed us to assess whether the effect of an increment in the 

mean number of effect sizes per study was due to a higher level of dependency, or simply to a 

greater number of effect sizes. Results suggest that, ceteris paribus, the greater the dependency, 

the poorer the performance for the standard meta-analytic method ignoring dependency.  

In summary, our results suggest that fitting mixed-effects meta-regression models when some 

amount of dependency among the effect sizes is present requires some method accounting for 

those dependency structures. The RVE method provided the best results in terms of control of 

the Type I error rate, in particular applying small-sample corrections with the bias reduced 

linearization estimator (MBBS, see Tanner-Smith and Tipton, 2014 for a tutorial on RVE using 

Stata and SPSS). Three-level models also showed a promising performance, especially with the 

likelihood ratio test, and yielded narrower confidence intervals around the slope than those 

obtained with the RVE approach, suggesting a gain in statistical power. Finally, our study 

suggests that more accurate results can be expected when the moderator included in the meta-

regression model is at the effect size level, and when the meta-analytic database includes a 

moderate to large number of studies with small variability among effects from different studies.   
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Footnote 

1. A widely accepted index to assess the degree of heterogeneity is I2, which can be defined 

as 
2

2

2
100%

i

I
v

τ

τ

=

+

. In our simulations both 25
i
n =  and 0.5

i
d =  were kept constant, so 

the expected value of 
i
v  was 0.0825. Hence values of 0.08 and 0.32 for 2

τ  would lead to 

expected 2
I  values of 49% and 80%, which can be regarded as reflecting moderate and 

large heterogeneity, respectively (Deeks et al., 2008). 
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Table 1. Results from an Illustrative Example: A Meta-analysis of Intervention Programs for 

Reducing Aggressive Behavior among School-aged Youth 

 Study level moderator Effect size level moderator 

 β̂
 

CI width
 

p-value β̂  CI 

width 

p-value 

Standard method 0.106 0.179 .020 0.109 0.177 .016 

RVE method 

(MBBS) 

 

0.224 0.549 .106 

 

0.201 0.530 .134 

RVE method (JKS) 0.224 0.573 .121 0.201 0.550 .148 

Three-level method 

(z) 

 

0.257 0.537 .060 

 

0.155 0.233 .009 

Three-level method 

(LB) 

 

0.257 0.552 .062 

 

0.155 0.234 .009 

 

β̂ : slope estimate of the moderator variable; CI Width: width of the 95% confidence interval for 

the slope estimate of the moderator variable; p-value: p-value of the significance test for the 

slope estimate of the moderator variable. 
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Table 2. Mean bias for the slope estimates at the study level (
1

0.2β =  and 
2

0.08τ = ) 

 Low within-study correlation High within-study correlation 

k a  STD RVE 3LV STD RVE 3LV 

 

5 

2 -0.0069 -0.0093 -0.0085 -0.0132 -0.0146 -0.0139 

4 -0.0005 -0.0013 -0.0029 0.0119 0.0091 0.0089 

8 -0.0107 -0.0081 -0.0103 -0.0301 -0.0246 -0.0258 

 

10 

2 0.0062 0.0064 0.0061 0.0019 -0.0002 0.0001 

4 0.0049 0.0057 0.0034 -0.0058 -0.0033 -0.0036 

8 -0.0026 0.0005 -0.0019 -0.0055 -0.0032 -0.0028 

 

20 

2 -0.0077 -0.0063 -0.0071 -0.0048 -0.0035 -0.0030 

4 -0.0082 -0.0074 -0.0080 -0.0034 -0.0024 -0.0013 

8 -0.0039 -0.0007 -0.0018 -0.0084 -0.0074 -0.0062 

 

40 

2 -0.0035 -0.0028 -0.0033 -0.0032 -0.0021 -0.0014 

4 -0.0055 -0.0038 -0.0046 -0.0034 -0.0031 -0.0020 

8 -0.0041 -0.0024 -0.0037 -0.0063 -0.0049 -0.0040 

 

80 

2 -0.0053 -0.0041 -0.0046 -0.0036 -0.0044 -0.0037 

4 -0.0053 -0.0033 -0.0043 -0.0063 -0.0047 -0.0039 

8 -0.0051 -0.0035 -0.0045 -0.0053 -0.0040 -0.0027 

k: number of studies; a : average number of outcomes per study; STD: standard method ignoring 

dependency; RVE: robust variance estimation approach; 3LV: three-level model. 
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Table 3. Mean bias for the slope estimates at the effect size level (
1

0.2β =  and 
2

0.08τ = ) 

 Low within-study correlation High within-study correlation 

k a  STD RVE 3LV STD RVE 3LV 

 

5 

2 0.0047 0.0058 0.0037 0.0034 0.0050 0.0018 

4 -0.0032 0.0001 -0.0016 0.0022 0.0038 -0.0010 

8 -0.0042 0.0002 -0.0049 -0.0037 0.0007 -0.0026 

 

10 

2 -0.0026 -0.0032 -0.0013 -0.0032 -0.0016 -0.0018 

4 -0.0052 -0.0014 -0.0041 -0.0033 -0.0003 -0.0012 

8 -0.0025 0.0006 -0.0026 -0.0037 -0.0001 -0.0037 

 

20 

2 -0.0025 -0.0010 -0.0025 -0.0059 -0.0047 -0.0034 

4 -0.0031 -0.0005 -0.0032 -0.0004 0.0004 -0.0028 

8 -0.0050 -0.0018 -0.0033 -0.0073 -0.0035 -0.0037 

 

40 

2 -0.0049 -0.0032 -0.0040 -0.0056 -0.0037 -0.0038 

4 -0.0036 -0.0020 -0.0021 -0.0051 -0.0017 -0.0029 

8 -0.0052 -0.0017 -0.0034 -0.0081 -0.0047 -0.0047 

 

80 

2 -0.0047 -0.0030 -0.0036 -0.0032 -0.0026 -0.0030 

4 -0.0053 -0.0025 -0.0038 -0.0058 -0.0032 -0.0032 

8 -0.0046 -0.0012 -0.0030 -0.0074 -0.0035 -0.0043 

 

k: number of studies; a : average number of outcomes per study; STD: standard method ignoring 

dependency; RVE: robust variance estimation approach; 3LV: three-level model. 

 


