
 Raman, K., Deakin, T., Price, J., & McIntosh-Smith, S. (2017). Improving
achieved memory bandwidth from C++ codes on Intel® Xeon Phi™
Processor (Knights Landing). IXPUG Spring Meeting, Cambridge, United
Kingdom.

Publisher's PDF, also known as Version of record

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via IXPUG at
https://www.ixpug.org/events/spring-2017-emea. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://research-information.bris.ac.uk/en/publications/improving-achieved-memory-bandwidth-from-c-codes-on-intel-xeon-phi-processor-knights-landing(e8087ca4-1caa-4b80-bbd8-26870f5ebcbb).html
https://research-information.bris.ac.uk/en/publications/improving-achieved-memory-bandwidth-from-c-codes-on-intel-xeon-phi-processor-knights-landing(e8087ca4-1caa-4b80-bbd8-26870f5ebcbb).html

Improving	achieved	memory	
bandwidth	from	C++	codes	on	
Intel®	Xeon	Phi™	Processor	

(Knights	Landing)
Karthik	Raman,	Intel	Corporation	(karthik.raman@intel.com)

Tom	Deakin,	University	of	Bristol	(tom.deakin@bristol.ac.uk)

James	Price,	University	of	Bristol

Simon	McIntosh-Smith,	University	of	Bristol

The	University	of	Bristol	is	an	Intel®	Parallel	Computing	Center
Acknowledgements:	

John	Pennycook,	Intel	Corporation

Rakesh	Krishnaiyer,	Intel	Corporation

IXPUG	Annual	Spring	Conference	2017 1

GPU-STREAM
• Simple	memory	bandwidth	benchmark,	based	on	the	McCalpin	STREAM	benchmark.

• STREAM	is	the	gold-standard	baseline	for	memory	bandwidth	bound	kernels.

• 5	computational	kernels:
• Copy:	c[i]	=	a[i]
• Multiply:	b[i]	=	α	c[i]
• Add:	c[i]	=	a[i]	+	b[i]
• Triad:	a[i]	=	b[i]	+	α	c[i]
• Dot:	sum	+=	a[i]	*	b[i]

• Aims	to	measure	achievable	memory	bandwidth:
• From	a	variety	of	programming	models.
• Across	a	variety	of	multi- and	many-core	devices.

• Motivation:
• Evaluate	out	of	box	performance	of	portable	programming	modes/libraries	
• Understand	limitations	on	each	&	enable	necessary	optimizations
• Apply	learnings	to	other	applications	using	similar	programming	models
• If	we	can’t	get	STREAM	to	perform,	how	can	we	get	a	real-world	code	to	perform?

• Open	Source,	available	at	GitHub:
http://uob-hpc.github.io/GPU-STREAM/

IXPUG	Annual	Spring	Conference	2017 2

Programming	models
• OpenMP

• Directive	based	threading	model.
• #pragma omp parallel for

• Kokkos
• C++	abstraction	and	portability	layer.
• Lambda	based	compute.
• Execution	model:	parallel	loops.
• Data	structures:	memory	space	and	policy/access	patterns.
▪ parallel_for(array_size, KOKKOS_LAMBDA (const int index) {…});
• Uses	OpenMP	as	a	backend	for	threading	support.

• RAJA
• C++	abstraction	layer.
• Lambda	based	compute.
• Parallel	loops,	with	IndexSets (partition	loop	with	different	execution	policies).
• forall<policy>(index_set, [=] RAJA_DEVICE (int index) {…});
• Uses	OpenMP	as	a	backend	for	threading	support.

IXPUG	Annual	Spring	Conference	2017 3

Experimental	setup
▪ Platforms:

▪ Intel®	Xeon	Phi™	7210	Processor
▪ 64	core,	1.30	GHz
▪ 16	GB	MCDRAM	configured	in	Quad/Flat,	96	GB	DDR	(unused)
▪ 1.6	GHz	mesh,	6.4	GT/s

▪ Intel®	Xeon®	E5-2697v4	(Broadwell-EP)	processor
▪ 18	core/socket,	2	sockets,	2.3	GHz
▪ 128	GB	DDR4

▪ Compiler	and	Flags:
▪ Intel®	C++	Compiler	17.0
▪ -O3 –xMIC-AVX512 / -xCORE-AVX2

▪ Problem	size:	33,554,432	doubles

▪ Bandwidth	analysis	identical	to	STREAM.
For	Triad,	3*array	size	in	bytes	/	minimum	runtime.

▪ Launch	Command:
▪ OMP_NUM_THREADS=64 OMP_PROC_BIND=true

numactl –m 1 ./gpu-stream

IXPUG	Annual	Spring	Conference	2017 4

IXPUG	Annual	Spring	Conference	2017 5

Performance	gap	for	
the	C++	approaches.

Why	don’t	they	
match	McCalpin
STREAM?

Array	size:	2^25	doubles

Tom	Deakin,	James	Price,	Matt	Martineau,	and	Simon	McIntosh-Smith.	“GPU-STREAM	v2.0:	Benchmarking	the	Achievable	Memory	Bandwidth	of Many-Core	Processors	Across	
Diverse	Parallel	Programming	Models”,	pages	489–507.	Springer	International	Publishing,	Cham,	2016.	

Why	does	STREAM	do	well?
▪ STREAM	is	an	OpenMP	benchmark	written	in	C,	so	why	does	GPU-

STREAM	OpenMP	struggle?
▪ The	only	difference	is	GPU-STREAM	is	a	C++	code,	right?

▪ STREAM	allocates	memory	on	the	stack,	with	the	array	sizes	known	at	
compile	time.

▪ The	compiler	can	choose	to	align	the	memory,	generating	aligned	
loads	and	stores.

▪ The	compiler	can	choose	to	generate	streaming	stores.

IXPUG	Annual	Spring	Conference	2017 6

What’s	your	problem?
▪ Problems	sizes	of	application	codes	usually	only	known	at	runtime.

▪ What	happens	if	we	modify	STREAM	so	that	problem	size	is	known	at	
runtime?
▪ Original	bandwidth:	448	GB/s.
▪ Now:	270-345	GB/s.

▪ By	allocating	on	the	heap	and	setting	the	problem	size	at	runtime,	all	
this	information	is	lost	and	the	compiler	has	to	ensure	correctness.

▪ The	optimizations	we	present	for	OpenMP	also apply	to	regular	
STREAM	with	the	problem	size	known	at	runtime.

IXPUG	Annual	Spring	Conference	2017 7

Improving	the	OpenMP performance
▪ Align	the	heap	memory	to	page	boundary	(2MB)

▪ Allocate	using	
_mm_malloc(*a, 2097152)

OR
aligned_alloc(2097152,sizeof(a)*array_size) à C11 Standard

▪ Enable	non-temporal	stores
▪ Compile	the	code	with: -qopt-streaming-stores=always
▪ This	option	is	fine	for	STREAM	benchmark
▪ In	general,	recommended	to	use	streaming	stores	on	per	loop	basis	via

#pragma vector nontemporal [var1, var2..]

▪ Tell	compiler	about	aligned	arrays	in	the	loops
▪ __assume_aligned(a,	2097152)	

OR
▪ #pragma omp parallel for simd aligned(a : 2097152)

OR
• #pragma vector aligned

(requires	start/end	of	loop	iteration	to	be	multiple	of	SIMD	length)

IXPUG	Annual	Spring	Conference	2017 8

Compiler	Optimization	Reports	(OpenMP	code)

9

OpenMP	Triad	Loop	(Baseline): OpenMP	Triad	Loop	(Optimized):
#pragma	omp	parallel	for	
for	(int	i	=	0;	i	<	array_size;	i++)
{
c[i]	=	a[i]	+	b[i];
}

#pragma	omp	parallel	for	simd	aligned	(a,	b,	c:	2097152)	
for	(int	i	=	0;	i	<	array_size;	i++)
{
c[i]	=	a[i]	+	b[i];
}

LOOP	BEGIN	at	OMPStream.cpp(160,3)
<Multiversioned v1>
remark	#25228:	Loop	multiversioned for	Data	Dependence
remark	#15389:	vectorization	support:	reference	a	has	unaligned	access [

OMPStream.cpp(164,5)]
remark	#15389:	vectorization	support:	reference	b	has	unaligned	access			[

OMPStream.cpp(164,12)]
remark	#15389:	vectorization	support:	reference	c	has	unaligned	access			[

OMPStream.cpp(164,28)]
remark	#15381:	vectorization	support:	unaligned	access	used	inside	loop	body
remark	#15305:	vectorization	support:	vector	length	16
remark	#15309:	vectorization	support:	normalized	vectorization	overhead	1.778
remark	#15300:	LOOP	WAS	VECTORIZED
remark	#15442:	entire	loop	may	be	executed	in	remainder
remark	#15450:	unmasked	unaligned	unit	stride	loads:	2
remark	#15451:	unmasked	unaligned	unit	stride	stores:	1
remark	#15475:	--- begin	vector	cost	summary	---
remark	#15476:	scalar	cost:	10
remark	#15477:	vector	cost:	0.560
remark	#15478:	estimated	potential	speedup:	14.630
remark	#15488:	--- end	vector	cost	summary	---

LOOP	END

Unaligned	
accesses,

Regular	Stores

LOOP	BEGIN	at	OMPStream.cpp(155,3)
remark	#15388:	vectorization	support:	reference	a	has	aligned	access [

OMPStream.cpp(159,5)]
remark	#15388:	vectorization	support:	reference	b	has	aligned	access			[

OMPStream.cpp(159,12)]
remark	#15388:	vectorization	support:	reference	c	has	aligned	access			[

OMPStream.cpp(159,28)]
remark	#15412:	vectorization	support:	streaming	store	was	generated	for	a			[

OMPStream.cpp(159,5)]
remark	#15305:	vectorization	support:	vector	length	8
remark	#15309:	vectorization	support:	normalized	vectorization	overhead	1.429
remark	#15301:	OpenMP SIMD	LOOP	WAS	VECTORIZED
remark	#15448:	unmasked	aligned	unit	stride	loads:	2
remark	#15449:	unmasked	aligned	unit	stride	stores:	1
remark	#15467:	unmasked	aligned	streaming	stores:	1
remark	#15475:	--- begin	vector	cost	summary	---
remark	#15476:	scalar	cost:	10
remark	#15477:	vector	cost:	0.870
remark	#15478:	estimated	potential	speedup:	10.340
remark	#15488:	--- end	vector	cost	summary	---

LOOP	END

Aligned	accesses,
Non-Temporal	

Stores

Improving	the	Kokkos	performance
▪ Ensure	memory	alignment.

▪ Can	compile	the	Kokkos	library	specifying	memory	alignment.
--cxxflags=-DKOKKOS_MEMORY_ALIGNMENT=2097152

▪ Enable	non-temporal	stores.
▪ x86	Intel	architecture	by	default	does	allocate	on	stores	(RFO	– Read	

for	Ownership)
▪ Streaming	stores	were	not	being	generated	by	the	compiler	by	

default.	
▪ These	are	key	to	getting	peak	bandwidth	performance

▪ Large	arrays	with	no	re-use,	avoid	cache	capacity	wastage	for	writes.
▪ Compile	the	code	with: -qopt-streaming-stores=always

▪ Can	also	use	for	McCalpin STREAM	benchmark
▪ In	general,	recommended	to	use	streaming	stores	on	per	loop	basis	via	

#pragma vector nontemporal [var1, var2..]

IXPUG	Annual	Spring	Conference	2017 10

Improving	the	Kokkos	performance
▪ Change	loop	iterator	type.

▪ Simple	C	implementation,	loop	index	i &	array-access	a[i] uses	“int”	for	loop	
indexing	and	the	induction-variable
e.g. for (int i = 0; i < array_size; i++) {a[i]= …}

▪ The	Kokkos	version	was
parallel_for(array_size, KOKKOS_LAMBDA (const int

index) {});
▪ Kokkos	library	internally	uses	long data	type	(hardcoded)	for	induction	variable

▪ Mismatch	between	induction	variable	type	and	subscript	type	in	array	accesses	
a[index]

▪ Mixing	multiple-sized	induction	variables	reduces	compiler	optimizations
▪ Compiler	unable	to	perform	data-dependence	multiversioning	&	“Peel	Loop”	

generation	automatically	for	aligned	stores	in	the	vectorized	kernel	loop
▪ Change	loop	iterator	data	type	in	user	code	to	long to	match	Kokkos	

implementation.
parallel_for(array_size, KOKKOS_LAMBDA(const long

index) {});

IXPUG	Annual	Spring	Conference	2017 11

Compiler	Optimization	Reports	(Kokkos	code)

12

Kokkos	Triad	Loop	(Baseline): Kokkos	Triad	Loop	(Optimized):
const	T	scalar	=	startScalar;
parallel_for(array_size,	KOKKOS_LAMBDA	(const	long index)
{
a[index]	=	b[index]	+	scalar*c[index];
});

const	T	scalar	=	startScalar;
parallel_for(array_size,	KOKKOS_LAMBDA	(const	int	index)
{
a[index]	=	b[index]	+	scalar*c[index];
});

LOOP	BEGIN	at	
KOKKOS/kokkos/install/include/OpenMP/Kokkos_OpenMP_Parallel.hpp(86,7)	
inlined	into	KOKKOSStream.cpp(117,3)
remark	#15389:	vectorization	support:	reference	this[index]	has	unaligned	access			

[KOKKOSStream.cpp(119,6)]
remark	#15389:	vectorization	support:	reference	this[index]	has	unaligned	access			

[KOKKOSStream.cpp(119,17)]
remark	#15389:	vectorization	support:	reference	this[index]	has	unaligned	access			

[KOKKOSStream.cpp(119,35)]
remark	#15381:	vectorization	support:	unaligned	access	used	inside	loop	body
remark	#15305:	vectorization	support:	vector	length	16
remark	#15309:	vectorization	support:	normalized	vectorization	overhead	0.455
remark	#15300:	LOOP	WAS	VECTORIZED
remark	#15450:	unmasked	unaligned	unit	stride	loads:	2
remark	#15451:	unmasked	unaligned	unit	stride	stores:	1
remark	#15475:	--- begin	vector	cost	summary	---
remark	#15476:	scalar	cost:	13
remark	#15477:	vector	cost:	1.370
remark	#15478:	estimated	potential	speedup:	8.660
remark	#15488:	--- end	vector	cost	summary	---

LOOP	END

No	Peel	Loop,	
Unaligned	regular	

stores

LOOP	BEGIN	at	KOKKOS/kokkos/install/include/OpenMP/Kokkos_OpenMP_Parallel.hpp(86,7)	
inlined	into	KOKKOSStream.cpp(117,3)
<Peeled	loop	for	vectorization>
…..
LOOP	END
LOOP	BEGIN	at	KOKKOS/kokkos/install/include/OpenMP/Kokkos_OpenMP_Parallel.hpp(86,7)	
inlined	into	KOKKOSStream.cpp(117,3)
remark	#15388:	vectorization	support:	reference	this[iwork]	has	aligned	access	 [
KOKKOSStream.cpp(119,6)]
remark	#15389:	vectorization	support:	reference	this[iwork]	has	unaligned	access			[
KOKKOSStream.cpp(119,17)]
remark	#15389:	vectorization	support:	reference	this[iwork]	has	unaligned	access			[

KOKKOSStream.cpp(119,35)]
…….
remark	#15412:	vectorization	support:	streaming	store	was	generated	for	this[iwork][
KOKKOSStream.cpp(119,6)]
…..
remark	#15300:	LOOP	WAS	VECTORIZED
remark	#15449:	unmasked	aligned	unit	stride	stores:	1
remark	#15450:	unmasked	unaligned	unit	stride	loads:	2
remark	#15467:	unmasked	aligned	streaming	stores:	1

……

Peeled	Loop,	
Aligned	

non-temporal	stores

Improving	the	RAJA	performance
▪ Enable	non-temporal	stores.

▪ x86	Intel	architecture	by	default	does	allocate	on	stores	
(RFO	– Read	for	Ownership)

▪ Streaming	stores	were	not	being	generated	by	the	compiler	
by	default.	

▪ These	are	key	to	getting	peak	bandwidth	performance
▪ The	arrays	are	large	enough	and	there	is	no	reuse	so	we	
do	not	want	to	use	the	cache	capacity	for	writes.

▪ Compile	the	code	with:
-qopt-streaming-stores=always
▪ Can	also	use	for	McCalpin STREAM	benchmark
▪ Recommended	to	use	streaming	stores	on	per	loop	basis	via	
#pragma vector nontemporal [var1, var2..]

IXPUG	Annual	Spring	Conference	2017 13

Improving	the	RAJA	performance
▪ Change	loop	iterator	type

▪ Change	data	type	of	“Index_type”	in	RAJA	library	to	“long”	
▪ Reduces	mismatch	between	different	sizes	for	induction	variables	& loop	index	

bounds	after	all	C++	abstraction	routines	inlined	by	the	compiler.
▪ Enables	much	better	compiler	loop	optimizations.
▪ Change	the	indices	to	be	of	type	long	in	the	user	code	to	get	better	efficiency	in	

vectorization
e.g.	forall<policy>(index_set, [=] RAJA_DEVICE (long index){

a[index] = b[index] + scalar*c[index]; });

▪ Avoid	“false	dependencies”
▪ Compiler	not	able	to	vectorize	loops	due	to	assumption	of	false	

dependencies
▪ Enable	“restrict” keyword	in	pointers	to	indicate	no	pointer	aliasing,	

thus	aiding	optimizations
▪ Compile	RAJA	with:
-DRAJA_PTR="RAJA_USE_RESTRICT_ALIGNED_PTR“

▪ Use	“RAJA_RESTRICT” for	the	pointers	in	the	user	code.
IXPUG	Annual	Spring	Conference	2017 14

Compiler	Optimization	Reports	(RAJA	code)

15

RAJA	Triad	Loop	(Baseline): RAJA	Triad	Loop	(Optimized):

T*	RAJA_RESTRICT a	=	d_a;		T*	RAJA_RESTRICT b	=	d_b;
T*	RAJA_RESTRICT c	=	d_c;	const	T	scalar	=	startScalar;
forall<policy>(index_set,	[=]	RAJA_DEVICE	(long index)
{
a[index]	=	b[index]	+	scalar*c[index];
});

T*	a	=	d_a; T*	b	=	d_b;	T*	c	=	d_c;
const	T	scalar	=	startScalar;
forall<policy>(index_set,	[=]	RAJA_DEVICE	(int	index)
{
a[index]	=	b[index]	+	scalar*c[index];
});

LOOP	BEGIN	at	RAJA/install/include/RAJA/exec-
openmp/forall_openmp.hxx(155,1)	inlined	into	RAJAStream.cpp(146,3)
remark	#15344:	loop	was	not	vectorized:	vector	dependence	

prevents	vectorization.	First	dependence	is	shown	below.	Use	level	5	
report	for	details
remark	#15346:	vector	dependence:	assumed	FLOW	dependence	

between	loop_body.a[*(begin+i*4)]	(148:7)	and	
loop_body.b[*(begin+i*4)]	(148:7)
remark	#25439:	unrolled	with	remainder	by	4

LOOP	END Loop	not	
vectorized

LOOP	BEGIN	at	RAJA/install.opt/include/RAJA/exec-
openmp/forall_openmp.hxx(155,1)	inlined	into	RAJAStream.cpp(149,3)
<Peeled	loop	for	vectorization>
……
LOOP	END

LOOP	BEGIN	at	/RAJA/install/include/RAJA/exec-
openmp/forall_openmp.hxx(155,1)	inlined	into	RAJAStream.cpp(149,3)
remark	#15412:	vectorization	support:	streaming	store	was	generated	for	
loop_body.a[…]			[RAJAStream.cpp(151,7)]
…
remark	#15300:	LOOP	WAS	VECTORIZED
…
remark	#15449:	unmasked	aligned	unit	stride	stores:	1
remark	#15450:	unmasked	unaligned	unit	stride	loads:	2
remark	#15467:	unmasked	aligned	streaming	stores:	1

….
LOOP	END

Peeled	Loop,	Vectorized	
main	loop	+	Aligned	non-

temporal	stores

Triad	Performance

IXPUG	Annual	Spring	Conference	2017 16

Model Original GB/s Optimized GB/s Original GB/s Optimized GB/s

McCalpin	Stream 448 - 129 -

OpenMP 302 438 95 130

Kokkos 298 436 96 129

RAJA 124 436 96 129

Intel®	Xeon Phi™	(Knights	Landing) Intel®	Xeon®	E5-2697v4 (Broadwell)

Conclusions	and	Insights
▪ Out	of	the	box,	C++	and	OpenMP	struggle	to	show	close	to	peak	achievable	

memory	bandwidth.

▪ Partially	down	to	the	knowledge	the	compiler	has	at	compile	time.
▪ Needs	to	know	the	alignment	and	trip	counts	to	generate	the	best vector	code.

▪ Can	use	OpenMP to	give	the	compiler	enough	knowledge	to	do	the	right	
thing.

▪ Using	an	abstraction	layer	hides	some	detail	away.
▪ Must	ensure	the	abstraction	layer	holds	enough	information	to	generate	the	same	

best	vector	code.

▪ Key	optimizations:
▪ Ensure	memory	alignment	(Align	and	tell	compiler).
▪ Remove	abstraction	layer	loop	iteration	typecasts (Avoid	datatype	conversions)
▪ Non-temporal	stores	(for	peak	memory	bandwidth,	use	only	where	applicable)

IXPUG	Annual	Spring	Conference	2017 17

References
Website:	http://uob-hpc.github.io/GPU-STREAM/
[1] T.	Deakin	and	S.	McIntosh-Smith,	“GPU-STREAM:	Benchmarking	the	achievable	
memory	bandwidth	of	Graphics	Processing	Units	(poster),”	in	Supercomputing,	2015.
[2] T.	Deakin,	J.	Price,	M.	Martineau,	and	S.	McIntosh-Smith,	“GPU-STREAM	v2.0:	
Benchmarking	the	Achievable	Memory	Bandwidth	of	Many-Core	Processors	Across	
Diverse	Parallel	Programming	Models,”	2016,	pp.	489–507.
[3] T.	Deakin,	J.	Price,	M.	Martineau,	and	S.	McIntosh-Smith,	“GPU-STREAM:	Now	in	
2D!	(poster),”	in	Supercomputing,	2016.
[4] S.	J.	Pennycook,	J.	D.	Sewall,	and	V.	W.	Lee,	“A	Metric	for	Performance	
Portability,”	pp.	1–7.
[5] R.	Krishnaiyer	“Data	Alignment	to	Assist	Vectorization”,	Intel®	Developer	Zone	
article,	2015.	https://software.intel.com/en-us/articles/data-alignment-to-assist-
vectorization
[6] K.	Raman	“Optimizing	Memory	Bandwidth	in	Knights	Landing”	Intel®	Developer	
Zone	article,	2016.	https://software.intel.com/en-us/articles/optimizing-memory-
bandwidth-in-knights-landing-on-stream-triad

IXPUG	Annual	Spring	Conference	2017 18

