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A	(very)	brief	history
• SNAP	mini-app	(LANL)	isn’t	getting	close	to	peak	MCDRAM	memory	bandwidth	on	Knights	

Landing.
• No	progress	with	SNAP	code	directly.
• Yet,	GPU	version	of	SNAP	does	exploit	available	memory	bandwidth	[1],	[2].

• Not	sure	where or	what	the	problem	is	in	the	sweep	kernel.
• dim3_sweep.f90
• Data	access	is	stride	1.
• Looks	similar	to	STREAM	(which	does achieve	good	bandwidth	to	MCDRAM).

• Create	a	mini-mini-app!
• Start	simple,	and	add	complexity	from	SNAP.
• Keep	going	until	representative,	solving	each	problem	as	we	go,	applying	solutions	to	SNAP.

• Use	OpenMP for	data	parallelism.

• Open	source,	GPL-3.0,	available	at	GitHub:
https://github.com/UK-MAC/mega-stream
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Estimating	bandwidth
• Throughout	we	use	estimated bandwidth	rather	than	measured bandwidth.

• The	STREAM	benchmark	takes	a	similar	approach.
• Look	at	source	and	count	up	read	and	writes	by	hand	to	create	a	model.
• Model	is	generally	oblivious	to	the	cache	effects:

• E.g.	Once	a	byte	is	read	any	future	reads	are	“free”.
• We	do	not	assume	“read	for	ownership”	(RFO).

• A	write	is	counted	once,	as	if	it	was	a	streaming	store.
• RFO	is	a	hardware	detail;	it’s	not	a	“useful”	movement	of	memory	in	the	context	of	

the	model.
• Assume	reads/writes	recounted	each	timestep.
• Measured	bandwidth	would	be	that	reported	by	Intel®	VTune™	Amplifier	

XE.
• Comparison	between	these	numbers	can	be	useful	(see	Conclusions	for	rule	of	

thumb).
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Experimental	setup
▪ Platform:

▪ Intel®	Xeon	Phi™	7210	Processor
▪ 1.30	GHz
▪ 16	GB	MCDRAM	configured	in	Quad/Flat,	96	GB	DDR	(unused)
▪ 1.6	GHz	mesh,	6.4	GT/s
▪ CentOS	7.2,	XPPSL	1.5.1

▪ Compiler	and	Flags:
▪ Intel®	C++	Compiler	17.0.2
▪ Transparent	huge	pages	enabled
▪ -O3 –xMIC-AVX512 –qopt-report=5 –g –debug inline-

debug-info

▪ Launch	Command:
▪ OMP_NUM_THREADS=64 OMP_PROC_BIND=true

numactl –m 1 ./mega-stream ${OPTIONS}
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Version	0.1
• Original	hypothesis	was	streaming	many	arrays	(with	different	sizes)	causes	

memory	bandwidth	limits	not	to	be	reached;	resulted	in	latency	becoming	a	
dominant	factor.

• Start	with	the	Triad	kernel	from	STREAM,	and	add	more	arrays	with	different	sizes:
#pragma omp parallel for
for int i = 0; i < L_size; i++)
{

r[i] = q[i] +
a[i&S_mask]*x[i&M_mask] + b[i&S_mask]*y[i&M_mask]
+ c[i&S_mask]*z[i&M_mask];

}

• q	and	r	are	large;	x,	y	and	z	are	medium;	and	a,	b	and	c	are	small	in	size.

• “&	mask”	is	equivalent	to	“%	size”	as	we	assume	arrays	are	powers	of	2	in	length.
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Initial	performance	analysis
▪ None	of	the	results	are	close	to	the	490	GB/s	from	STREAM.
▪ Code	is	being	vectorised,	but,	gathers	are	generated	even	though	most	

loads	are	contiguous.
▪ Modular	arithmetic	(%)	means	indices	might	wrap	around.

▪ Optimised via	alignment	and	strip	mining	loop,	and	streaming	stores.
▪ Really	helps	“small“,	which	was	instruction	(gather)	bound.
▪ Only	one	write	stream,	so	“large”	is	dominated	by	read	bandwidth.
▪ Little	change	with	default	(mixed)	sizes.
▪ With	“medium”,	arrays	fall	out	of	cache.

▪ Measured	bandwidth	from	Intel®	VTune™	Advisor	XE	is	much	higher.
▪ We	should	probably	have	picked	up	on	this…

▪ Little	improvement	when	these	optimisations	are	applied	to	SNAP.	L
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Problem size Array	sizes Original	GB/s Optimized	GB/s

Default r,q: 2^27,	x,y,z:	2^23,	a,b,c:	128 104.0 101.3

Small r,q: 2^27,	x,y,z,a,b,c:	128 197.0 407.0

Medium r,q: 2^27,	x,y,z,a,b,c:	2^23 69.6 70.3

Large r,q,x,y,z,a,b,c: 2^27 333.3 340.1



Version	0.3

▪ Needed	to	better	capture	SNAP	data	access	patterns.
▪ Make	benchmark	code	more	representative	of	SNAP.

▪ Add	additional	loops,	changing	accesses	into	multi-dimensional	
arrays.
▪ Used	an	indexing	macro,	but	could	also	cast	to	a	VLA.

▪ Add	updates	+=	to	“medium”	sized	arrays.
▪ Creates	an	interesting	reuse	pattern.

▪ Add	a	reduction	over	the	inner-most	loop.
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#pragma omp parallel for

for (int m = 0; m < Nm; m++) {

for (int l = 0; l < Nl; l++) {

for (int k = 0; k < Nk; k++) {

for (int j = 0; j < Nj; j++) {

double total = 0.0;

#pragma omp simd reduction(+:total)

for (int i = 0; i < Ni; i++) {

/* Set r */

r[IDX5(i,j,k,l,m,Ni,Nj,Nk,Nl)] =

q[IDX5(i,j,k,l,m,Ni,Nj,Nk,Nl)] +

a[i] * x[IDX4(i,j,k,m,Ni,Nj,Nk)] +

b[i] * y[IDX4(i,j,l,m,Ni,Nj,Nl)] +

c[i] * z[IDX4(i,k,l,m,Ni,Nk,Nl)];

/* Update x, y and z */

x[IDX4(i,j,k,m,Ni,Nj,Nk)] =

0.2*r[IDX5(i,j,k,l,m,Ni,Nj,Nk,Nl)] - x[IDX4(i,j,k,m,Ni,Nj,Nk)];

y[IDX4(i,j,l,m,Ni,Nj,Nl)] =

0.2*r[IDX5(i,j,k,l,m,Ni,Nj,Nk,Nl)] - y[IDX4(i,j,l,m,Ni,Nj,Nl)];

z[IDX4(i,k,l,m,Ni,Nk,Nl)] =

0.2*r[IDX5(i,j,k,l,m,Ni,Nj,Nk,Nl)] - z[IDX4(i,k,l,m,Ni,Nk,Nl)];

/* Reduce over Ni */

total += r[IDX5(i,j,k,l,m,Ni,Nj,Nk,Nl)];

} /* Ni */

sum[IDX4(j,k,l,m,Nj,Nk,Nl)] += total;

} /* Nj */

} /* Nk */

} /* Nl */

} /* Nm */

Loop Name Default	size

Nm outer 64

Nj,	Nk,	Nl middle 16

Ni inner 128



Initial	results

▪ The	code	doesn’t	get	good	useful	bandwidth	out	of	the	box.
▪ We’re	already	aligning	to	2MB	pages	and	it	does	vectorise.

▪ Using	–qopt-streaming-stores=always helps.
▪ But	we	probably	don’t	want	streaming	stores	for	arrays	with	reuse…

▪ Code	generated	peel	loop	for	r	only.

▪ Wide	variation	depending	on	problem	size.
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Version Bandwidth	GB/s

Initial 75.2

+	streaming	stores 107.1



Optimisations (1/3)

▪ Streaming	stores:
▪ Only	want	a	streaming	store	for	r,	other	arrays	have	reuse.

▪ Enable	them	with	a	compiler	directive:
#pragma vector nontemporal(r)

▪ Prevents	r	data	polluting	the	cache.
▪ No	“read	for	ownership”	so	array	simple	written	to.

▪ Arrays	need	to	be	aligned	for	streaming	stores.
▪ Baseline	aligned	to	2MB	pages.
▪ Could	ensure	generate	aligned	instructions	via	OpenMP aligned	clause	but	no	

penalty	on	KNL	for	using	unaligned	loads	on	aligned	data.
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Optimisations (2/3)

▪ Cache	blocking:
▪ x,	y	and	z	arrays	are	reused	in	the	middle	and	outer	loops.

▪ We	want	them	to	be	cached	for	the	inner	i loop.

▪ For	sufficiently	large	Ni	*	Nj *	Nk,	x	will	fall	out	of	cache.
▪ By	default,	x	is	128	*	16	*	16	*	8	bytes	=	256	KiB.

▪ L2	cache	is	512	KB	per	core,	so	x,	y	and	z	will	not fit	in	cache!

▪ Restructure	the	loops	and	data	to	promote	data-reuse:
▪ Split	Ni	loop	into	groups	of	vectors	/	cache	lines.

▪ Add	an	extra	loop,	and	an	extra	dimension	to	all	arrays	which	index	i.

▪ Decreases	the	size	of	data	we	must	keep	in	cache	to	VLEN	*	Nj *	Nk.
▪ By	default:	8	*	16	*	16	*	8	=	16	KiB.
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Optimisations (3/3)

▪ Software	prefetching:
▪ Intel®	VTune™	Amplifier	XE	shows	L2	cache	misses	for	load	of	the	q	array.

▪ Used	hardware	counters	L2_HIT_LOADS_PS and	L2_MISS_LOADS_PS.

▪ Add	a	manual	prefetch into	L2	with	a	distance	of	32	vector	iterations.
__mm_prefetch((const char *) &q[m][g][l][k][j][0] + 
32*VLEN, _MM_HINT_T1);
▪ Tried	a	variety	of	distances	and	chose	the	one	that	worked	best.

▪ Started	with	what	the	compiler	inserts	with	the	–qopt-prefetch=3	flag.

▪ Swapped	to	use	C	VLA	syntax	to	avoid	calculating	the	prefetch offset	ourselves.
▪ Compiler	actually	generates	more	efficient	code	with	VLA	syntax.
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#pragma omp parallel for

for (int m = 0; m < Nm; m++) {

for (int g = 0; g < Ng; g++) {

for (int l = 0; l < Nl; l++) {

for (int k = 0; k < Nk; k++) {

for (int j = 0; j < Nj; j++) {

double total = 0.0;

_mm_prefetch((const char*) (&q[m][g][l][k][j][0] + 32*VLEN), _MM_HINT_T1);

#pragma vector nontemporal(r)

#pragma omp simd reduction(+:total) aligned(a,b,c,x,y,z,r,q:64)

for (int v = 0; v < VLEN; v++) {

/* Set r */

r[m][g][l][k][j][v] =

q[m][g][l][k][j][v] +

a[g][v] * x[m][g][k][j][v] +

b[g][v] * y[m][g][l][j][v] +

c[g][v] * z[m][g][l][k][v];

/* Update x, y and z */

x[m][g][k][j][v] = 0.2*r[m][g][l][k][j][v] - x[m][g][k][j][v];

y[m][g][l][j][v] = 0.2*r[m][g][l][k][j][v] - y[m][g][l][j][v];

z[m][g][l][k][v] = 0.2*r[m][g][l][k][j][v] - z[m][g][l][k][v];

/* Reduce over Ni */

total += r[m][g][l][k][j][v];

} /* VLEN */

sum[m][l][k][j] += total;

} /* Nj */

} /* Nk */

} /* Nl */

} /* Ng */

} /* Nm */



Results
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Version Bandwidth	(GB/s) Total time (s)

ntimes =	1000

Improvement

Baseline 78.4 9.23 -

Non-temporal 236.5 2.79 3.3X

Cache	blocking 318.9 2.22 4.2X	(1.3X	over	prev)

Prefetching 345.0 2.01 4.6X	(1.1X	over prev)

Rows	include	optimisations from	preceding	rows.



Conclusions	and	Insights

▪ Make	sure	the	right	vector	
instructions	are	being	issued.
▪ Pay	close	attention	to	alignment	and	

streaming	stores.
▪ Examine	cache	behaviour.

▪ See	if	it’s	possible	to	fit	data	in	cache.
▪ Back	of	the	envelope	calculations	help!

▪ Compare	estimated bandwidth	to	
measured bandwidth	from	Intel®	
vTune™	Amplifier	XE.
▪ High	estimate	and	low	measurement	-

better	cache	behaviour than	expected.
▪ Low	estimate	and	high	measurement	-

worse	cache	behaviour than	expected.
▪ Mega-stream	was	the	second	of	these.

▪ Hopefully	these	optimisations will	
carry	forward	into	the	SNAP	mini-app	
and	improve	performance	there.

▪ Remaining	challenge	is	to	avoid	the	
software	prefetch step.
▪ Can	the	prefetchers be	improved?

▪ A	big	surprise	was	the	change	in	
cache	behaviour:
▪ Baseline	0.3	version	had	good	L2	cache	

reuse,	but	poor	L1.
▪ Optimised version	highlighted	lower	L2	

cache	hit	rates.
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