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Abstract 

 

Seasonal changes in mammalian physiology, such as those affecting 

reproduction, hibernation and metabolism, are controlled by pituitary hormones 

released in response to annual environmental changes. In temperate zones, the 

primary environmental cue driving seasonal reproductive cycles is the change in 

daylength (photoperiod), encoded by the pattern of melatonin secretion from the 

pineal gland. However, although reproduction relies on hypothalamic 

gonadotrophin-releasing hormone (GnRH) output, and most cells producing 

reproductive hormones are in the pars distalis (PD) of the pituitary, melatonin 

receptors are localized in the pars tuberalis (PT), a physically and functionally 

separate part of the gland. How melatonin in the PT controls the PD is not 

understood. Here we show that melatonin time-dependently acts on its receptors 

in the PT to alter splicing of vascular endothelial growth factor (VEGF). Outside 

the breeding season, angiogenic VEGF-A stimulates vessel growth in the 

infundibulum, aiding vascular communication between the PT, PD and brain. This 

also acts on VEGFR2 expressed in PD prolactin-producing cells known to impair  

gonadotrophin secretion. In contrast, in the breeding season, melatonin releases 

anti-angiogenic VEGF-Axxxb from the PT, inhibiting infundibular angiogenesis and 

diminishing lactotroph VEGFR2 expression, lifting reproductive axis repression in 

response to shorter day lengths. The time-dependent, melatonin-induced 

differential expression of VEGF-A isoforms culminates in alterations in 

gonadotroph function opposite to those of lactotrophs, with up-regulation and 
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down-regulation of gonadotropin gene expression during the breeding and non-

breeding season, respectively. These results provide a novel mechanism by 

which melatonin can control pituitary function in a seasonal manner. 
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Introduction 

 

Pituitary hormone secretion regulates multiple functions in the body, including 

fertility, growth, fluid balance and the response to stress. This regulation displays 

annual oscillations in most mammalian species, and is overtly seasonal in 

animals that have a tightly controlled reproductive window. It is thought that both 

endogenous (circadian and circannual rhythm generators) and exogenous 

(photoperiod) cues can contribute to drive seasonal physiology [1]. The duration 

of nocturnal release of the pineal hormone melatonin underlies the photoperiodic 

control of seasonality in sheep [2]. As the synthesis and release of melatonin is 

inhibited by light, the longer nights of winter are associated with longer duration 

of melatonin production, whereas the opposite is true in the summer. Even 

though the reproductive cycle relies primarily on the secretion of gonadotropin-

releasing hormone (GnRH) from the hypothalamus [3], one of the major sites of 

melatonin action is the pars tuberalis (PT) of the pituitary gland [4, 5]. Indeed, 

melatonin is a regulator of endocrine function in the pituitary, and specifically 

inhibits prolactin-producing lactotrophs, known to be associated with repression 

of the reproductive cycle, directly within this tissue [6]. However, the mechanism 

through which melatonin exerts this influence remains unclear.  

 

Three functionally distinct regions of the pituitary gland, the PT, pars distalis (PD) 

and infundibulum intercommunicate with one another via an elegant portal 

vascular arrangement. Although melatonin is known to act on its receptors in the 

PT, lactotrophs – the cells inhibited by melatonin, are exclusively found in the PD 
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[7, 8]. The mechanisms through which melatonin, acting in the PT, can control 

pituitary function in the PD are unresolved. Here we describe how the vascular 

arrangement in the infundibulum of the pituitary was drastically altered between 

the breeding and non-breeding seasons (BS and NBS, respectively) in sheep. 

We therefore tested the hypothesis that melatonin could act to regulate pituitary 

function through the control of blood vessel growth and communication between 

the PT and PD.  

Blood vessel growth (angiogenesis) is regulated by vascular endothelial growth 

factors (VEGF), a family of peptides of which the most potently angiogenic and 

widely expressed is VEGF-A. Multiple VEGF-A products can be generated by 

alternative splicing of a single gene [9, 10]. Alternative use of exons 6 and 7 will 

result in proteins of different length (e.g. 120, 164 or 188 amino acids in sheep, 

and 121, 165 or 189 in human). Use of the proximal splice site in exon 8 

generates the pro-angiogenic VEGF-Axxxa isoforms, and use of the distal splice 

site in exon 8 generates the VEGF-Axxxb isoforms, where xxx denotes the 

number of amino acids, and a or b denotes the carboxy-terminal amino acid 

sequence. The most extensively studied and highly expressed isoforms of each 

family (VEGF-A165b and VEGF-A165a, respectively) are able to counteract the 

effects of each other on blood vessel growth [11]. When VEGF-A165a binds 

VEGFR2 on endothelial cells it causes robust autophosphorylation and 

downstream signalling through phospholipase C, src, ras and other pathways to 

induce a raft of responses including angiogenesis, vasodilatation, increased 

vascular permeability and cytoprotection [12].  
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Significance Statement 

Adaptation to seasonal changes in the environment is critical for survival in all 

species. In vertebrates, annual oscillations in pituitary hormones underlie the 

regulation of seasonal physiology. We found that, in sheep, the duration of pineal 

melatonin output at night controls the production of different forms of the protein, 

vascular endothelial growth factor (VEGF) within a specific pituitary region, the 

pars tuberalis. Forms that block blood-vessel growth are made in winter, but 

those that stimulate it are made in summer. Further to the resulting remodelling 

of the vascular connection between the brain and pituitary, the temporally 

divergent VEGF-A variants operate as messenger signals on endocrine cells of a 

different part of the gland, the pars distalis, to regulate seasonal fertility. 

 

In contrast, although the binding affinity for VEGFR2 is the same as that of 

VEGF-A165a, VEGF-A165b induces weak phosphorylation [13], does not bind the 

co-receptor Neuropilin-1 [14 ], which is responsible for intracellular trafficking and 

recycling to the membrane [15], and does not activate the full signalling pathway. 

This means it does not induce angiogenesis or vasodilatation [11], or a sustained 

increase in vascular permeability [16], and results in VEGFR2 degradation, not 

recycling [15]. It does, however, stimulate cytoprotection of endothelial and 

epithelial cells [17] and neurons [18]. These two isoform families, therefore, have 

very different physiological consequences [19], but any differential role in 

seasonal pituitary angiogenesis is unknown. We found that while total VEGF-A 

was not altered between the BS and NBS, there was a dramatic switch in splicing 
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in the BS from angiogenic VEGF-Axxxa isoforms to anti-angiogenic VEGF-Axxxb 

isoforms in both the PT and PD. This was mirrored by a reduction in the number 

of blood vessels in the infundibulum. Melatonin receptor expression in the PT and 

the infundibulum co-localized with cells expressing VEGF-A. Two potential 

mechanisms for VEGF-A-mediated regulation of pituitary seasonality are 

proposed here – a) VEGF-A acting to regulate blood vessel function, which 

subsequently controls delivery of other hormones to the PD, and b) VEGF-A 

acting directly on lactotrophs to control prolactin–associated down-regulation of 

the reproductive axis. We found that VEGFR2 co-localization with prolactin in the 

PD was increased outside the BS, consistent with a VEGF-Axxxa mediated 

repression of fertility. In vitro culture of PT cells from BS sheep showed that 

duration of melatonin exposure controlled VEGF-A isoform secretion – long 

exposure induced VEGF-Axxxb production, whereas short exposure induced 

VEGF-Axxxa production. Culture of PT cells from the NBS revealed that melatonin 

given at frequencies seen in the winter could switch the expression of VEGF-A 

isoforms to BS levels. We then showed that PT cells treated with NBS melatonin 

regimens release VEGF-Axxxa, which directly induced prolactin secretion from PD 

cells. Finally, the time-dependent, melatonin-induced differential expression of 

VEGF-A isoforms resulted in alterations of gonadotroph function opposite to 

those of lactotrophs in each season. Together, these results demonstrate that 

melatonin-mediated control of VEGF splicing could underlie intra-pituitary 

regulation of seasonal fertility.   
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Figure 1. Angiogenesis in the pituitary is seasonally dependent. A. Endothelial staining in the 

pars tuberalis (PT)/infundibulum and quantification of vessel loops in the summer (non-breeding 

season, NBS) and winter (breeding season, BS). B. Endothelial proliferation (PCNA/CD31 double 

positive cells) in the NBS and BS. C. Total VEGF-A levels in the PT/stalk in the BS and NBS (not 

significantly different; p>0.05). D. VEGF-Axxxb specific ELISA on protein extracted from 

pituitaries of animals killed in the BS or NBS. E. Proportion of VEGF-A that was VEGF-Axxxb in 

the BS and NBS. F. Staining of the melatonin receptor (green) and VEGF-A (red) in different 

regions of the pituitary; co-staining (found in PT and vascular loops) is shown as yellow.  ***= 

p<0.01, ***=p<0.001 compared with BS. Scale bar = 50µm 

 

Results 

 

Vascular growth in the pituitary gland is seasonally controlled  

To investigate the vascular architecture of the pituitary in a seasonally breeding 

mammal, we screened pituitary glands of sheep with the endothelial marker 

CD31. Staining showed a significant (p<0.001) increase in the number of 

vascular loops extending from the PT into the infundibulum in the summer (non-

breeding season, NBS) compared with animals culled in the winter (breeding 

season, BS; Figure 1A). To determine whether this was due to endothelial 

proliferation in the NBS, we co-stained for CD31 and proliferating cell nuclear 

antigen, PCNA. We detected proliferating endothelial cells in both seasons, but a 

two-fold increase in proliferating endothelial cells in the NBS (Figure 1B). As 

angiogenesis is driven by VEGF, we measured VEGF-A in the pars-

tuberalis/stalk region of the pituitary. There was no difference in VEGF-A as 

measured by antibodies that detect all isoforms of VEGF-A (panVEGF; Figure 
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1C). However, using antibodies that specifically detect the exon 8b splice 

variants (VEGF-Axxxb), the expression of which has been shown to be anti-

angiogenic in vivo, a reduction in VEGF-Axxxb was measured in the NBS (Figure 

1D). This resulted in a change in the ratio of VEGF-A from 33% excess anti-

angiogenic isoforms in the BS, to 60% excess angiogenic isoforms in the NBS 

(Figure 1E). This indicates that the pituitary is in an anti-angiogenic state in the 

BS, and suggests a link between day length and VEGF-A splicing. To determine 

whether VEGF-A was expressed in the pituitary in cells that can respond to day 

length, we co-stained for melatonin receptor and VEGF. Figure 1F shows that 

MT1 and VEGF-A were co-localized in the PT and, interestingly, also in the 

vascular loops (arrows) that connect the PT with the infundibulum. In contrast, 

while VEGF-A was expressed in the PD, MT1 receptors were not. The anti-

angiogenic isoforms have not previously been cloned from sheep, so we 

examined RNA expression by RT-PCR. Both isoforms were detected in 

pituitaries from sheep in both seasons (PD and PT, supplementary Figure 1A). 

Cloning and sequencing of the PCR product confirmed that this was sheep 

VEGF-Axxxb (supplementary Figure 1B). The sheep sequence has a single 

nucleotide substitution (a G in sheep, C in human) compared with human DNA. 

This results in a single amino acid difference, with a sequence of SRTRKD 

instead of SLTRKD in human. Thus, the sheep VEGF-Axxxb isoforms are one 

amino acid shorter than the human ones. The cell type in which VEGF-Axxxb was 

expressed in the PT was identified by immunolocalization. Supplementary Figure 

1C confirms that VEGF-Axxxb is expressed in the MT1 positive cells, which, in the 
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PT, are not endothelial or glial-type folliculostellate (S100+) cells. These results 

suggested that melatonin could regulate expression of different VEGF-A isoforms 

in the PT, so regulating angiogenesis in the pituitary in a seasonally dependent 

manner. 

 

VEGF-A splicing is regulated by duration of melatonin exposure in PT cells 

We investigated VEGF-A isoform expression in cells isolated from the PT, which 

express both the melatonin receptor and VEGF-A (supplementary Figure 2A) by 

isoform family specific ELISA and real time PCR. Cells were cultured under 

conditions without melatonin (control, supplementary Figure 2B) or with 

melatonin given for 16hrs (mimicking winter –BS regimen), or 8 hours (mimicking 

summer –NBS regimen). VEGF-Axxxb protein (Figure 2A) was increased 7 fold by 

a BS melatonin regimen (Figure 2A) in cells from BS animals (i.e. given the 

matching melatonin regimen), whereas panVEGF-A increased only 4 fold (Figure 

2B). In contrast, when cells from pituitaries of NBS sheep were given the NBS 

melatonin regimen, VEGF-Axxxb was only increased 2-fold (significantly lower 

than BS, Figure 2A), but panVEGF-A was increased 5-fold (Figure 2B), although 

this response took longer than in the BS cells. This suggests that the length of 

time that the cells are daily exposed to melatonin controls the expression of the 

different splice variants of VEGF-A. It also suggests that NBS cells are less 

prepared to respond to melatonin exposure, as they take longer to increase their 

VEGF-Axxxa output. To determine whether this was dependent on the stage of 

the annual reproductive cycle, we treated cells with a melatonin regimen that was 
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reversed (i.e. opposite to that of the prevailing photoperiod) and found the same 

response for VEGF-Axxxb - BS regimen induced VEGF-Axxxb expression, whereas 

NBS regimen did not (Figure 2C). The same was true for panVEGF-A (Figure 

2D) – expression was induced by both regimens, but NBS cells were slower to 

respond than BS cells. To confirm that this was due to a change in the RNA 

splice isoforms, we measured RNA levels of VEGF-A164b and VEGF-A1654a by 

quantitative RT-PCR using isoform specific primers. Figure 2E shows that VEGF-

A164a and VEGF-A164b were preferentially upregulated by the NBS and BS 

regimens, respectively, in BS cells. In NBS cells, the same effect was induced by 

switching the melatonin regimen, indicating that this effect is specific to the 

duration of melatonin exposure, rather than the stage of the annual reproductive 

cycle from which the cell was sourced. These results indicate that melatonin can 

control angiogenesis protein production in the PT. 

 

VEGF-A splice isoforms and receptors are present in the PD 

To determine whether VEGF-A could target endocrine and /or non-endocrine 

cells that are known to display seasonal plasticity, we screened the PD for the 

VEGF receptor, VEGFR2. Co-staining of VEGFR2 with folliculostellate cells 

(FSC, Figure 3A) and lactotrophs (LT, Figure 3B) showed that VEGFR2 was co-

localized with a proportion of FSC and LT, and critically, that this co-localization 

increased (p<0.01 and p<0.001, respectively) during the non-breeding season 

(NBS), i.e. in the summer. There was also substantial VEGFR2 expression co-

localized on endothelial cells in both seasons (Figure 3C). Screening for 
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proliferating endothelial cells indicated that there was more angiogenesis in the 

summer (NBS) in the PD (Figure 3D), as well as the PT and infundibular stalk 

(Figure 1D). Immunofluorescence staining for VEGF-A isoforms indicated that 

VEGF-Axxxb was significantly down-regulated and VEGF-Axxxa significantly up-

regulated in the summer (NBS, Figure 3E), providing a rationale for the up-

regulation of angiogenesis in the PD. Quantification of the area of staining 

(Figure 3F) confirmed this finding, as did quantitative ELISA for VEGF-Axxxb 

(down-regulation in the summer –NBS; Figure 3G) and panVEGF-A (Figure 3H – 

no change – and hence an implied up-regulation of angiogenic isoforms in the 

NBS). 

 

VEGF-A isoforms control seasonal endocrine function 

These results lead to two hypotheses: a) that VEGF-A controls angiogenesis and 

this allows, by increased portal blood flow, an as yet unidentified compound to 

repress the reproductive axis (presumably, at least in part, by stimulating 

prolactin); and/or b) that VEGF-A itself is a signalling molecule from the PT to the 

PD, which directly contributes to the inhibitory regulation of the reproductive cycle 

by releasing prolactin. To test this latter hypothesis, we cultured PD cells from 

sheep in the NBS or BS and treated them with recombinant human VEGF-A165a 

(rhVEGF-A165a) or conditioned media from the PT cells taken at the same time of 

year, and measured prolactin production by radioimmunoassay. Figure 4A shows 

that VEGFR2 and prolactin were both expressed by PD cells in culture. Figure 4B 

shows that the cells from both NBS and BS animals could be induced to release 
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prolactin by thyrotropin-releasing hormone (TRH), but not by melatonin. Figure 

4C shows that rhVEGF-A165a, given for the duration that matches NBS melatonin 

exposure (i.e. 8 hrs in the summer), resulted in significant prolactin release from 

PD cells from NBS animals (p<0.001), and from cells from the BS 

(supplementary Figure 3A). It also showed that rhVEGF-A165a, given at BS 

duration (16 hours) did not cause prolactin release from BS (Figure 4C) or NBS 

cells (supplementary Figure 3A). We confirmed this at the RNA level (Figure 4D-

E). To determine whether PT cells could generate VEGF-A isoform ratios that 

induced prolactin, we took conditioned media from the PT cells treated with 

melatonin and treated the PD cells with this conditioned media to mimic the in 

vivo situation. Conditioned media from PT cells treated with NBS melatonin 

regimen significantly stimulated prolactin protein (Figure 4F) and mRNA (Figure 

4G) in cells from non-breeding season ewes, but did not result in FSH production 

(supplementary Figure 3B). Critically, this effect was completely blocked by an 

antibody to VEGF-Axxxa (Figure 4F, G). Conditioned media from PT cells treated 

with BS melatonin regimen had no effect on prolactin production from breeding 

season PD cells (Figure 4F), but did stimulate FSH mRNA production from these 

cells (supplementary Figure 3C), and from cells from non breeding season ewes 

(supplementary Figure 3D), an effect which was inhibited by pre-treatment with a 

VEGF-Axxxb specific antibody (supplementary Figure 3D). This indicates that 

melatonin duration-induced differential VEGF-A isoform production by the PT has 

the potential to regulate the seasonal production of prolactin and FSH by the PD 

through an intra-pituitary paracrine mechanism mediated by VEGF. 
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Figure 2. VEGF-A isoforms levels are regulated by melatonin periodicity in the PT. A. PT 

cells in culture were isolated from pituitaries of sheep and VEGF-Axxxb measured by ELISA. 

Cells from winter sheep (breeding season -BS, blue) were treated with melatonin for 16 hrs each 

day for 6 days; cells from summer sheep (non-breeding season –NBS, red) were treated for 8hrs 

each day with melatonin. B. Levels of panVEGF-A were also measured from these cells. C. 

VEGF-Axxxb levels were measured from sheep PT cells incubated with the incongruous 

melatonin exposure for the time they were harvested from (cells from summer sheep were given 

winter a melatonin regimen, and from winter sheep given a summer melatonin regimen). D. 

Levels of panVEGF-A from cells treated as in C. E. VEGF-A isoform mRNA expression in PT 

cells from the breeding season (BS, winter) after 6 days of treatment with BS and NBS melatonin 

regimens. F. VEGF-A isoform mRNA expression in PT cells from the non-breeding season (NBS, 

summer) after 6 days of treatment with BS and NBS melatonin regimens. Boxes show positions 

of the primers used to amplify the cDNA. ***= p<0.001 compared with Control, +++= p<0.001 

compared with BS Regimen) 

 

 

Discussion 

 

The rationale for these studies was that dynamic and tightly regulated changes in 

the vascular communication between the brain and the pituitary gland could 

underlie seasonal physiology. To that end, we used a highly seasonal animal 

model, the sheep, with a well-characterized annual reproductive cycle. The 

results show that the pituitary microvasculature that connects the PT with the 

neural tissue of the infundibulum, before contacting the PD, displays dramatic 

seasonal remodelling, and that this could be in response to locally regulated 

splice variants of VEGF-A in the photoperiodic responsive / melatonin sensitive 
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PT region. Importantly, we found that the melatonin-induced differential 

expression of VEGF-A isoforms in the PT throughout the annual reproductive 

cycle not only has the potential to alter the portal microvasculature, but that itself 

could operate as a messenger to modify the endocrine output from the PD. We 

established that the signal from the PT carried to hormone-producing cells in the 

PD to stimulate prolactin secretion and inhibit FSH during reproductive 

quiescence is the angiogenic isoform of VEGF, VEGF-A164. Moreover, the results 

reveal that the splicing of the VEGF-A pre-RNA from anti-angiogenic VEGF-A164b 

in the winter (BS) to pro-angiogenic VEGF-A164a in the summer (NBS) results 

from the different duration of melatonin exposure, which occurs across seasons, 

highlighting the existence of a previously unknown photoperiodically-regulated 

system for the seasonal control of fertility.  

 

Figure 3. VEGFR2 is upregulated in the PD during the summer (non-breeding season). A. 

Co-localization of VEGFR2 (green) and glial-type folliculostellate cells (red) in the breeding 

season (BS, winter) and non-breeding season (NBS, summer). B. VEGFR2 (green) expression in 

lactotrophs (red) in the BS and NBS. C. VEGFR2 (green) and endothelial cells stained by 

isolectinB4 (IB4, red) in both seasons. D. Proliferating (PCNS, green) endothelial (IB4, red) cells 

were stained, and co-localization quantified. E. VEGF-Axxxb expression detected in the PD in the 

winter (BS), but not in the summer (NBS); VEGF-Axxx expression detected in the summer (NBS) 

but not in the winter (BS). F. Quantification of the expression of VEGF-A isoforms. G. ELISA 

quantification of the amount of VEGF-Axxxb in the BS and NBS. H. ELISA quantification of the 

amount of total VEGF-A in the two seasons. *= p<0.05, **= p<0.01, and ns= non-significant 

(p>0.05) compared with BS. Scale bar = 50µm 
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The microvasculature of the pituitary gland is key to the regulation of multiple 

body functions because it controls the blood flow from the hypothalamus, altering 

the delivery of stimulatory and inhibitory signals to endocrine target cells [20]. 

Here we show that this vascular connection undergoes a remarkable seasonal 

adaptation throughout the annual reproductive cycle in response to an external 

cue, namely the changing photoperiod. Such vascular plasticity is manifested in 

alterations of endothelial cell proliferation that result in timely changes in the 

vascular loops that connect the PT with the infundibulum before giving rise to the 

long portal vessels which terminate in the PD. Even though these loops were first 

described over six decades ago [21], the possibility that they could alter the 

connectivity between the brain and the pituitary at certain times of the year was 

not known. Although no apparent alterations in the ovine pituitary vasculature of 

male castrates exposed to different photoperiods was recently reported, detailed 

measurements were not undertaken and the vascular loops were not specifically 

examined [22]. The increased number and surface area of these vascular loops 

during the long days of the NBS, concomitant with an increase in endothelial cell 

proliferation, is in agreement with the increased number of cells proliferating in 

the PT shown in this study and by another group [23] at this time of year.  

 

Figure 4. VEGF-A mediates prolactin release from the PD in an isoform dependent manner. 

A. VEGFR2 expression in cultured prolactin positive cells (lactotrophs) of the PD. B. Prolactin 

secretion following treatment with thyrotropin-releasing hormone (TRH, positive control), 

melatonin (Mel, negative control) and medium (control) in PD cells cultured during the non-

breeding season (NBS, summer) and breeding season (BS, winter). C. Prolactin secretion in PD 
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cells from sheep killed in the summer (NBS) after rhVEGF-A165a treatment was greater than that 

from winter (BS) sheep. D. Prolactin mRNA expression in PD cells taken from ewes in the 

summer (NBS) following a summer (NBS) regimen of rhVEGF-A165a (8hrs on, 16hrs off), was 

greater than that of cells taken from the same animals following a winter (BS) rhVEGF-A165a 

regimen (16hrs on, 8hrs off). E In cells taken from ewes in the breeding season (BS, winter), 

prolactin was only induced if VEGF-A was given in a non-breeding season (NBS, summer) 

regimen, F. Conditioned media from summer (NBS) PT cells treated with a summer (NBS) 

melatonin regimen (red) induced prolactin production. This was blocked by an antibody to VEGF-

Axxxa. G. Prolactin mRNA in summer (NBS) cells was induced in the presence of conditioned 

media from summer (NBS) regimen PT cells, and this was blocked by an anti-VEGF-Axxxa 

antibody. **=p<0.01, ***=p<0.001 compared with BS. Scale bar = 20µm 

 

The afferent branches of these loops connect the photoperiodic-responsive PT 

with the FS cell-rich infundibulum, and efferent branches provide communication 

between the infundibulum and the PD where most of the pituitary hormones are 

produced. Thus, the temporal remodelling of the vascular connection between 

these three tissues highlights the existence of a control point for seasonal 

physiology. The importance of this finding is supported by recent studies in 

rodents showing that the pituitary microvasculature adapts to the needs of 

pituitary endocrine cells and that it can control endocrine output according to the 

physiological requirement of the individual [24]. This remodelling could 

substantially increase or decrease the transport of hormones from the PT to the 

infundibulum and from the infundibulum to the PD, thus being able to accentuate 

or reduce the effect of hypothalamic derived neuroendocrine signals, such as 

GnRH, to the hormone producing cells of the pituitary.  It is possible that this 
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regulatory mechanism for the delivery of hypothalamic factors could operate in 

conjunction with the dynamic retraction / protraction of ‘endfeet’ processes of 

tanycytes [25], the specialized ependymal cells of the glia, which have been 

shown to interact with the hypothalamic neuronal terminals and fenestrated 

capillaries of the median eminence and to play a role in the control of the 

seasonal reproductive cycle in birds [26]. The VEGF isoforms have been shown 

to differentially regulate fenestrations of endothelial cells [16], so it is possible 

that the two mechansims could work together, although we are unable to use the 

evidence presented here to differntiate between dependnet and independent 

mechanisms. 

 

In other tissues, vascular remodelling and permeability is controlled by VEGF-A 

[19], so dynamic changes in the pituitary microvasculature were expected to 

correspond to alterations in VEGF-A expression. Indeed, VEGF-A-mediated 

changes in endothelial cell proliferation and angiogenesis were communicated in 

specific regions of the songbird brain across seasons [27]. However, VEGF-A 

had been previously reported to remain unchanged in the pituitary of sheep 

under different photoperiods [28], and in this study panVEGF-A expression did 

not differ between BS and NBS animals. Critically, the use of specific antibodies 

to the pro- and anti-angiogenic isoforms of VEGF-A (these distinguish between 

isoform families, but not between the different length isoforms, hence VEGF-

Axxxa  and VEGF-Axxxb) revealed differential isoform expression between the long 

days of the NBS and the short days of the BS, with over-expression of anti-
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angiogenic VEGF-Axxxb variants in the BS, and increased expression of pro-

angiogenic VEGF-Axxxa variants in the NBS, providing an explanation for the 

observed changes in the microvasculature. As the PT is the tissue with the 

highest density of melatonin receptors [4, 5], and reliably translates the effects of 

photoperiod on circadian and circannual physiology within the pituitary [1, 29], 

our results showing the co-expression of VEGF-A and melatonin receptors in PT-

specific cells provide compelling evidence that the seasonal regulation of the 

vascular connection between the brain and the pituitary gland is mediated by a 

melatonin-induced mechanism within the PT region that leads to differential 

expression of pro- and anti-angiogenic VEGF-A isoforms. Moreover, our results 

show that in addition to the PT-specific cells, melatonin could also act directly on 

the vascular loops, revealing a previously unknown target for melatonin action to 

translate photoperiodic effects on seasonal physiology.  As the blood flows from 

the brain to the pituitary [11], alterations in the vascular loops of the infundibulum 

that will give rise to the long portal vessels [12] could contribute not only to 

regulate the transfer of PT products to the PD, but also to alter the delivery of 

hypothalamic factors; thus, the increased vascular connections during the long 

days of summer would be expected to favor increased supply of stimulatory and 

inhibitory hypothalamic signals to the PD at this time of year. Notwithstanding, 

the reduction in vascularity during the short days of winter is likely to play a role 

in the modulation of the gonadotroph response to GnRH, by means of preventing 

desensitization of GnRH receptors [30], and fine-tuning the differential control of 
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gonadotropin secretion [31, 32], which are essential processes to ensure normal 

fertility.  

 

Photoperiodic information is encoded by the duration of nocturnal melatonin 

secretion [2], so we employed a paradigm where ovine PT cells were cultured 

and daily exposed to summer (NBS) or winter (BS) durations of melatonin 

treatments (8 vs. 16h, respectively) over a period of six days. PT cells from the 

same animals were exposed to both the matching and non-matching (i.e. 

opposite season) melatonin regimens, so we were able to differentiate direct 

effects of the melatonin signal and those resulting from its interaction with the 

circannual phase. We show that duration of melatonin exposure induced a 

striking differential expression of VEGF-A isoforms, with up-regulation of the pro-

angiogenic isoform VEGF-Axxxa by a short duration (i.e. 8h, summer; NBS) 

regimen, and up-regulation of the anti-angiogenic isoform VEGF-Axxxb by a long 

duration (i.e. 16h, winter; BS) regimen. This melatonin duration-dependent 

differential expression of VEGF-A isoforms was also recorded in cells obtained in 

the opposite season but at a slower rate, highlighting the requirement of PT cells 

to be entrained to the new signal. Thus, the results are consistent with the 

findings ex-vivo and demonstrate that pituitary micro-vascular remodelling is 

likely to be sensitive to the changing photoperiod and adapts to the physiological 

requirements of the animal in response to time-dependent melatonin signals 

acting on VEGF-A.  The mechanism through which melatonin switches splicing of 

the VEGF-A gene is not yet known, but alternative splicing of VEGF has been 
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shown to be regulated by activation of the RNA binding proteins SRSF1, SRSF2 

and SRSF6 by the kinases SRPK1 and Clk4 [33].  

 

We then investigated whether the seasonal regulation of VEGF-A in the PT could 

affect the function of the PD. We show that VEGF-A receptors are expressed in 

endocrine, endothelial and FS cells in the PD and that their co-localization is also 

under seasonal control, with up-regulation during the long days of the NBS. In 

addition, there was increased content of pro-angiogenic VEGF-A isoforms at this 

time of year and, conversely, increased content of the anti-angiogenic isoforms 

during the short days of the BS. Since the seasonal regulation of VEGF-A 

isoform expression was shown to be melatonin-dependent and, in accordance 

with previous studies [34], the PD was shown not to contain melatonin receptors, 

the varying content of VEGF-A isoforms in the PD is likely to rely on a paracrine 

mechanism [35]. The physiological significance of this was first revealed in the 

PD microvasculature, with increased endothelial cell proliferation demonstrated 

during the NBS. We show that this increase in angiogenesis at this time of the 

annual reproductive cycle is concomitant with an increase in the prevalence of 

FS cells containing VEGF receptors. FS cells are glial-like, non-endocrine cells 

that, via gap-junctions, generate a three-dimensional network throughout the 

pituitary to coordinate its function [36, 37]. These cells secrete an array of 

paracrine factors known to influence endocrine cells such as gonadotrophs and 

lactotrophs, and are a primary source of VEGF-A [35]. In seasonal breeders, FS 

cells are distributed throughout the PD and PT [38] and respond to photoperiodic 
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changes with a high degree of plasticity [39, 40]. In sheep, significant ultra-

structural changes together with enhanced number of intercellular adherens 

junctions and increased number of elongated processes surrounding endocrine 

cell clusters were reported during the long days of the NBS [41]. As FS cells do 

not contain melatonin receptors [42], our findings revealing up-regulation of 

VEGF receptor content in these cells at this time of year provide evidence for a 

role of VEGF-A in the dynamic changes of the FS cell network to control vascular 

plasticity via the regulation of its own production during the annual reproductive 

cycle. The seasonally regulated differential expression of VEGF-A isoforms in the 

pituitary gland of a short day breeder unravelled here, could also operate in long 

day breeders, such as hamsters and horses, as part of the mechanisms 

controlling their annual physiology. Indeed, preliminary results have provided 

evidence that, in Thoroughbred horses, VEGF-A isoform expression in both, the 

PT and PD regions of the pituitary, is also seasonally regulated [43], suggesting 

that this is a conserved mechanism for seasonal adaptation in photoperiodic 

mammals.  

 

Notably, we show that, in addition to its actions on the pituitary vasculature and 

FS cell population, VEGF-A has a potent prolactin releasing effect, and that this 

stimulation depends on time of exposure of the ligand and density of VEGF 

receptors in lactotrophs, which is increased during the long days of the NBS. 

Moreover, these stimulatory effects of VEGF-A on prolactin synthesis and 

release were accompanied by suppression of the gonadotrophic axis, as 
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revealed by inhibition of FSH gene expression. Melatonin was shown to mediate 

the photoperiodic regulation of prolactin secretion through a direct action within 

the pituitary gland [6]. Because MT1 melatonin receptors are selectively 

expressed in the PT, and this region is deprived of lactotroph cells [7, 8], a 

paracrine mechanism for the control of prolactin secretion from the PD is 

warranted. Activation of MT1 melatonin receptors in the PT is known to inhibit 

adenylyl cyclase, and pharmacological studies in sheep have shown that 

melatonin impairs forskolin-induced hypersecretion of cyclic adenosine 

monophosphate (cAMP), with inhibition of prolactin from the PD through the 

reduction of a paracrine signal [44]. However, although several compounds such 

as tachykinins, substance P and neurokinin A are produced by the PT and can 

stimulate prolactin release [45-47], characterization of the chemical identity of 

that signal has been elusive. Here we show that the stimulatory effects of VEGF-

A on prolactin were mimicked by conditioned media from PT cultures exposed to 

a NBS regimen of melatonin, and that these actions of PT media were blocked by 

a specific VEGF-Axxxa antibody, demonstrating that VEGF-A is a potential 

paracrine signal, and that melatonin-induced differential VEGF-A isoform 

production by the PT can regulate the seasonal production of both prolactin and 

FSH. Because these effects were also recorded in PD cells obtained in the 

opposite season (i.e. BS), albeit with a three-day lag required for adaptation, our 

results show that the photoperiodically-induced paracrine mechanism mediated 

by VEGF-A can ultimately override the circannual phase of the PD target cells, 

and entrain it to the new photoperiod. The increased VEGF receptor content in 
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the PD during the NBS plays a major role in mediating this process, and thus in 

the biological adaptation to a summer physiology, because VEGF-A treatments 

mimicking a NBS melatonin regimen showed a delayed response in BS cultures 

where the VEGF receptor content was reduced.  

 

Figure 5. Working model for a melatonin-induced, VEGF-A isoform dependent intra-pituitary 

regulation of seasonal physiology. In this model, the duration of nocturnal melatonin secretion 

induces differential synthesis and release of pro-angiogenic and anti-angiogenic isoforms of 

VEGF-A in the PT region of the ovine pituitary and in the vascular loops that connect this tissue 

with the infundibulum. A. In the short days of winter (BS), the long duration of nocturnal melatonin 

exposure up-regulates the secretion of the anti-angiogenic isoform VEGF-A164b at the expense 

of the pro-angiogenic isoform VEGF-A164a, resulting in reduced angiogenesis, reduced density 

of VEGF receptors in endocrine and FS cells of the PD, suppression of prolactin secretion and no 

inhibition of the gonadotrophic axis. B. In contrast, during the long days of summer (NBS), the 

short duration of nocturnal melatonin exposure up-regulates the secretion of the pro-angiogenic 

isoform VEGF-A164a at the expense of the anti-angiogenic isoform VEGF-A164b, leading to 

increased angiogenesis, increased density of VEGF receptors in endocrine and FS cells of the 

PD, stimulation of prolactin secretion and inhibition of the gonadotrophic axis. 

 

Entrainment of the PD cells to a specific phase of the circannual cycle explains 

why NBS cells failed to secrete prolactin in response to the first 8 hours of either 

a BS (16 h) VEGF-A regimen, or PT conditioned media from the BS. 

 

In rodents, melatonin-induced suppression of cAMP is followed by sensitization 

of adenosine A2b receptor signalling, leading to subsequent increase in cAMP 

and CREB phosphorylation [28]. Disruption of this signalling pathway in MT1 
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melatonin receptor knock out mice resulted in altered prolactin secretion, 

implicating cAMP and adenosine in this biological response to melatonin. Our 

results indicate that VEGF-A is likely to be downstream of that pathway to bring 

about the biological response. Indeed, cAMP signalling, CREB phosphorylation 

and adenosine are associated with angiogenesis [48, 49] via stimulation of 

VEGF-A [50], and whereas pharmacologically induced cAMP up-regulation and 

treatment with adenosine stimulated VEGF-A expression in smooth muscle cells 

[50], the selective knockdown of all VEGF-A isoforms blocked the actions of 

elevated cAMP on hippocampal neurons [51]. The melatonin induced VEGF-A 

regulation of prolactin secretion shown in this study will have an impact on the 

gonadotrophic axis in addition to its direct inhibition of FSH, because when 

combined with dopamine prolactin impairs the gonadotroph response to GnRH in 

a seasonal dependent manner in both long and short day breeders [52-54].  

 

Our results provide evidence for an intra-pituitary mechanism that responds to an 

external independent signal to regulate seasonal physiology. We propose a 

model where the duration of nocturnal melatonin secretion promotes alternative 

splicing of the VEGF-A gene leading to differential synthesis and release of pro-

angiogenic and anti-angiogenic isoforms of VEGF-A within the PT region of the 

pituitary gland and in the vascular loops that connect this tissue with the 

infundibulum (Figure 5). The resulting output of VEGF-A isoforms will have two 

complementary effects: 1) it alters the temporal vascular connection between the 

brain and the pituitary gland; and 2) it can be used as a paracrine signal to 
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modify the seasonal activity of endocrine cells in the PD that control reproduction. 

In this model, the long duration of nocturnal melatonin exposure during the winter 

up-regulates the secretion of anti-angiogenic isoforms VEGF-Axxxb at the 

expense of pro-angiogenic isoforms VEGF-Axxxa, resulting in reduced 

angiogenesis, reduced density of VEGF receptors in endocrine and FS cells, 

suppression of prolactin secretion and no inhibition of the gonadotrophic axis 

characteristic of the BS. Conversely, the short duration of nocturnal melatonin 

exposure during the summer will up-regulate the secretion of pro-angiogenic 

isoforms VEGF-Axxxa at the expense of anti-angiogenic isoforms VEGF-Axxxb, 

leading to increased angiogenesis, increased density of VEGF receptors in 

endocrine and FS cells, stimulation of prolactin secretion and inhibition of the 

gonadotrophic axis, characteristic of the NBS. Thus, the model permits a 

physiological adaptation to the seasonal requirements of the species by means of 

an angiogenesis dependent intercommunication between two regions of the 

pituitary.   

 

Materials and Methods 

Details of standard protocols are given in the supplementary materials. Ovine 

pituitary glands were obtained from ovary-intact females during the breeding 

season (BS -December ⁄January) and the non-breeding season (NBS -June 

⁄July). Animals were killed for commercial reasons at an abattoir and pituitaries 

removed immediately after death. During the BS, ewes were confirmed to be 

sexually active on the basis of a recently formed corpus luteum (CL) together 
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with the presence of a large follicle (> 2 cm). By contrast, in the NBS, ewes were 

considered to be anestrus when no CL but a corpus albicans was observed in the 

gonad, and follicles present were < 2 mm diameter.  

Expression studies 

Pituitaries were stained and RNA was extracted [55] using standard procedures 

(details of antibodies in supplementary Tables 1-2 and primers shown in 

supplementary Table 3). The term VEGF-Axxxb is used as the antibodies do not 

distinguish between the different VEGF-Axxxb isoforms (e.g. VEGF-A121b, VEGF-

A165b, VEGF-A189b). The term VEGF-A164b or VEGF-A165b is used when the 

methodology specifically describes the sheep 164 amino acid isoform (isoform 

specific RT-PCR, as the forward primers cross Exon 5 and Exon 7), or the 

human 165 amino acid isoform when recombinant protein is used). 

 

Primary cell cultures  

Ovine primary pituitary cultures were produced by careful dissection and 

dissociation of the pars distalis (PD) and pars tuberalis (PT) of 3-4 pituitaries as 

previously described 52. Previous studies have demonstrated the validity of this 

method for producing a reliable hormone output in response to exogenous 

hormone releasing secretagogues in vitro [52, 56].  

Both ELISA methods have been previously described [57-58,11]. A rhVEGF165b 

positive control was included in triplicate for the human VEGF-A ELISA, allowing 
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calculation of VEGF-Atotal concentration to compensate for reduced VEGF-Axxxb 

affinity, approximately 42%, as previously published [59]. Prolactin was 

measured by RIA using purified ovine prolactin for standards. A linear 

relationship was detected when the measured hormone concentration (ng ⁄ ml) 

was plotted against the concentration of diluted serum samples.  

Statistical analysis  

In both the BS and NBS cultures, a total of five separate experimental treatments 

were applied to PT cells, and nine experimental treatments applied to the PD 

cells. For each treatment, six wells were assigned, and the experiments were 

repeated independently three times in both seasons with reproducible results. 

The reported values represent the mean +/-SEM. The effects of season, 

experimental treatment and their interaction on the secretion VEGF-A and 

prolactin from ovine primary pituitary cell cultures were examined using ANOVA 

followed by Fisher’s post-hoc test. Because a season by treatment interaction 

was observed for each compound, separate ANOVAS were then used to 

examine the effects of experimental treatment within season. For all other 

variables one-way ANOVA was applied. All data were confirmed to be normally 

distributed by D’Agostino and Pearson omnibus normality test. Data were 

considered to be statistically significant when p<0.05; however, wherever 

detected, smaller log value (p<0.01, p<0.001) probabilities are reported.   
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Supporting Information 
 
S1 Materials and Methods 
 
EXPERIMENTAL PROCEDURES 

Ovine pituitary glands were obtained from ovary-intact females during the 
breeding season (BS -December ⁄January) and the non-breeding season (NBS -
June ⁄July). Animals were killed for commercial reasons at an abattoir (University 
of Bristol Abattoir, Langford, UK) and pituitaries removed immediately after death. 
During the BS, ewes were confirmed to be sexually active on the basis of a 
recently formed corpus luteum (CL) together with the presence of a large follicle 
(> 2 cm). By contrast, in the NBS, ewes were considered to be anestrus when no 
CL but a corpus albicans was observed in the gonad, and follicles present were < 
2 mm diameter.  

Immuno-fluorescent staining 

Pituitaries assigned for immunofluorescent staining (BS n = 6; NBS n =6) were 
fixed in Bouin’s solution for 24 hrs and then moved to 70% ethanol, and 

sectioned at 5m. Following sequential dehydration, sections were submerged in 
PBS-T (0.1% Triton-X) and then 0.01M sodium citrate buffer (pH6; Sigma) and 
heated for 3 min at full power, and 12 min at sub-boiling temperature. Sections 
were then washed in PBS-T (3 x 5 min), and blocked in 5% goat serum diluted in 
1% BSA PBS-T (0.01%) for 2 hrs at RT. A range of primary antibodies were used 
for double florescent immunohistochemistry (IMF), each diluted to a 
concentration determined during preliminary investigations (Table 1). Secondary 
antibodies were diluted as outlined in Table 2 and left to incubate on the section 
for 2 hrs at RT. 

cDNA synthesis and RT-PCR and RT-qPCR 

Pituitaries assigned for DNA analysis of VEGF-A expression were flash-frozen in 
liquid nitrogen following dissection. RNA Extraction was carried out by TRI 
reagent method, itself a modification from the original phenol/chloroform 
extraction developed by Chomczynski et al. [60]. Multiple pairs of primers were 
used to amplify the various VEGF-A isoforms (Table 3). To generate cDNA, 2μg 
of RNA and 2 units of RNase-Free DNase (RQ1, M6101, Promega) were 
incubated in a 1x reaction buffer solution for 1 hour at 37°C, before 1μl of DNase 
stop solution was added to terminate the reaction, and the sample was heat 
inactivated for 10 minutes at 65°C. The DNase-treated RNA sample was re-
quantified by using a Nanodrop ND-1000 spectrophotometer and 1μg of RNA 
was re-suspended to a total volume of 10μl. To this, 2μl of Oligo (dT)15 primers 

(C1101, Promega) and 1μl of hexamers (Random Primers, C1181, Promega) 
were added. The reaction mix was then incubated at 70°C for 10 minutes before 
immediately being quenched on ice for 5 minutes. With a final reverse 
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transcription reaction volume of 50μl, 400 units of MMLV reverse transcriptase 
(M5301, Promega), 40 units of RNasin ribonuclease inhibitor (N2611, Promega) 
and 0.5mM dNTPs (BIO-39049, Bioline) were added to the RNA/primer mix. The 
reaction was incubated for 1.5 hours at 37°C with a final 70°C inactivation step. 
Final concentration of fresh cDNA was determined by spectrophotometry. 

For RT-PCR, forward and reverse primer (1μM, see Table 3) were added each 
with 1.2mM MgCl2, 200μM deoxynucletide triphosphates, and 1 unit of Taq 
polymerase (Abgene, Thermo-Fischer, Epsom, UK). PCR was undertaken for 35 
cycles, at 95°C for 1 min, 60°C for 5 mins and 72°C for 5 mins with a 2 minute 
95°C denaturing step at the beginning and a 72°C extension step at the end. 
PCR products were run on 3% agarose gels containing 0.5 μg/ml Ethidium 
Bromide and visualized under a UV transilluminator.  For RT-qPCR, cDNA was 
added to 5.5μl of SYBRG fast track with Rox (Kappa Biosystems, Wilmington, 
Massachusetts, USA), 1µM of each primer in a total of 18µl. Samples were 
loaded in triplicate and a negative control of water was added. GAPDH was used 
as a reference gene. 

Primary cell cultures  

Ovine primary pituitary cultures were produced using a method previously 
described [61]. Briefly, the pars distalis (PD) and pars tuberalis (PT) of 3-4 
pituitaries were carefully dissected and incubated in a 0.1% collagenase D 
(Boehringer Mannheim, Mannheim, Germany) and hyaluronidase (Sigma-Aldrich, 
Poole, UK) solution in a shaking water bath at 37 °C for 75 min. The tissue was 
then manually dispersed in phosphate-buffered saline (Sigma-Aldrich) and the 
mixed pituitary cells re-suspended in M199 medium (Invitrogen, Paisley, UK) 
containing 10 mg ⁄ ml of insulin, 50 mg ⁄ ml of gentamicin, 100 IU ⁄ ml of penicillin-
streptomycin (Sigma-Aldrich) and 10% steroid-free lamb serum (Invitrogen), 
before being plated at a density of 200 000 cells ⁄ well in 24-well plates. The 
experiment was repeated three times each in the BS and NBS, totalling 9-12 
animals per season. During both the BS and the NBS, cells were maintained in 
culture for 6 days. M199 media was changed at each time point outlined below. 
Previous studies have demonstrated the validity of this method for producing a 
reliable hormone output in response to exogenous hormone releasing 
secretagogues in vitro [61, 62].  

PT cells were assigned one of the following treatments; i) Control - M199 media 
alone, changed daily at 5pm and 9am; ii) BS regimen – melatonin (1µM), 
administered at 5pm, removed at 9am, media alone administered from 9am until 
5pm; iii) NBS regimen - melatonin administered at 9pm, removed at 5am, media 
from 5am until 9pm. Three experimental groups of PT cells per season were 
used. Six wells were assigned per treatment, 3 wells used for RNA based 
assays, and 3 wells for protein based assays. In one repeat of each experiment 
per season, 1 well per treatment was used for IMF. PD cells were treated with the 
following treatments: i) Control (C) – M199 media alone, changed every day at 
5pm and 9am; ii) BS regimen - recombinant human VEGF-A165a  (1nM rh.VEGF-
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A165a  ), or 1µM melatonin, or 0.1µM thyrotropin releasing hormone (TRH), or 
conditioned media from PT cells treated as above  administered at 5pm, removed 
at 9am, and media alone administered from 9am until 5pm; iii) NBS regimen 
rh.VEGF-A165a  melatonin, or TRH, or conditioned media from PT cells treated as 
above, administered at 9pm, removed at 5am, media alone administered from 
5am until 9pm. Rh.VEGF-A165a  was administered at 1nM based on preliminary 
investigations that produced a VEGF-A dose response to melatonin from PT 
primary cells in culture.  
 
Total protein quantification 

Measurement of total protein was determined using the BioRad Protein Assay. 
Each sample was measured in triplicate by adding 10μl per well (from 1:10 to 
1:200 dilution, dependent on extract source) to a 96-well protein assay plate (BD 
Falcon). Serial dilutions of BSA (1000, 500, 250, 125, 62.5, 31.25, 15.125 and 0 
ng/ml) were used to generate a standard curve. BioRad Protein Assay Dye 
Reagent (BioRad, Hemel Hemstead, UK) was diluted 1:5 in PBS, and 200μl per 
well added to samples. Finally, the concentration of total protein was measured 
using the Opsys MR plate reader (Dynex, USA) at a wavelength of 595nm and 
490nm. 

Protein extraction and VEGF-A/hormone assays  
Protein extraction from cell cultures was carried out using RIPA buffer (50 mM 
Tris-HCl, pH 8.0, with 150 mM sodium chloride, 1.0% Igepal CA-630 (NP-40), 
0.5% sodium deoxycholate, and 0.1% sodium dodecyl sulphate; Sigma) with an 
additional cocktail of proteinase inhibitors and stabilizers (1:50 protease inhibitor 
cocktail (Sigma).  For both protein extracted from tissue and protein extracted 
from media, total VEGF-A and VEGF-A xxxb concentrations were determined by 
VEGF-A xxxb (DY3045, R&D Systems) and human VEGF-A (DY293B, R&D 
Systems) ELISAs. Protein was extracted from the media following the 
Trichloroacetic acid (TCA) precipitation procedure. Protein was extracted from 
tissue by homogenizing the tissue and adding a protease inhibitor cocktail, and 
RIPA buffer.  

Both ELISA methods have been previously described [63-65]. A rh.VEGF-A xxxb 
positive control was included in triplicate for the human VEGF ELISA, allowing 
calculation of VEGF-A total concentration to compensate for reduced VEGF-A xxxb 
affinity, approximately 42%, as previously published [66]. The concentration of 
endogenous prolactin in culture wells following the application PD treatments was 
measured by RIA using purified ovine prolactin for standards and iodination 
provided by A. F. Parlow (University of California, Los Angeles, USA) and the 
NIDDK National Hormone and Peptide Program (USA), and an anti-ovine PRL 
antibody (ASMcN R 50) provided by A. S. McNeilly (Medical Research Council 
Human Reproductive Sciences Unit, Edinburgh, UK), as previously described 
[61]. A linear relationship was detected when the measured hormone 
concentration (ng ⁄ ml) was plotted against the concentration of diluted serum 
samples.  
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Supplementary Figure 1. Relates to figure 1. A. cDNA amplified from the pituitary pars distalis 
(PD) and pars tuberalis (PT) from ewes by primers that detect both exon 8a and exon 8b 
containing isoforms. Both bands were purified and sequenced. B Chromatogram of sequence of 
PCR products. Upper band (left) shows splicing from exon 7 to exon 8a. Lower band shows 
splicing from exon7 to exon 8b. C. MT1 receptor was co-localized with VEGF-Axxxb staining, but 
not glial cells or endothelium (Scale bar = 20 m). 
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Supplementary Figure 2. Relates to figure 2. A. Pars tuberalis (PT) cells were isolated from 
sheep in the breeding season (BS) and stained for the melatonin receptor, VEGF-A and Hoescht. 
B. VEGF levels from cells cultured in the absence of melatonin.  There were no significant 
differences between VEGF-A levels from PT cells taken from the winter (blue, breeding season - 
BS), or summer (red, non-breeding season – NBS) ewes. C. VEGF levels did not alter over 6 

days in primary culture (Scale bar = 20m).  
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Supplementary Figure 3 Relates to figure 4. A. Pars distalis cells from the non-breeding 
season (NBS) treated with rhVEGF-A165a in a breeding season (BS) regimen (red) do not 
produce prolactin. In contrast, cells from the BS treated with rhVEGF-A165a in a NBS manner 
(blue) did produce prolactin. B. Conditioned media from pars tuberalis (PT) cells treated with a 
NBS melatonin regimen had no effect on FSH production in PD cells, irrespective of which 
season the cells were from. C. BS cells treated with BS, but not with NBS, PT conditioned media 
produced FSH mRNA. D. NBS cells treated with CM from PT cells exposed to a BS regimen of 
melatonin produced FSH. This was blocked by incubation with an antibody to VEGF-Axxxb 
( VEGF-Axxxb). *=p<0.05 compared with untreated. 

 
 

 

 

 

 

 

 

0 1 2 3 4
0

50

100

150

Days in culture

P
ro

la
c
ti
n

 (
n

g
/m

l)

Breeding Season (BS) Non-Breeding Season (NBS) 

Days in culture 

Switched rhVEGF-A165a regimen 

BS regimen 

* * 

BS cells 
NBS cells 

Untreated	

control CM control CM
0.0

0.5

1.0

1.5

2.0

P
ro

la
c
ti
n

NBS cells BS cells 

CM=NBS regimen 

F
S

H
 m

R
N

A
 (

%
 o

f 
G

A
P

D
H

) 

A B 

C D 

Control BS CM NBS CM
0.0

0.5

1.0

1.5

2.0

F
S

H
 m

R
N

A
 (

%
 o

f 
G

A
P

D
H

) *** ***

Control BS  CM BS CM
+αVEGF-Axxxb

0.0

0.5

1.0

1.5

2.0

F
S

H
 m

R
N

A
 (

%
 o

f 
G

A
P

D
H

) *** ***



Angiogenesis dependent seasonal control of pituitary function  
 

 7 

Supplementary Table 1. Primary antibodies 

Peptide 
Target  

Antigen Sequence Species raised 
in 

Manufacturer & 
Catalog code 
or reference 

Working 
concentration 

VEGF-Axxxa Raised against 
human pro-
angiogenic isoforms 
(exon 8a) 

Rabbit 
polyclonal  

Produced in 
house (MVRL) 

1mg/ml diluted 
1:1000 

VEGF=Axxxb Against human anti-
angiogenic isoforms 
(exon 8b; 56/8) 

Mouse 
monoclonal 

Produced in 
house (MVRL) 

2.5mg/ml diluted 
1:100 

Pan VEGF-A Against all isoforms 
of human VEGF-A 
(A20) 

Rabbit 
polyclonal 

Santa Cruz 
Biotechnology; 
sc-152 

200ug/ml diluted 
1:100 

VEGF 
receptor 2 

Soluble extracellular 
human VEGF-R2 

Mouse 
monoclonal 

Abcam; ab9530 1mg/ml diluted 
1:20 

Folliculo-
stellate cells 
(FSC) 

Recombinant full 
length bovine S-100 
protein 

Rabbit 
polyclonal  

Abcam; ab868 Concentration 
undetermined 
by manufacturer 
– dilution 1:1000 

Melatonin 
receptor 

C-terminus of 
human MT1-R 

Goat polyclonal  Santa Cruz; sc-
13186 

200ug/ml diluted 
1:100 to 2ug/ml 

Prolactin Raised against full 
length ovine 
prolactin 

Rabbit 
polyclonal 

Lifespan 
biosciences; LS-
C124425 

Unknown 
manufactures 
concentration; 
1:5000 dilution 

Proliferation 
marker  

Proliferating cellular 
nuclear antigen 
(PCNA) 

Mouse 
monoclonal 

Invitrogen; 08-
0110 

2 ug/ml 

Endothelial 
cell marker 

Isolectin b4- against 
using human blood 
group B erythrocytes 

Lectin from 
Bandeiraea 
simplicifolia - 
Isolectin B4 
(BSI-B4), 
peroxidase 
conjugate, 
lyophilized 
powder 
 

Sigma Aldrich; 
L5391 

200ug/ml 

Endothelial 
cell marker 

Raised against 
murine CD31 

Rabbit 
polyclonal 

Abcam; 
ab28364 

2ug/ml 

Endothelial 
cell marker 
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Supplementary Table 2. Secondary antibodies 

Species 
raised 

Species 
against 

Colour 
(wavelength) 

Company Catalogue 
number 

Goat Mouse Green (488) Life 
technologies 

A-10680 

Donkey Rabbit Red (555) Life 
technologies 

A-31572 

Streptavidin NA Green (488) Life 
technologies 

S11223 

Streptavidin NA Red (555) Life 
technologies 

S21381 

 

Supplementary Table 3. Primers  

Name Sequence 

VEGF-A FWD 1 CAAATGTGAATGCAGACCAAAG 

VEGF-A REV 1 TGTGTCAGTCTTTCCTGGTGA 

VEGF-A FWD 2 CTCACCAAAGCCAGCACATAG 

VEGF-A REV 2 GACACAGAACTACCCATAGCCG 

VEGF-A FWD 3 CTCACCAAAGCCAGCACATAG 

VEGF-A REV 3 ACACAGAACTACCCATAGCCG 

VEGF-A exon 1 
FWD 

CGG TGGTACTTGAAAGAC 

VEGF-A exon 
8b REV 

CAGAGTGGTCCTTTCTGACTGTGTCTTGCTGGGTATCGGCGGC 

VEGF-A exon 7 
FWD 

ATAAAGCAAGGCAAGAAATCCCTG 

VEGF-A exon 7 
FWD2 

GAAATCCCTGTGGGCCTTGCTAGA 

 


