
 Deakin, T., Pennycook, J., Mallinson, A., Gaudin, W., & McIntosh-Smith, S.
(2017). The MEGA-STREAM benchmark on Intel Xeon Phi processors
(Knights Landing). IXPUG Spring Meeting, Cambridge, United Kingdom.

Publisher's PDF, also known as Version of record

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via IXPUG at
https://www.ixpug.org/events/spring-2017-emea. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://research-information.bris.ac.uk/en/publications/the-megastream-benchmark-on-intel-xeon-phi-processors-knights-landing(1568f3ab-9655-411d-a42c-cf6b580d6118).html
https://research-information.bris.ac.uk/en/publications/the-megastream-benchmark-on-intel-xeon-phi-processors-knights-landing(1568f3ab-9655-411d-a42c-cf6b580d6118).html

The	MEGA-STREAM	benchmark	
on	Intel®	Xeon	Phi™	processors	

(Knights	Landing)
Tom	Deakin,	University	of	Bristol,	UK

John	Pennycook,	Intel	Corporation

Andrew	Mallinson,	Intel	Corporation

Wayne	Gaudin,	UK	Atomic	Weapons	Establishment

Simon	McIntosh-Smith,	University	of	Bristol,	UK

The	University	of	Bristol	is	an	Intel®	Parallel	Computing	Center

IXPUG	Annual	Spring	Conference	2017 1

A	(very)	brief	history
• SNAP	mini-app	(LANL)	isn’t	getting	close	to	peak	MCDRAM	memory	bandwidth	on	Knights	

Landing.
• No	progress	with	SNAP	code	directly.
• Yet,	GPU	version	of	SNAP	does	exploit	available	memory	bandwidth	[1],	[2].

• Not	sure	where or	what	the	problem	is	in	the	sweep	kernel.
• dim3_sweep.f90
• Data	access	is	stride	1.
• Looks	similar	to	STREAM	(which	does achieve	good	bandwidth	to	MCDRAM).

• Create	a	mini-mini-app!
• Start	simple,	and	add	complexity	from	SNAP.
• Keep	going	until	representative,	solving	each	problem	as	we	go,	applying	solutions	to	SNAP.

• Use	OpenMP for	data	parallelism.

• Open	source,	GPL-3.0,	available	at	GitHub:
https://github.com/UK-MAC/mega-stream

IXPUG	Annual	Spring	Conference	2017 2

Estimating	bandwidth
• Throughout	we	use	estimated bandwidth	rather	than	measured bandwidth.

• The	STREAM	benchmark	takes	a	similar	approach.
• Look	at	source	and	count	up	read	and	writes	by	hand	to	create	a	model.
• Model	is	generally	oblivious	to	the	cache	effects:

• E.g.	Once	a	byte	is	read	any	future	reads	are	“free”.
• We	do	not	assume	“read	for	ownership”	(RFO).

• A	write	is	counted	once,	as	if	it	was	a	streaming	store.
• RFO	is	a	hardware	detail;	it’s	not	a	“useful”	movement	of	memory	in	the	context	of	

the	model.
• Assume	reads/writes	recounted	each	timestep.
• Measured	bandwidth	would	be	that	reported	by	Intel®	VTune™	Amplifier	

XE.
• Comparison	between	these	numbers	can	be	useful	(see	Conclusions	for	rule	of	

thumb).

IXPUG	Annual	Spring	Conference	2017 3

Experimental	setup
▪ Platform:

▪ Intel®	Xeon	Phi™	7210	Processor
▪ 1.30	GHz
▪ 16	GB	MCDRAM	configured	in	Quad/Flat,	96	GB	DDR	(unused)
▪ 1.6	GHz	mesh,	6.4	GT/s
▪ CentOS	7.2,	XPPSL	1.5.1

▪ Compiler	and	Flags:
▪ Intel®	C++	Compiler	17.0.2
▪ Transparent	huge	pages	enabled
▪ -O3 –xMIC-AVX512 –qopt-report=5 –g –debug inline-

debug-info

▪ Launch	Command:
▪ OMP_NUM_THREADS=64 OMP_PROC_BIND=true

numactl –m 1 ./mega-stream ${OPTIONS}

IXPUG	Annual	Spring	Conference	2017 4

Version	0.1
• Original	hypothesis	was	streaming	many	arrays	(with	different	sizes)	causes	

memory	bandwidth	limits	not	to	be	reached;	resulted	in	latency	becoming	a	
dominant	factor.

• Start	with	the	Triad	kernel	from	STREAM,	and	add	more	arrays	with	different	sizes:
#pragma omp parallel for
for int i = 0; i < L_size; i++)
{

r[i] = q[i] +
a[i&S_mask]*x[i&M_mask] + b[i&S_mask]*y[i&M_mask]
+ c[i&S_mask]*z[i&M_mask];

}

• q	and	r	are	large;	x,	y	and	z	are	medium;	and	a,	b	and	c	are	small	in	size.

• “&	mask”	is	equivalent	to	“%	size”	as	we	assume	arrays	are	powers	of	2	in	length.

IXPUG	Annual	Spring	Conference	2017 5

Initial	performance	analysis
▪ None	of	the	results	are	close	to	the	490	GB/s	from	STREAM.
▪ Code	is	being	vectorised,	but,	gathers	are	generated	even	though	most	

loads	are	contiguous.
▪ Modular	arithmetic	(%)	means	indices	might	wrap	around.

▪ Optimised via	alignment	and	strip	mining	loop,	and	streaming	stores.
▪ Really	helps	“small“,	which	was	instruction	(gather)	bound.
▪ Only	one	write	stream,	so	“large”	is	dominated	by	read	bandwidth.
▪ Little	change	with	default	(mixed)	sizes.
▪ With	“medium”,	arrays	fall	out	of	cache.

▪ Measured	bandwidth	from	Intel®	VTune™	Advisor	XE	is	much	higher.
▪ We	should	probably	have	picked	up	on	this…

▪ Little	improvement	when	these	optimisations	are	applied	to	SNAP.	L

IXPUG	Annual	Spring	Conference	2017 6

Problem size Array	sizes Original	GB/s Optimized	GB/s

Default r,q: 2^27,	x,y,z:	2^23,	a,b,c:	128 104.0 101.3

Small r,q: 2^27,	x,y,z,a,b,c:	128 197.0 407.0

Medium r,q: 2^27,	x,y,z,a,b,c:	2^23 69.6 70.3

Large r,q,x,y,z,a,b,c: 2^27 333.3 340.1

Version	0.3

▪ Needed	to	better	capture	SNAP	data	access	patterns.
▪ Make	benchmark	code	more	representative	of	SNAP.

▪ Add	additional	loops,	changing	accesses	into	multi-dimensional	
arrays.
▪ Used	an	indexing	macro,	but	could	also	cast	to	a	VLA.

▪ Add	updates	+=	to	“medium”	sized	arrays.
▪ Creates	an	interesting	reuse	pattern.

▪ Add	a	reduction	over	the	inner-most	loop.

IXPUG	Annual	Spring	Conference	2017 7

IXPUG	Annual	Spring	Conference	2017 8

#pragma omp parallel for

for (int m = 0; m < Nm; m++) {

for (int l = 0; l < Nl; l++) {

for (int k = 0; k < Nk; k++) {

for (int j = 0; j < Nj; j++) {

double total = 0.0;

#pragma omp simd reduction(+:total)

for (int i = 0; i < Ni; i++) {

/* Set r */

r[IDX5(i,j,k,l,m,Ni,Nj,Nk,Nl)] =

q[IDX5(i,j,k,l,m,Ni,Nj,Nk,Nl)] +

a[i] * x[IDX4(i,j,k,m,Ni,Nj,Nk)] +

b[i] * y[IDX4(i,j,l,m,Ni,Nj,Nl)] +

c[i] * z[IDX4(i,k,l,m,Ni,Nk,Nl)];

/* Update x, y and z */

x[IDX4(i,j,k,m,Ni,Nj,Nk)] =

0.2*r[IDX5(i,j,k,l,m,Ni,Nj,Nk,Nl)] - x[IDX4(i,j,k,m,Ni,Nj,Nk)];

y[IDX4(i,j,l,m,Ni,Nj,Nl)] =

0.2*r[IDX5(i,j,k,l,m,Ni,Nj,Nk,Nl)] - y[IDX4(i,j,l,m,Ni,Nj,Nl)];

z[IDX4(i,k,l,m,Ni,Nk,Nl)] =

0.2*r[IDX5(i,j,k,l,m,Ni,Nj,Nk,Nl)] - z[IDX4(i,k,l,m,Ni,Nk,Nl)];

/* Reduce over Ni */

total += r[IDX5(i,j,k,l,m,Ni,Nj,Nk,Nl)];

} /* Ni */

sum[IDX4(j,k,l,m,Nj,Nk,Nl)] += total;

} /* Nj */

} /* Nk */

} /* Nl */

} /* Nm */

Loop Name Default	size

Nm outer 64

Nj,	Nk,	Nl middle 16

Ni inner 128

Initial	results

▪ The	code	doesn’t	get	good	useful	bandwidth	out	of	the	box.
▪ We’re	already	aligning	to	2MB	pages	and	it	does	vectorise.

▪ Using	–qopt-streaming-stores=always helps.
▪ But	we	probably	don’t	want	streaming	stores	for	arrays	with	reuse…

▪ Code	generated	peel	loop	for	r	only.

▪ Wide	variation	depending	on	problem	size.

IXPUG	Annual	Spring	Conference	2017 9

Version Bandwidth	GB/s

Initial 75.2

+	streaming	stores 107.1

Optimisations (1/3)

▪ Streaming	stores:
▪ Only	want	a	streaming	store	for	r,	other	arrays	have	reuse.

▪ Enable	them	with	a	compiler	directive:
#pragma vector nontemporal(r)

▪ Prevents	r	data	polluting	the	cache.
▪ No	“read	for	ownership”	so	array	simple	written	to.

▪ Arrays	need	to	be	aligned	for	streaming	stores.
▪ Baseline	aligned	to	2MB	pages.
▪ Could	ensure	generate	aligned	instructions	via	OpenMP aligned	clause	but	no	

penalty	on	KNL	for	using	unaligned	loads	on	aligned	data.

IXPUG	Annual	Spring	Conference	2017 10

Optimisations (2/3)

▪ Cache	blocking:
▪ x,	y	and	z	arrays	are	reused	in	the	middle	and	outer	loops.

▪ We	want	them	to	be	cached	for	the	inner	i loop.

▪ For	sufficiently	large	Ni	*	Nj *	Nk,	x	will	fall	out	of	cache.
▪ By	default,	x	is	128	*	16	*	16	*	8	bytes	=	256	KiB.

▪ L2	cache	is	512	KB	per	core,	so	x,	y	and	z	will	not fit	in	cache!

▪ Restructure	the	loops	and	data	to	promote	data-reuse:
▪ Split	Ni	loop	into	groups	of	vectors	/	cache	lines.

▪ Add	an	extra	loop,	and	an	extra	dimension	to	all	arrays	which	index	i.

▪ Decreases	the	size	of	data	we	must	keep	in	cache	to	VLEN	*	Nj *	Nk.
▪ By	default:	8	*	16	*	16	*	8	=	16	KiB.

IXPUG	Annual	Spring	Conference	2017 11

Optimisations (3/3)

▪ Software	prefetching:
▪ Intel®	VTune™	Amplifier	XE	shows	L2	cache	misses	for	load	of	the	q	array.

▪ Used	hardware	counters	L2_HIT_LOADS_PS and	L2_MISS_LOADS_PS.

▪ Add	a	manual	prefetch into	L2	with	a	distance	of	32	vector	iterations.
__mm_prefetch((const char *) &q[m][g][l][k][j][0] +
32*VLEN, _MM_HINT_T1);
▪ Tried	a	variety	of	distances	and	chose	the	one	that	worked	best.

▪ Started	with	what	the	compiler	inserts	with	the	–qopt-prefetch=3	flag.

▪ Swapped	to	use	C	VLA	syntax	to	avoid	calculating	the	prefetch offset	ourselves.
▪ Compiler	actually	generates	more	efficient	code	with	VLA	syntax.

IXPUG	Annual	Spring	Conference	2017 12

IXPUG	Annual	Spring	Conference	2017 13

#pragma omp parallel for

for (int m = 0; m < Nm; m++) {

for (int g = 0; g < Ng; g++) {

for (int l = 0; l < Nl; l++) {

for (int k = 0; k < Nk; k++) {

for (int j = 0; j < Nj; j++) {

double total = 0.0;

_mm_prefetch((const char*) (&q[m][g][l][k][j][0] + 32*VLEN), _MM_HINT_T1);

#pragma vector nontemporal(r)

#pragma omp simd reduction(+:total) aligned(a,b,c,x,y,z,r,q:64)

for (int v = 0; v < VLEN; v++) {

/* Set r */

r[m][g][l][k][j][v] =

q[m][g][l][k][j][v] +

a[g][v] * x[m][g][k][j][v] +

b[g][v] * y[m][g][l][j][v] +

c[g][v] * z[m][g][l][k][v];

/* Update x, y and z */

x[m][g][k][j][v] = 0.2*r[m][g][l][k][j][v] - x[m][g][k][j][v];

y[m][g][l][j][v] = 0.2*r[m][g][l][k][j][v] - y[m][g][l][j][v];

z[m][g][l][k][v] = 0.2*r[m][g][l][k][j][v] - z[m][g][l][k][v];

/* Reduce over Ni */

total += r[m][g][l][k][j][v];

} /* VLEN */

sum[m][l][k][j] += total;

} /* Nj */

} /* Nk */

} /* Nl */

} /* Ng */

} /* Nm */

Results

IXPUG	Annual	Spring	Conference	2017 14

Version Bandwidth	(GB/s) Total time (s)

ntimes =	1000

Improvement

Baseline 78.4 9.23 -

Non-temporal 236.5 2.79 3.3X

Cache	blocking 318.9 2.22 4.2X	(1.3X	over	prev)

Prefetching 345.0 2.01 4.6X	(1.1X	over prev)

Rows	include	optimisations from	preceding	rows.

Conclusions	and	Insights

▪ Make	sure	the	right	vector	
instructions	are	being	issued.
▪ Pay	close	attention	to	alignment	and	

streaming	stores.
▪ Examine	cache	behaviour.

▪ See	if	it’s	possible	to	fit	data	in	cache.
▪ Back	of	the	envelope	calculations	help!

▪ Compare	estimated bandwidth	to	
measured bandwidth	from	Intel®	
vTune™	Amplifier	XE.
▪ High	estimate	and	low	measurement	-

better	cache	behaviour than	expected.
▪ Low	estimate	and	high	measurement	-

worse	cache	behaviour than	expected.
▪ Mega-stream	was	the	second	of	these.

▪ Hopefully	these	optimisations will	
carry	forward	into	the	SNAP	mini-app	
and	improve	performance	there.

▪ Remaining	challenge	is	to	avoid	the	
software	prefetch step.
▪ Can	the	prefetchers be	improved?

▪ A	big	surprise	was	the	change	in	
cache	behaviour:
▪ Baseline	0.3	version	had	good	L2	cache	

reuse,	but	poor	L1.
▪ Optimised version	highlighted	lower	L2	

cache	hit	rates.

IXPUG	Annual	Spring	Conference	2017 16

References

▪ Mega-stream:	https://github.com/UK-MAC/mega-stream

▪ SNAP:	https://github.com/lanl/snap

▪ GPU	SNAP	publications:
▪ [1]	T.	Deakin,	S.	McIntosh-Smith,	M.	Martineau,	and	W.	Gaudin,	“An	improved	

parallelism	scheme	for	deterministic	discrete	ordinates	transport,”	Int.	J.	High	
Perform.	Comput.	Appl.,	Sep.	2016.

▪ [2]	T.	Deakin,	S.	McIntosh-Smith,	and	W.	Gaudin,	“Many-Core	Acceleration	of	a	
Discrete	Ordinates	Transport	Mini-App	at	Extreme	Scale,”	in	High	Performance	
Computing:	31st	International	Conference,	ISC	High	Performance	2016,	
Frankfurt,	Germany,	June	19-23,	2016,	Proceedings,	M.	J.	Kunkel,	P.	Balaji,	and	
J.	Dongarra,	Eds.	Cham:	Springer	International	Publishing,	2016,	pp.	429–448.

IXPUG	Annual	Spring	Conference	2017 17

