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Abstract—We discuss properties of the “beamsplitter addition”
operation, which provides a non-standard scaled convolution of
random variables supported on the non-negative integers. We
give a simple expression for the action of beamsplitter addition
using generating functions. We use this to give a self-contained
and purely classical proof of a heat equation and de Bruijn
identity, satisfied when one of the variables is geometric.

I. INTRODUCTION AND NOTATION

Stam [1] showed that addition of independent continuous
random variables satisfies the de Bruijn identity [1, Eq. (2.12)],
in that the derivative of entropy under the addition of a
normal is Fisher Information. This identity underpins many
analyses of entropy under addition, including Stam’s proof
of Shannon’s Entropy Power Inequality (EPI) [2], Barron’s
information theoretic Central Limit Theorem [3], and Madi-
man and Barron’s proof of monotonicity of entropy under
addition of independent identically-distributed (i.i.d.) random
variables [4]. These results have the Gaussian distribution at
their heart, relating to the Gaussian maximum entropy property
and closure of the Gaussian family under addition (“Gaussian
+ Gaussian = Gaussian”). The de Bruijn identity follows since
the densities in question satisfy the heat equation [1, Eq. (5.1)].

There have been many attempts to develop a corresponding
theory for discrete random variables, often focussing on the
Poisson family which is closed under standard integer addition
(“Poisson + Poisson = Poisson”). Results in this context
include Poisson limit theorems [5], [6], maximum entropy
property [7] and monotonicity result [8]. However, [7] and [8]
rely on the assumption of ultra-log-concavity (ULC), meaning
that they are more restrictive than their Gaussian counterparts.

In this paper we prove new properties of what we refer
to as the ‘beamsplitter addition’ �η (see Definition I.1) of
random variables supported on the non-negative integers Z+.
By design, the geometric family is closed under the action of
�η (“Geometric �η Geometric = Geometric”). Geometric is
more natural than the Poisson since no auxiliary assumptions
such as ULC are required to prove maximum entropy.

The beamsplitter addition is motivated by how an optical
beamsplitter of transmissivity η ∈ [0, 1] “adds” the photon-
number distributions of two classical mixtures of number
states. It underlies the conjectural Entropy Photon Number
Inequality (EPnI) [9], [10], which plays a role analogous
to Shannon’s EPI in understanding the capacity of Gaussian
bosonic channels. The paper [11] includes a more detailed

history of the beamsplitter addition �η . Our key aim however
is to give a self-contained presentation of the beamsplitter ad-
dition �η as a way of combining random variables supported
on Z+, accessible to a purely classical audience. Although
some of our results may be known to the quantum information
community, we hope this paper will stimulate future work
by probabilists and classical information theorists on open
problems—in particular, a proof of the conjectured EPI and
entropic monotonicity under the beamsplitter addition [12].

For brevity, we assume henceforth that random variables are
supported on Z+ and relevant pairs of random variables are
independent. We first define �η in the notation of [12]:

Definition I.1. Given a random variable X , define its contin-
uous counterpart Xc (a circularly symmetric random variable
supported on the complex plane C), using a map T with
Xc = T (X) and X = T −1(Xc) with actions on mass
functions and densities given by [12, Eq. (14),(15)]:

pXc(r) =

∞∑
n=0

pX [n]
e−|r|

2 |r|2n

n!π
, (1)

pX [n] =
1

π

∫
C
pXc

(r)Ln
(
|s|2
)

exp(rs∗ − r∗s)drds, (2)

where Ln denotes the nth Laguerre polynomial. As in [12],
for 0 ≤ η ≤ 1, we define the beamsplitter addition operation
�η acting on independent X , Y supported on Z+ by

X �η Y = T −1
(√

η T (X) +
√

1− η T (Y )
)
, (3)

where ‘+’ on the RHS of (3) denotes standard addition in C.

The key contributions of the paper are as follows. In Section
II we define two types of generating functions, for X and Xc,
and prove a new relation between them in Theorem II.4. In
Section III, we prove Theorem III.1, which shows that the
generating function of X �η Y is a product of generating
functions. In Section IV, we show that Theorem III.1 implies a
heat equation (Theorem IV.1), which in turn gives a de Bruijn
identity (Theorem IV.3). In Section V, we state and prove
a new bound on relative entropy under the action of T . In
Section VI we discuss future work. The remainder of the paper
contains proofs of its main results.

II. RELATION BETWEEN GENERATING FUNCTIONS

We consider two different kinds of generating functions,
exponential and ordinary, recalling that they are related by the



Laplace transform (see Lemma VII.1). We write E (X)(m) :=
EX(X − 1) . . . (X −m+ 1) = EX!/(X −m)! for the falling
moment of a random variable on Z+.

Definition II.1.
1) Given random variable X with probability mass func-

tion (p.m.f.) pX [m], m ∈ Z+, consider the sequence
E (X)(m) /m! and write:

a) The ordinary generating function

ψX(t) :=

∞∑
m=0

tm

(
E (X)(m)

m!

)
, (4)

b) The exponential generating function

ψ̃X(t) :=

∞∑
m=0

tm

m!

(
E (X)(m)

m!

)
. (5)

2) For circularly symmetric Xc supported on C with den-
sity pXc

, consider the sequence E|Xc|2m
m! and write:

a) The ordinary generating function

φXc(t) :=

∞∑
m=0

tm
(
E|Xc|2m

m!

)
, (6)

b) The exponential generating function

φ̃Xc(t) :=

∞∑
m=0

tm

m!

(
E|Xc|2m

m!

)
. (7)

Note that although (4) and (5) are defined as formal sums,
in practice we focus on t ≤ 0. We first make the following
claim, proved in Section VII:

Lemma II.2. For any random variable X supported on Z+:
1) ψ̃X(t) =

∑∞
n=0 pX [n]Ln(−t),

2) pX [m] =
∫∞
0

exp(−s)ψ̃X(−s)Lm(s)ds.

Example II.3. For X geometric on {0, 1, . . .} with mean λ,
E (X)(m) = m!λm, so ψX(t) = 1/(1 − λt) and ψ̃X(t) =
exp(λt). Further Xc is circularly symmetric Gaussian with
covariance matrix (1 + λ)I2/2, where we write Id for the d-
dimensional identity matrix. Hence, E|Xc|2m = m!(1 + λ)m,
so φXc(t) = 1/(1− (1 + λ)t) and φ̃Xc(t) = exp(t(1 + λ)).

Example II.3 illustrates the following result, in that X and
Xc are linked at the level of their generating functions:

Theorem II.4. For X and Xc linked by the transforms (1)
and (2) of [12], we can write

1)
ψ̃X(t) = exp(−t)φ̃Xc

(t). (8)

2)

ψX(t) =
1

1 + t
φXc

(
t

1 + t

)
, (9)

Proof: See Section VII.
This result relates the moments of X and Xc. For brevity,

from now on we write λW for the mean of any random variable
W . Then, for example:

Corollary II.5. The real and imaginary parts of Xc =
(X1, X2) have covariance matrix (1 + λX)I2/2.

Proof: We simply differentiate (9) with respect to t and
set t = 0 to obtain:

λX = ψ′X(0) = φ′Xc
(0)− φXc

(0) = E|Xc|2 − 1.

Since Xc is circularly symmetric, it is proper (see [14]), and
we know EXc = 0. Further, this means that (X1, X2) has
a covariance matrix which is a multiple of the identity. We
deduce that the diagonal entries must equal (λX + 1)/2.

III. GENERATING FUNCTIONS AND BEAMSPLITTER
ADDITION

We now state the relationship between the generating func-
tions of X , Y and Z = X �η Y , proved in Section VIII:

Theorem III.1. Given independent random variables X and
Y supported on Z+, the Z := X�ηY has generating functions
ψ̃Z and ψZ satisfying:

1)
ψ̃Z(t) = ψ̃X(ηt)ψ̃Y ((1− η)t). (10)

2)

1

s− 1
ψZ

(
1

s− 1

)
=
[
L
(
M

(η)
X ×M (1−η)

Y

)]
(s) ,

(11)
where we define M

(η)
X and M

(1−η)
Y via the inverse

Laplace transform
[
L−1·

]
using the fact that:[

LM
(η)
Xc

]
(s) =

1

s− η
ψX

(
η

s− η

)
, (12)[

LM
(1−η)
Yc

]
(s) =

1

s− (1− η)
ψY

(
1− η

s− (1− η)

)
.(13)

Direct calculation of the derivative of (10), as in Corollary
II.5, allows us to deduce that

λZ = ηλX + (1− η)λY . (14)

Example III.2. If X is geometric with mean λX and Y is
geometric with mean λY , using the expressions from Example
II.3 and (14) then

1) The RHS of (10) becomes

exp(ηλXt) exp((1− η)λY t) = exp(λZt),

so that Z = X �η Y is geometric with mean λZ .
2) The RHS of (12) is 1/(s − η(1 + λX)), so the inverse

Laplace transform gives that M (η)
Xc

(t) = exp(η(1 +

λX)t), with M
(η)
Yc

(t) = exp((1 − η)(1 + λY )t). As

we would expect, this means that
(
M

(η)
X ×M (1−η)

Y

)
=

exp((1 + λZ)t) This allows us to deduce that

1

s− 1
ψZ

(
1

s− 1

)
=

1

s− (1 + λZ)
,

and changing variables via u = 1/(s − 1) we deduce
that ψZ(u) = 1/(1− λZu) as we would hope.



Remark III.3. Theorem III.1 and Example III.2 suggest the
exponential generating function ψ̃X is more amenable than
the ordinary generating function ψX . We state both results for
future reference, but recommend the first formulation.

IV. DE BRUIJN IDENTITY

Motivated by [1], we give a de Bruijn identity with respect
to beamsplitter addition �η . The key result is the following
discrete analogue of the heat equation, analogous to [7, Corol-
lary 4.2] in the Poisson case:

Theorem IV.1. For a given random variable X consider
Zη := X�η Y , where Y is geometric. Writing λ(η) = λZη =
ηλX + (1− η)λY we obtain

∂

∂η
pZη [n] := ∆

(
n

η

(
pZη [n− 1]λY − pZη [n](1 + λY )

))
,

(15)
where for any function u, we write ∆(u[n]) := u[n+1]−u[n].

Proof: See Section IX.

Definition IV.2. For a random variable X with p.m.f. pX ,
define two new p.m.f.s supported on Z+ by

p+X [n] =
(n+ 1)pX [n+ 1]

λX
and p−X [n] =

(n+ 1)pX [n]

1 + λX
.

(16)

This allows us to deduce the following de Bruijn identity,
which is a specialization to number-diagonal states of the more
general de Bruijn identity proved by König and Smith [13]:

Theorem IV.3. Given Zη = X �η Y , where Y is geometric
with mean λY , we can write Gη for a geometric with mean
λ(η) = ηλX + (1− η)λY . Then

∂

∂η
D(Zη‖Gη)

=
λY (1 + λ(η))

η
D(p−Zη‖p

+
Zη

) +
(1 + λY )λ(η)

η
D(p+Zη‖p

−
Zη

),

where p+Zη and p−Zη are defined in terms of (16).

If X is itself geometric then so is Zη , meaning that p+Zη =

p−Zη (a negative binomial p.m.f.) and the two relative entropy
terms on the RHS of Theorem IV.3 vanish as expected.

We focus on the case where λX = λY , where the RHS of
Theorem IV.3 becomes a symmetrized relative entropy. If G
is geometric with EG = λX then direct calculation gives that

D(X‖G) = H(G)−H(X). (17)

This allows us to deduce the following log-Sobolev type
inequality which may be of independent interest:

Corollary IV.4. For any random variable X , if G is geometric
with mean EG = λX then:

D(X‖G) ≤ λX(1 + λX)
(
D(p−X‖p

+
X) +D(p+X‖p

−
X)
)
. (18)

Proof: We consider Zη = X�η Y , where Y is geometric
with λY = λX , and apply [12, Theorem 5], which tells us

that H(Zη) ≥ ηH(X) + (1 − η)H(Y ). Combining this with
(17), we can write

D(Zη‖G) ≤ ηD(X‖G) + (1− η)D(Y ‖G) = ηD(X‖G),

or rearranging that (since η ≤ 1)

D(Zη‖G)−D(X‖G)

η − 1
≥ D(X‖G).

If η → 1, the LHS becomes the derivative ∂
∂ηD(Zη‖G)|η=1,

and we deduce the result using Theorem IV.3.
In the language of [5], Theorem IV.1 suggests that we can

introduce a score function ρX , defined as:

Definition IV.5. For a random variable X with p.m.f. pX and
mean λX , define a score function

ρX [n] :=
npX [n− 1]λX
pX [n](1 + λX)

− n, (19)

where we define ρX [0] = 0 to ensure
∑∞
n=0 pX [n]ρX [n] = 0.

We define two Fisher-type quantities in terms of it:

J+(X) :=

∞∑
n=1

pX [n]

n
ρX [n]2, (20)

J−(X) :=

∞∑
n=1

pX [n]

n+ ρX [n]
ρX [n]2. (21)

Note that ρX vanishes if and only if X is geometric, so that
J+(X) and J−(X) are ≥ 0, with equality if and only if X
is geometric. Further, if we choose Y to be geometric with
mean EY = λX then (15) becomes

∂

∂η
pZη [n] :=

1 + λX
η

∆
(
pZη [n]ρZη [n]

)
.

where as before, we write ∆(u[n]) := u[n + 1] − u[n].
Secondly, linearising the logarithm in Corollary IV.4 implies
a quadratic version of this result, in the spirit of [15]:

Corollary IV.6. For any random variable X , if G is geometric
with mean EG = λX then:

D(X‖G) ≤ (1 + λX)
(
J+(X) + J−(X)

)
.

V. LOG-SUM INEQUALITY

We state one further result, which controls how the relative
entropy behaves under the action of the map T .

Theorem V.1. Given two random variables X and Y , with
Xc = T (X) and Yc = T (Y ) then:

D(Xc‖Yc) ≤ D(X‖Y ).

Proof: Writing φn(r) := e−|r|
2 |r|2n/(n!π) then, using

(1) and the log-sum inequality [16, Theorem 2.7.1], for any r:

pXc
(r) log

(
pXc

(r)

pYc
(r)

)
=

( ∞∑
n=0

pX [n]φn(r)

)
log

(∑∞
n=0 pX [n]φn(r)∑∞
n=0 pY [n]φn(r)

)
≤

∞∑
n=0

pX [n]φn(r) log

(
pX [n]

pY [n]

)
.



Integrating over r we deduce the result since
∫
φn(r)dr = 1

for each n.

VI. CONCLUSIONS

We have introduced a new purely classical representation
for the beamsplitter addition operation �η , with respect to
the exponential generating function. We have deduced a heat
equation, and recovered a purely classical proof of a special
case of the de Bruijn identity of König and Smith [13].

In future work, we hope to use this formalism to prove
discrete entropy results based around the geometric family,
analogous to the classical results proved for the continuous
entropy based around the Gaussian family. In particular, we
hope that our results can give insights into a proof of the
conjectured discrete EPI under beamsplitter addition [12]—a
special case of the Entropy Photon Number Inequality [9], [10]
—as well as give insights into convergence to the geometric
and the conjectured monotonic increase in entropy under
repeated beamsplitter addition [12], analogous to the classical
Central Limit Theorem convergence to Gaussians and ‘law of
thin numbers’ [6] convergence to Poissons.

VII. PROOF OF TRANSFORM RELATION, THEOREM II.4

Proof of Lemma II.2:
1) We reverse the order of summation in (5) to obtain

ψ̃X(t) =

∞∑
m=0

tm

m!

∞∑
n=m

(
n

m

)
pX [n]

=

∞∑
n=0

pX [n]

n∑
m=0

(
n

m

)
tm

m!

=

∞∑
n=0

pX [n]Ln(−t), (22)

since Ln(−t) =
∑n
m=0

(
n
m

)
tm

m! (see [17, Eq. (5.1.6)]).
2) This result follows on integrating exp(−s)Lm(s) times

both sides of (22) with s = −t, using the orthogonality
relation for Laguerre polynomials [17, Eq. (5.1.1)],∫ ∞

0

exp(−s)Lm(s)Ln(s)ds = δmn.

Recall the standard result that the Laplace transform L
relates exponential and ordinary generating functions:

Lemma VII.1. Given a sequence a = (an)n=0,1,..., if we
write ψa(t) =

∑∞
n=0 ant

n and ψ̃a(t) =
∑∞
n=0 ant

n/n!, then[
Lψ̃a

]
(u) =

1

u
ψa

(
1

u

)
. (23)

Proof: This follows since[
Lψ̃a

]
(u) =

∞∑
n=0

an
n!

(∫ ∞
0

exp(−su)snds

)
=

∞∑
n=0

an
n!

(
n!

un+1

)
=

1

u
ψa

(
1

u

)
. (24)

Proof of Theorem II.4: We can express (7) in terms of the
Bessel function J0 (see [17, Eq. (1.71.1)]), which we substitute
to obtain (25) below. We obtain:

φ̃Xc(−t) =

∫
pXc(r)

∞∑
m=0

|r|2m(−t)m

m!2
dr

=

∫
pXc

(r)J0(2|r|
√
t)dr (25)

=

∞∑
n=0

pX [n]

∫
e−|r|

2 |r|2n

n!π
J0(2|r|

√
t)dr (26)

= 2

∞∑
n=0

pX [n]

∫ ∞
0

e−r
2

r2n+1

n!
J0(2r

√
t)dr(27)

=

∞∑
n=0

pX [n]

∫ ∞
0

e−uun

n!
J0(2
√
ut)du (28)

=

∞∑
n=0

pX [n]Ln(t) exp(−t), (29)

where (26) follows by substituting (1), (27) follows by moving
from Cartesian coordinates dr to polar rdrdθ, (28) uses u = r2

and (29) follows by [17, Theorem 5.4.1]. The result follows
by Lemma II.2.

Consider taking Laplace transforms of both sides of (8).
Using Lemma VII.1 the Laplace transform of the LHS is[

Lψ̃X

]
(u) =

1

u
ψX

(
1

u

)
, (30)

Again by Lemma VII.1, since the Laplace transform of
f(t) exp(−t) is the Laplace transform of f shifted by 1, the
Laplace transform of the RHS is[

Lφ̃Xc

]
(u+ 1) =

1

u+ 1
φXc

(
1

1 + u

)
. (31)

Equating (30) and (31), the result follows taking u = 1/t.

VIII. PROOF OF CONVOLUTION RELATION, THEOREM III.1

We first state a result that shows how the moments of circu-
larly symmetric random variables on C behave on convolution:

Lemma VIII.1. Given independent circularly symmetric Xc

and Yc and writing Zc :=
√
ηXc +

√
1− ηYc, we can write

φ̃Zc(t) = φ̃Xc
(ηt) φ̃Yc

((1− η)t) . (32)

Proof: Consider independent Uc and Vc and write Wc =
Uc + Vc. Then [18, Eq. (3)] gives

E|Wc|2m =

m∑
n=0

(
m

n

)2

E|Uc|2nE|Vc|2m−2n.

Multiplying tm/(m!)2, and summing, we obtain that

φ̃Wc
(t) = φ̃Uc

(t)φ̃Vc
(t)

and the result follows by rescaling.
Putting all this together we obtain:

Proof of Theorem III.1:



1. This result follows directly on combining (8) and (32).
2. Relabelling t = 1/(s−1) in (9) and using Lemma VII.1,

for any random variable U we obtain:[
Lφ̃Uc

]
(s) =

1

s
φUc

(
1

s

)
=

1

s− 1
ψU

(
1

s− 1

)
. (33)

Taking U = Z in (33), and using Lemma VIII.1, we know
that φ̃Zc = M

(η)
Xc
×M (1−η)

Yc
where M (η)

Xc
(t) = φ̃Xc (ηt). We

can use the fact that if F = [Lf ] then [Lf(at)] (s) = 1
aF
(
s
a

)
to deduce using (33) that[
LM

(η)
Xc

]
(t) =

1

η

[
Lφ̃Xc

]( t
η

)
=

1

η

1

s− 1
ψX

(
1

s− 1

)∣∣∣∣
s=t/η

and (12) follows. A similar argument based on the fact that
M

(1−η)
Yc

(t) = φ̃Yc ((1− η)t) allows us to deduce (13).

IX. PROOF OF DE BRUIJN IDENTITY, THEOREM IV.3

We first prove the heat equation Theorem IV.1:
Proof of Theorem IV.1: By Lemma II.2.1) we can write

h(η; t) := ψ̃Zη (t) =

∞∑
n=0

pZη [n]Ln(−t). (34)

Using (10) we also write h(η; t) = ψ̃X(ηt) exp((1 − η)λY t)
and observe that this satisfies

∂

∂η
h(η; t) =

t

η

∂

∂t
h(η; t)− λY t

η
h(η; t). (35)

Hence, by differentiating (34) and using (35), we obtain
∞∑
n=0

∂

∂η
pZη [n]Ln(−t)

=
t

η

∂

∂t
h(η; t)− λY t

η
h(η; t)

=
−t
η

∞∑
n=0

pZη [n]

(
L′n(−t) + λY Ln(−t)

)
= −λY

η

∞∑
n=0

pZη [n]

(
(n+ 1)Ln+1(−t)− (n+ 1)Ln(−t)

)
+

1 + λY
η

∞∑
n=0

pZη [n]

(
nLn(−t)− nLn−1(−t)

)
(36)

=

∞∑
n=0

∆

(
n

η

(
pZη [n− 1]λY − pZη [n](1 + λY )

))
Ln(−t)

here (36) follows using the fact that zL′n(z) = nLn(z) −
nLn−1(z) (see [17, Eq. (5.1.14)]) and using the three-
term relation for Laguerre polynomials, −zLn(z) = (n +
1)Ln+1(z) − (2n + 1)Ln(z) + nLn−1(z) (see [17, Eq.
(5.1.10)]). Comparing coefficients of Ln(−t) we conclude the
result holds.

Proof of Theorem IV.3: Using (17), and writing pη for
pZη , we can express D(Zη‖Gη) as

∞∑
n=0

pη[n] log pη[n]− λ(η) log λ(η) + (1 + λ(η)) log(1 + λ(η)).

For any function u[n], the
∑∞
n=0 ∆(u[n]) log pη[n] =∑∞

n=0 u[n+ 1] log(pη[n]/pη[n+ 1]) if u[0] = 0, so (assuming
we can exchange the sum and derivative) Theorem IV.1 gives
∂

∂η
D(Zη‖Gη)

=

∞∑
n=0

(
∂

∂η
pη[n]

)
log pη[n]− λ′(η) log

(
λ(η)

1 + λ(η)

)
=

∞∑
n=0

n+ 1

η
(pη[n]λY − pη[n+ 1](1 + λY ))

× log

(
pη[n]/(1 + λ(η))

pη[n+ 1]/λ(η)

)
(37)

where (37) follows using (14). Inserting factors of (n+ 1) in
the top and bottom of the fraction we deduce the result.
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