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Abstract

It is understood that the Skyrme model has a‘topologically interesting baryonic
excitation which can model nuclei. So far nestable knotted solutions, of the Skyrme
model, have been found. Here.we investigate the dynamics of Hopf solitons decaying
to the vacuum solution in the Skyrmesmodel. In doing this we develop a matrix-
free numerical method to identify’the minimum eigenvalue of the Hessian of the
corresponding energy functional. We also show that as isospinning Hopf solitons
decay, they emit a cloud ofiisospinning radiation.

1 Introduction,

The Skyrme model [1]is atnonlinear theory of pions which was identified by Witten as a
low energy effective modelof QCD [2, 3]. The model has a conserved topological charge
that is interpreted asithe baryon number B, and the minimal energy static solutions for
each integer Bsare topological soliton solutions called Skyrmions.

No known stable knotted solutions have been found in the classical Skyrme model.
This is because, unlike the Skyrme-Faddeev model [4, 5], the model does not possess the
necessary structure to stabilise such configurations. Here we investigate how Hopf soli-
tons embedded in the Skyrme model dynamically decay into the vacuum solution. This
analysisrequiresideveloping an understanding of the geometry, about a point, of configu-
ration spaced Similar analysis has recently been performed for the Skyrme model, namely
understanding the vibrational modes of the Skyrmions which correspond to Lithium-7
[6] and Oxygen-16 [7]. The format of this paper is as follows: We introduce the Skyrme
model." We then numerically show that the first seven Hopf solitons are solutions of
Skyrme model, but not minimum energy solutions. Next we discuss how the Hopf soli-
tons decay into the vacuum solution, where we introduce a matrix-free numerical method
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to identify the prominent direction of breakup. At the end we discuss how the Hopf
solitons emit a cloud of isospinning radiation, followed by a short conclusion.

2 The Skyrme model

The Skyrme field, U(x), is an SU(2)-valued scalar and can be expressed as U(t, x) =
o(t,x) I +im(t, x) -7, where o(t, ) is a constraint field, 7 (t, ), mo(t, &), m3(t, ) are the
three pion fields, 7 = (71, T2, 73) are the three Pauli matrices and the gonstraintig?+m-m =
1. Here it is convenient to represent the Skyrme field as a four component unit vector
o(t,x) = (o(t,x), m(t,x), m(t,x), m3(t,x)), where ¢(t,x) - p@y®) = 1. The model is
Lorentz invariant and, in so-called Skyrme units, it can be defined"by the Lagrangian
density,

1 1
L=0up- )= (0, 0" )" + 5 (0,0 D)0 0" b). M
The static energy functional associated with this agrangian density is,
E= s [ (0000 + j00f09P S5t 007 ) )
T 1272 ARG EIPNGY A -

At fixed time, ¢(x) is a map ¢ : R® =083, where ¢ — (0,0,0,1) at spatial infinity;
this is different to the boundary condition usually chosen for the Skyrme model and is
chosen to match the boundary cemndition of the Skyrme-Faddeev model. This boundary
condition compactifies R3U{oo} toiS?. Hetiee,a finite energy configuration ¢(x) extends
to a map ¢(x) : S* — S3, and belongsito a homotopy class of 73(5?) = Z and therefore
is indexed by an integer B &.Z, called the’baryon number. B is also the degree of the
map ¢(x) which can be explicitly, calculated as

1
B = /b(éngm = 2771_2 5abcd¢a81¢bag¢083¢>d d3$, (3)

where b(x) is the baryou density. Static Skyrmions are solutions of the equations of
motion, which are derived from variation of energy, 0E(¢,) = 0. They are the minimal
energy solutions.for eagh value of B. In the figures of Skyrmions we plot level-sets of
baryon density b(x). The level sets are coloured as in [8], the centres of the red, green
’ 2%’ 4%
white region is where 73 = 1 (the boundary) and the black is where m3 = —1 (centre
of the Skyrmion)! Thisis the pion colouring scheme used throughout this paper and an

example is shown in figure 1 of a B = 1 Hedgehog Skyrmion.

and blue regions are where 73 = 0 and tan™! (:—f) =0 respectively. The unseen
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Side Top

Figure 1: B = 1 Hedgehog Skyrmion.

~

The Skyrme-Faddeev model [4, 5] is similar to the Skyrme medel but the field maps
to the 2-sphere not the 3-sphere, such a map belongs to a Hototopy class of m3(5?) = Z.
Configurations, plotted as preimages of a point on the target two sphere, in R? are knotted
string-like solitons [5]. Importantly, if we set o(t, ) = 0.in equation (1), we gain the
Skyrme-Faddeev model (with a different normalisation,multiplying the solutions in [5]
by 83ﬁ yields the energy in the chosen Skyrme units). In thisicase the field ¢ maps to an
equatorial sub unit 2-sphere S? C S3. The Skyrme-Faddeev minimum energy solutions
have been known for a long time [5, 9]. Here we are inter%ted in the stability of Hopfion
like solutions in the Skyrme model. A Skyrmion ig a topelogical soliton, where the image
of the map is the entire 3-sphere and he image for a Hopfion, in the Skyrme-Faddeev
model, is the 2-sphere. In both cases thelimages are not homotopic to a point, and
the solitons are stabilised for all continuous deformations. Unlike Skyrmions, and the
conventional Hopfions, the Hopfions.in the Skyrme model are not energetic minima in
each topological sector. The imagerof the field does not cover the entire 3-sphere. We
call this degree quasi-topology and we label the degree of each configuration as Q' € Z.

The Hopfion-like solutions are.called quasi hopfions.

3 Numerical sol{ﬂ:ions

Before studying the decayfof quasi hopfions in the Skyrme model, we need to attain
static quasi hopfion, solutions in the Skyrme model. Taken from the Skyrme-Faddeev
model, [5, 9], initiab.conditions for @ = 1 — 7 are energetically relaxed on a lattice of
100 x 100 x 10Qswith spacing 6z = 0.1, with derivatives approximated by fourth-order
accurate finite differences. This box and lattice spacing was found to be optimal. This
produces solutiens, ¢, (&), which are extrema of the energy functional.
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Q,:5 = QI:7

Figure 2: Hopfions in the Skyrme model, tubes are level sets of m3 &~ —1 and colouring is
due to the pion fields as in the text.

All of these solutions are shown in figure 2, it mlist be'oted that these are not global
minima but are saddle post solutions and they can all be continuously deformed into the
vacuum solution. These solutions are thersame as'those found in the Skyrme-Faddeev
model [5] with o(x) =0V «.

4 Breakup modes

Y.M. Cho, B.S. Park and P.MaZhang [10], tised an energetic argument to conjecture that
the ' = 1 quasi hopfion weuld breakup into a Skyrmion anti-Skyrmion pair (baryon
anti-baryon pair). It is correct that the Q" = 1 quasi hopfion, with energy £ = 4.54 in
Skyrme units, has more energy than‘an infinity separated Skyrmion anti-Skyrmion which
has energy E = 2.464. Hewever, it is not immediately apparent that quasi hopfions
would decay in a direction in configuration space, C, such that the domain would cover
the target space."Where theseonfiguration space C is defined as,

C:={¢  R® = S* C R*p — (0,0,0,1) as |z| — oo}

Anotherswaynto understand this is to consider the quasi hopfion configurations as

an equatorial #wo_sphere on the 3-sphere. Such a 2-sphere can be continuously shrunk
moving on the 3-sphere, until it contracts to the point which represents the vacuum so-
lution= Thisthemotopy would be such that every preimage has baryon density (Jacobi
determinant) zero, and hence no region of Skyrmion or anti-Skyrmion.
To_test how/these quasi hopfions break up we first add a small arbitrary periodic pertur-
bation, v,(x) = (0.0001 sin(z),0,0,0), to a solution ¢(x) = ¢ () + v,(x) (with v, =0
at the boundary). This configuration is then normalised such that ¢(x)-¢(x) = 1. Using
this.as‘an initial condition, in a full time evolution simulation, produces the configurations
in figure 3.
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Figure 3: Field configuration of a simulation with initial condition ¢ =.¢, + v, when the
Skyrmion anti-Skyrmion is formed. The left image show a level set of w3 ~ —1 (hopfion).
The central image show the hopfion and the Skyrmion anti-Skyrmion in the centre of the
quasi hopfion. The right most image shows the Skyrmion and anti-Skyrmion in isolation.
All of the colours indicate the pion fields.

This simulation flows to a configuration with [ [b(x)|d®z.~ 2 and then breaks down.
This implies that the quasi hopfion does break upiinto a Skyrmion anti-Skyrmion pair,
which then annihilate. Also, the colouring inffigure 3yshow that the Skyrmion anti-
Skyrmion pair cover the entire target 3-sphere. Fandaméhtally this does not show that
the quasi hopfion generically breaks up.into a Skyrmion anti-Skyrmion pair. A similar
Skyrmion anti-Skyrmion configuration hag,been eomsidered in [11] as a sphaleron con-
figuration, the Skyrmion antiSkyrmion configuration presented here does not have the
necessary relative orientation to prevent the\Skyrmions from annihilating and hence it is
not a sphaleron configuration.

To understand how these quasi hopfions decay, we need to understand the directions
of greatest reduction in energy about a peint in configuration space. We are interested in
critical points in the configuration space which correspond to solutions of the equations
of motion. More particularly, pointsig, (x) such that d (¢, (x)) = 0; namely solutions of
the equations of motion of ‘E. To find the prominent break-up perturbation ¢ = ¢, + v
we need to find v in Cavhichvignthé greatest reduction in energy about ¢, with v — 0
as |x¢| — oo. To do this wé expand the energy at ¢, as E(¢) = E(@,) + vTVE(p,) +
TwTHg(p,)v + .4, where'Hp, is the Hessian of E(¢,). We must include at least second
order terms becausey by the fundamental theorem of calculus, vTVE(¢,) = 0 for all
v. The usual proeedure.isito find the smallest eigen-pair of the Hessian, Hg. To do
this numerically on aMlattice of 100 lattice the Hessian matrix would be a 4 million
by 4 million‘matrix. Finding the eigenvalues of such a large (partially sparse) matrix is
limited by'the memory of most computers. Populating such a matrix is also very involved.
To proceed we make use of the fact that the second directional derivative of E in v is
D3, E(¢) =" Hg(¢)v. So finding v which minimises D3, E(¢,) will produce the optimal
perfurbation.  To find the v which minimises D% E(¢,) we numerically implemented a
gradient flow algorithm,

0 o

b=~ DyE(9,). @)

Ut
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It should be noted that this procedure is the same as linear stability, where one takes the
equations of motion (first order directional derivative), linearises them to give the Hessian,
Hp, (second order directional derivative). One can then find the smallest eigenvalue A
by rearranging the eigenequation to give A = U;ﬁ{’f}v, which can be minimised by.finding
the v which minimises vTHgv. As shown previously, this is the same as dinding the'v
which minimises D2 (¢,). The main advantage of this method, over the expli¢it Hessian
matrix-type approach, is that it does not require an explicit formulatien of the Hessian
matrix, it is known as a matrix-free method. Along with the gradient flow we include
the constraints (¢, + v) - (¢, +v) = 1 and max(v) < const, these conditions stop v from
having a large component pointing towards the centre of the target 9% C R&.

Performing this gradient flow indeed showed that the preferred break-up direction is
for the quasi hopfion to decay into what seems like a Skyrmion anti-Skyrmion pair, but
aligned differently to the quasi hopfion, as shown in figure 40As shown later these decay
products are in fact not a Skyrmion antiSkyrmion pair, here we,call them a lump and
anti-lump.

Figure 4: Optimal perturbatiombreak-up, ¢ = ¢+ v, for the ' = 1 quasi hopfions. The
left image is of the quasi hopfion, the purple and yellow lumps are positive and negative
baryon density respectively.. The central image shows the quasi hopfion and level sets
of positive and negativerbaryon density. The right images shows level sets of positive
and negative level sets of baryen density. Red, blue, green, white and black colouring
indicates the pion fields.

ConsideringtheHessian’s eigenequation Hpv = Awv, it is apparent that v and —v have
the same eigenvalue. Hence, the configuration space is symmetric in the plus and minus
v direction. “Also, the @’ = 1 quasi hopfion is invariant under a combined isorotation, I,
and spacial rotation;"D, ¢ (Dx) = I¢p (x). So, considering an isorotation and spacial
rotation of the eigénequation, we see that Hg(I ‘¢, (Dx))'v(Dx) = \[~'v(Dx). This
gives that Hg (o)) 'v(Dz) = A\[~'v(Dzx), hence X is invariant under the combined
isorotation and rotation when ¢, (Dx) = I¢, (). The same analysis can be performed
for 1.< @' <7 and is shown in figure 5.

Page 6 of 11
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Figure 5: Optimal perturbation break-up, ¢ = ¢, + », for the 1< )’ < 7 quasi hopfions.
Purple and yellow lumps are positive and negative baryon density Skyrmions respectively.

Again, the analysis does not produce any saddle peintgmultiSkyrmion configurations.
The @' = 2 quasi hopfion breaks up into four lumps, twoe with positive baryon density and
two with negative baryon density. Thé €' = 3 breaks up into two bent toroidal lumps,
one with positive baryon density and one with negative baryon density. The @ = 4
breaks up into a pair of toroidal lumps alignedwith the symmetry axis of the ) = 4
hopfion. Interestingly the ) =(83657 all break up into a pair of lump like solutions,
where the lumps are located near tothe quasi hopfions crossings.

5 Imaging quasi-hepfion break up

The images in figure 3 of the arbitrary perturbation and in figure 4 of the optimal per-
turbation are similar. Howe\%r, ifwe use the optimal perturbation as an initial condition
for a full time simulation,/we find that the maximum value for [ |b(z)|dz is 0.91 and
not 2. The two decays therefore have a subtle difference. To understand the difference
we can consider howithe image of the quasi hopfion unwraps off the target 3-sphere. To
see this, we comsider the,2-sphere defined by, 73 = m3/N, 7y = ma/N,6 = /N, where

72+ 71'% + o2 and neglect points where m; = 1. Figure 6 shows the points of
the perturbed quasi hopfion on this 2-sphere where blue dots denote the points which
have zerofbaryon detisity, b(¢(x)) = 0 (zero Jacobi determinant), and black dots denote
the points which have non-zero baryon density, b(¢(x)) # 0 (Jacobi determinant). This,
figure 65 shows how the quasi hopfion unwraps off the 2-sphere.
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Figure 6: Optimal perturbation break-up, ¢ = ¢, + v, for the Q.= 1 quasi hopfion.
Points plotted on a sub sphere of the target space, black b(¢(@)) # Oxblue b(¢(x)) = 0.

At time slices chosen to show the unwrapping.

Figure 6 clearly shows that under time evolution the quasi hepfion expands to cover
one half of the (7,73, 6)-sphere, and then contracts to the vacuum point. It happens
in such a way that the boundary conditions are préserved. “Also, each black point has
nonzero baryon density (Jacobi determinant) but,the sum ot the absolute value of the
baryon density (Jacobi determinant) sums to ~_l. Hence because the preimages do not
cover the entire two sphere, the decay products are not @ Skyrmion antiSkyrmion pair.
Figure 7 shows the same analysis for the previoug arbitrary perturbation, v,.

e e
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Figure 7: Arbitrary perturbation break-up, ¢ = ¢, + v,, for the Q' = 1 quasi hopfions.
Points plotted omafsub sphere‘of the target space, black b(¢(x)) # 0, blue b(¢(x)) = 0.

At time slices chesemto show the unwrapping.

Figure 7 shows that, for the arbitrary perturbation, the field evolves to cover the entire
(71, T3, 0 )-spheres It does this such that the sum of baryon density (Jacobi determinant)
is zero, but the integral of the absolute baryon density equals 2. This indicates that
the two break ups are distinctly different. Yet taking the inner product of the arbitrary
perturbationwgwith the optimal perturbation v gives a value of ~ 0.0003. This shows
that the arbitrary perturbation has a small component in the same direction, in C, as the
optimal perturbation. Hence, they can be understood as similar perturbations, which
propagate in slightly different directions towards the same minimum. The optimal per-
turbation goes to the vacuum via a lump anti-lump pair configuration, while the arbitrary
perturbation passes near to a Skyrmion anti-Skyrmion configuration.
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6 Isospinning quasi hopfions

To relate the B = 1 Skyrmion to the proton or neutron requires including isospin. In
the Skyrme model isospin acts on the pion fields, and has had some success in'modelling
nucleon scattering with spinning Skyrmions [12]. To understand the consequenceof
isospinning quasi hopfions we implemented a full field simulation with a rigidly isospinning
quasi hopfion as initial condition,

m3(t, @) = m(x), mo(t, x) = ma(x) cos(wt) — m () sin(wt). (5)

The full field simulation used a leap frog algorithm, discretised on afumerical lattice, to
evolve the field equations. The initial conditions were derived from the above configura-
tion for ¢ = 0 and ¢ = d¢. This spinning, (5), is analogous to the moére common SU(2)
formulation U (t, z) = A(t)Up(x) AT (t) where A(t) = exp('73) and uch an isospin causes
the m; and 7 components to isospin into each other, where.w = 0.28 is chosen to give
the correct spin and isospin value for the B = 1 Skyrmion te medel a neutron [12]. Using
this as an initial condition gives rise a configuratien which is'stable to perturbation for a
long time, this is shown figure 8. It must be noted,that, isospinning Skyrminos are only
stable if a pion mass term is included (e.g. V(@) =m2(1 & o)), such a term would cause
the quasi hopfion to shrink and is therefore neglected here.

Figure 8: Isospinning )’ = 1 quasi hopfions.

The isospin, similar to the spherically symmetric B = 1 Skyrmion, also causes a
spatial rotation. This is apparent because the colours twist around the quasi hopfion,
so as thencolour rotate into each other they cause the ring to spin. Hence, isospin is
equivalent to spin. This produces two angular momenta, one about each circumference of
the quasi hopfion. The conservation of these angular momenta could lead to an enhanced
life time of the perturbed hopfion. As the quasi hopfion decays it radiates in the form of
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kinetic energy, ¢ . ¢ This kinetic energy is shown isospinning in figure 9. This cannot
follow the same breakup mode as in the non isospinning case, because the Skyrmion
and anti-Skyrmion would seem to spin in the same direction. This would cause a large
gradient of the field in-between them, and hence a large energetic cost.

N

=0 =1

Figure 9: Plots of an isospinning quasi hopfion for arbitrary time steps t’. The trans-
parent is a level set of the isospinning quasi hopfiongthe.nontransparent is a level set of
pion radiation @ - @. It can be seen that the radiation grows and the colours rotate as
isospinning radiation.

This radiation can be interpreted as massless/pions being classically radiated as the
isospinning hopfion decays.

7 Conclusion

In this work we have identified the break up of ()’ = 1 — 7 quasi hopfions, particularly the
single @ = 1 quasi hopfion.h»We have disegvered that the direction of greatest reduction
in energy corresponds to the formation of a Skyrmion lump anti-Skyrmion lump pair. But
there is a higher energy perturbation.which gives rise to a Skyrmion anti-Skyrmion pair.
We have also observed that isospinning quasi hopfions break up in to a cloud of spinning
radiation, which can bg understood as a cloud of isospinning classical pions. Mainly we
have developed a matrix-free approach, based on geometry, that finds the eigenvector of
the Hessian which gorresponds to its minimum eigenvalue. This is a general technique,
which could be applied to other field theories which have nontrivial breakup modes.
Future work wouldsbe torunderstand the eigenvector of the second smallest eigenvalue of
the Hessian. If the second smallest eigenvalue is also negative it would show that there
is also a secondy higher energy, breakup perturbation.
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