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GPU-STREAM
• Simple	memory	bandwidth	benchmark,	based	on	the	McCalpin	STREAM	benchmark.

• STREAM	is	the	gold-standard	baseline	for	memory	bandwidth	bound	kernels.

• 5	computational	kernels:
• Copy:	c[i]	=	a[i]
• Multiply:	b[i]	=	α	c[i]
• Add:	c[i]	=	a[i]	+	b[i]
• Triad:	a[i]	=	b[i]	+	α	c[i]
• Dot:	sum	+=	a[i]	*	b[i]

• Aims	to	measure	achievable	memory	bandwidth:
• From	a	variety	of	programming	models.
• Across	a	variety	of	multi- and	many-core	devices.

• Motivation:
• Evaluate	out	of	box	performance	of	portable	programming	modes/libraries	
• Understand	limitations	on	each	&	enable	necessary	optimizations
• Apply	learnings	to	other	applications	using	similar	programming	models
• If	we	can’t	get	STREAM	to	perform,	how	can	we	get	a	real-world	code	to	perform?

• Open	Source,	available	at	GitHub:
http://uob-hpc.github.io/GPU-STREAM/
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Programming	models
• OpenMP

• Directive	based	threading	model.
• #pragma omp parallel for

• Kokkos
• C++	abstraction	and	portability	layer.
• Lambda	based	compute.
• Execution	model:	parallel	loops.
• Data	structures:	memory	space	and	policy/access	patterns.
▪ parallel_for(array_size, KOKKOS_LAMBDA (const int index) {…});
• Uses	OpenMP	as	a	backend	for	threading	support.

• RAJA
• C++	abstraction	layer.
• Lambda	based	compute.
• Parallel	loops,	with	IndexSets (partition	loop	with	different	execution	policies).
• forall<policy>(index_set, [=] RAJA_DEVICE (int index) {…});
• Uses	OpenMP	as	a	backend	for	threading	support.
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Experimental	setup
▪ Platforms:

▪ Intel®	Xeon	Phi™	7210	Processor
▪ 64	core,	1.30	GHz
▪ 16	GB	MCDRAM	configured	in	Quad/Flat,	96	GB	DDR	(unused)
▪ 1.6	GHz	mesh,	6.4	GT/s

▪ Intel®	Xeon®	E5-2697v4	(Broadwell-EP)	processor
▪ 18	core/socket,	2	sockets,	2.3	GHz
▪ 128	GB	DDR4

▪ Compiler	and	Flags:
▪ Intel®	C++	Compiler	17.0
▪ -O3 –xMIC-AVX512 / -xCORE-AVX2

▪ Problem	size:	33,554,432	doubles

▪ Bandwidth	analysis	identical	to	STREAM.
For	Triad,	3*array	size	in	bytes	/	minimum	runtime.

▪ Launch	Command:
▪ OMP_NUM_THREADS=64 OMP_PROC_BIND=true

numactl –m 1 ./gpu-stream
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Performance	gap	for	
the	C++	approaches.

Why	don’t	they	
match	McCalpin
STREAM?

Array	size:	2^25	doubles

Tom	Deakin,	James	Price,	Matt	Martineau,	and	Simon	McIntosh-Smith.	“GPU-STREAM	v2.0:	Benchmarking	the	Achievable	Memory	Bandwidth	of Many-Core	Processors	Across	
Diverse	Parallel	Programming	Models”,	pages	489–507.	Springer	International	Publishing,	Cham,	2016.	



Why	does	STREAM	do	well?
▪ STREAM	is	an	OpenMP	benchmark	written	in	C,	so	why	does	GPU-

STREAM	OpenMP	struggle?
▪ The	only	difference	is	GPU-STREAM	is	a	C++	code,	right?

▪ STREAM	allocates	memory	on	the	stack,	with	the	array	sizes	known	at	
compile	time.

▪ The	compiler	can	choose	to	align	the	memory,	generating	aligned	
loads	and	stores.

▪ The	compiler	can	choose	to	generate	streaming	stores.
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What’s	your	problem?
▪ Problems	sizes	of	application	codes	usually	only	known	at	runtime.

▪ What	happens	if	we	modify	STREAM	so	that	problem	size	is	known	at	
runtime?
▪ Original	bandwidth:	448	GB/s.
▪ Now:	270-345	GB/s.

▪ By	allocating	on	the	heap	and	setting	the	problem	size	at	runtime,	all	
this	information	is	lost	and	the	compiler	has	to	ensure	correctness.

▪ The	optimizations	we	present	for	OpenMP	also apply	to	regular	
STREAM	with	the	problem	size	known	at	runtime.

IXPUG	Annual	Spring	Conference	2017 7



Improving	the	OpenMP performance
▪ Align	the	heap	memory	to	page	boundary	(2MB)

▪ Allocate	using	
_mm_malloc(*a, 2097152) 

OR 
aligned_alloc(2097152,sizeof(a)*array_size) à C11 Standard

▪ Enable	non-temporal	stores
▪ Compile	the	code	with: -qopt-streaming-stores=always
▪ This	option	is	fine	for	STREAM	benchmark
▪ In	general,	recommended	to	use	streaming	stores	on	per	loop	basis	via

#pragma vector nontemporal [ var1, var2..]

▪ Tell	compiler	about	aligned	arrays	in	the	loops
▪ __assume_aligned(a,	2097152)	

OR
▪ #pragma omp parallel for simd aligned(a : 2097152)

OR
• #pragma vector aligned 

(requires	start/end	of	loop	iteration	to	be	multiple	of	SIMD	length)
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Compiler	Optimization	Reports	(OpenMP	code)

9

OpenMP	Triad	Loop	(Baseline): OpenMP	Triad	Loop	(Optimized):
#pragma	omp	parallel	for	
for	(int	i	=	0;	i	<	array_size;	i++)
{
c[i]	=	a[i]	+	b[i];
}

#pragma	omp	parallel	for	simd	aligned	(a,	b,	c:	2097152)	
for	(int	i	=	0;	i	<	array_size;	i++)
{
c[i]	=	a[i]	+	b[i];
}

LOOP	BEGIN	at	OMPStream.cpp(160,3)
<Multiversioned v1>
remark	#25228:	Loop	multiversioned for	Data	Dependence
remark	#15389:	vectorization	support:	reference	a	has	unaligned	access [	

OMPStream.cpp(164,5)	]
remark	#15389:	vectorization	support:	reference	b	has	unaligned	access			[	

OMPStream.cpp(164,12)	]
remark	#15389:	vectorization	support:	reference	c	has	unaligned	access			[	

OMPStream.cpp(164,28)	]
remark	#15381:	vectorization	support:	unaligned	access	used	inside	loop	body
remark	#15305:	vectorization	support:	vector	length	16
remark	#15309:	vectorization	support:	normalized	vectorization	overhead	1.778
remark	#15300:	LOOP	WAS	VECTORIZED
remark	#15442:	entire	loop	may	be	executed	in	remainder
remark	#15450:	unmasked	unaligned	unit	stride	loads:	2
remark	#15451:	unmasked	unaligned	unit	stride	stores:	1
remark	#15475:	--- begin	vector	cost	summary	---
remark	#15476:	scalar	cost:	10
remark	#15477:	vector	cost:	0.560
remark	#15478:	estimated	potential	speedup:	14.630
remark	#15488:	--- end	vector	cost	summary	---

LOOP	END

Unaligned	
accesses,

Regular	Stores

LOOP	BEGIN	at	OMPStream.cpp(155,3)
remark	#15388:	vectorization	support:	reference	a	has	aligned	access [	

OMPStream.cpp(159,5)	]
remark	#15388:	vectorization	support:	reference	b	has	aligned	access			[	

OMPStream.cpp(159,12)	]
remark	#15388:	vectorization	support:	reference	c	has	aligned	access			[	

OMPStream.cpp(159,28)	]
remark	#15412:	vectorization	support:	streaming	store	was	generated	for	a			[	

OMPStream.cpp(159,5)	]
remark	#15305:	vectorization	support:	vector	length	8
remark	#15309:	vectorization	support:	normalized	vectorization	overhead	1.429
remark	#15301:	OpenMP SIMD	LOOP	WAS	VECTORIZED
remark	#15448:	unmasked	aligned	unit	stride	loads:	2
remark	#15449:	unmasked	aligned	unit	stride	stores:	1
remark	#15467:	unmasked	aligned	streaming	stores:	1
remark	#15475:	--- begin	vector	cost	summary	---
remark	#15476:	scalar	cost:	10
remark	#15477:	vector	cost:	0.870
remark	#15478:	estimated	potential	speedup:	10.340
remark	#15488:	--- end	vector	cost	summary	---

LOOP	END

Aligned	accesses,
Non-Temporal	

Stores



Improving	the	Kokkos	performance
▪ Ensure	memory	alignment.

▪ Can	compile	the	Kokkos	library	specifying	memory	alignment.
--cxxflags=-DKOKKOS_MEMORY_ALIGNMENT=2097152

▪ Enable	non-temporal	stores.
▪ x86	Intel	architecture	by	default	does	allocate	on	stores	(RFO	– Read	

for	Ownership)
▪ Streaming	stores	were	not	being	generated	by	the	compiler	by	

default.	
▪ These	are	key	to	getting	peak	bandwidth	performance

▪ Large	arrays	with	no	re-use,	avoid	cache	capacity	wastage	for	writes.
▪ Compile	the	code	with: -qopt-streaming-stores=always

▪ Can	also	use	for	McCalpin STREAM	benchmark
▪ In	general,	recommended	to	use	streaming	stores	on	per	loop	basis	via	

#pragma vector nontemporal [ var1, var2..]
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Improving	the	Kokkos	performance
▪ Change	loop	iterator	type.

▪ Simple	C	implementation,	loop	index	i &	array-access	a[i] uses	“int”	for	loop	
indexing	and	the	induction-variable
e.g. for (int i = 0; i < array_size; i++) {a[i]= …}

▪ The	Kokkos	version	was
parallel_for(array_size, KOKKOS_LAMBDA (const int

index) {});
▪ Kokkos	library	internally	uses	long data	type	(hardcoded)	for	induction	variable

▪ Mismatch	between	induction	variable	type	and	subscript	type	in	array	accesses	
a[index]

▪ Mixing	multiple-sized	induction	variables	reduces	compiler	optimizations
▪ Compiler	unable	to	perform	data-dependence	multiversioning	&	“Peel	Loop”	

generation	automatically	for	aligned	stores	in	the	vectorized	kernel	loop
▪ Change	loop	iterator	data	type	in	user	code	to	long to	match	Kokkos	

implementation.
parallel_for(array_size, KOKKOS_LAMBDA(const long

index) {});
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Compiler	Optimization	Reports	(Kokkos	code)

12

Kokkos	Triad	Loop	(Baseline): Kokkos	Triad	Loop	(Optimized):
const	T	scalar	=	startScalar;
parallel_for(array_size,	KOKKOS_LAMBDA	(const	long index)
{
a[index]	=	b[index]	+	scalar*c[index];
});

const	T	scalar	=	startScalar;
parallel_for(array_size,	KOKKOS_LAMBDA	(const	int	index)
{
a[index]	=	b[index]	+	scalar*c[index];
});

LOOP	BEGIN	at	
KOKKOS/kokkos/install/include/OpenMP/Kokkos_OpenMP_Parallel.hpp(86,7)	
inlined	into	KOKKOSStream.cpp(117,3)
remark	#15389:	vectorization	support:	reference	this[index]	has	unaligned	access			

[	KOKKOSStream.cpp(119,6)	]
remark	#15389:	vectorization	support:	reference	this[index]	has	unaligned	access			

[	KOKKOSStream.cpp(119,17)	]
remark	#15389:	vectorization	support:	reference	this[index]	has	unaligned	access			

[	KOKKOSStream.cpp(119,35)	]
remark	#15381:	vectorization	support:	unaligned	access	used	inside	loop	body
remark	#15305:	vectorization	support:	vector	length	16
remark	#15309:	vectorization	support:	normalized	vectorization	overhead	0.455
remark	#15300:	LOOP	WAS	VECTORIZED
remark	#15450:	unmasked	unaligned	unit	stride	loads:	2
remark	#15451:	unmasked	unaligned	unit	stride	stores:	1
remark	#15475:	--- begin	vector	cost	summary	---
remark	#15476:	scalar	cost:	13
remark	#15477:	vector	cost:	1.370
remark	#15478:	estimated	potential	speedup:	8.660
remark	#15488:	--- end	vector	cost	summary	---

LOOP	END

No	Peel	Loop,	
Unaligned	regular	

stores

LOOP	BEGIN	at	KOKKOS/kokkos/install/include/OpenMP/Kokkos_OpenMP_Parallel.hpp(86,7)	
inlined	into	KOKKOSStream.cpp(117,3)
<Peeled	loop	for	vectorization>
…..
LOOP	END
LOOP	BEGIN	at	KOKKOS/kokkos/install/include/OpenMP/Kokkos_OpenMP_Parallel.hpp(86,7)	
inlined	into	KOKKOSStream.cpp(117,3)
remark	#15388:	vectorization	support:	reference	this[iwork]	has	aligned	access	 [	
KOKKOSStream.cpp(119,6)	]
remark	#15389:	vectorization	support:	reference	this[iwork]	has	unaligned	access			[	
KOKKOSStream.cpp(119,17)	]
remark	#15389:	vectorization	support:	reference	this[iwork]	has	unaligned	access			[	

KOKKOSStream.cpp(119,35)	]
…….
remark	#15412:	vectorization	support:	streaming	store	was	generated	for	this[iwork][	
KOKKOSStream.cpp(119,6)	]
…..
remark	#15300:	LOOP	WAS	VECTORIZED
remark	#15449:	unmasked	aligned	unit	stride	stores:	1
remark	#15450:	unmasked	unaligned	unit	stride	loads:	2
remark	#15467:	unmasked	aligned	streaming	stores:	1

……

Peeled	Loop,	
Aligned	

non-temporal	stores



Improving	the	RAJA	performance
▪ Enable	non-temporal	stores.

▪ x86	Intel	architecture	by	default	does	allocate	on	stores	
(RFO	– Read	for	Ownership)

▪ Streaming	stores	were	not	being	generated	by	the	compiler	
by	default.	

▪ These	are	key	to	getting	peak	bandwidth	performance
▪ The	arrays	are	large	enough	and	there	is	no	reuse	so	we	
do	not	want	to	use	the	cache	capacity	for	writes.

▪ Compile	the	code	with:
-qopt-streaming-stores=always
▪ Can	also	use	for	McCalpin STREAM	benchmark
▪ Recommended	to	use	streaming	stores	on	per	loop	basis	via	
#pragma vector nontemporal [ var1, var2..]
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Improving	the	RAJA	performance
▪ Change	loop	iterator	type

▪ Change	data	type	of	“Index_type”	in	RAJA	library	to	“long”	
▪ Reduces	mismatch	between	different	sizes	for	induction	variables	& loop	index	

bounds	after	all	C++	abstraction	routines	inlined	by	the	compiler.
▪ Enables	much	better	compiler	loop	optimizations.
▪ Change	the	indices	to	be	of	type	long	in	the	user	code	to	get	better	efficiency	in	

vectorization
e.g.	forall<policy>(index_set, [=] RAJA_DEVICE (long index){

a[index] = b[index] + scalar*c[index]; });

▪ Avoid	“false	dependencies”
▪ Compiler	not	able	to	vectorize	loops	due	to	assumption	of	false	

dependencies
▪ Enable	“restrict” keyword	in	pointers	to	indicate	no	pointer	aliasing,	

thus	aiding	optimizations
▪ Compile	RAJA	with:
-DRAJA_PTR="RAJA_USE_RESTRICT_ALIGNED_PTR“

▪ Use	“RAJA_RESTRICT” for	the	pointers	in	the	user	code.
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Compiler	Optimization	Reports	(RAJA	code)

15

RAJA	Triad	Loop	(Baseline): RAJA	Triad	Loop	(Optimized):

T*	RAJA_RESTRICT a	=	d_a;		T*	RAJA_RESTRICT b	=	d_b;
T*	RAJA_RESTRICT c	=	d_c;	const	T	scalar	=	startScalar;
forall<policy>(index_set,	[=]	RAJA_DEVICE	(long index)
{
a[index]	=	b[index]	+	scalar*c[index];
});

T*	a	=	d_a; T*	b	=	d_b;	T*	c	=	d_c;
const	T	scalar	=	startScalar;
forall<policy>(index_set,	[=]	RAJA_DEVICE	(int	index)
{
a[index]	=	b[index]	+	scalar*c[index];
});

LOOP	BEGIN	at	RAJA/install/include/RAJA/exec-
openmp/forall_openmp.hxx(155,1)	inlined	into	RAJAStream.cpp(146,3)
remark	#15344:	loop	was	not	vectorized:	vector	dependence	

prevents	vectorization.	First	dependence	is	shown	below.	Use	level	5	
report	for	details
remark	#15346:	vector	dependence:	assumed	FLOW	dependence	

between	loop_body.a[*(begin+i*4)]	(148:7)	and	
loop_body.b[*(begin+i*4)]	(148:7)
remark	#25439:	unrolled	with	remainder	by	4

LOOP	END Loop	not	
vectorized

LOOP	BEGIN	at	RAJA/install.opt/include/RAJA/exec-
openmp/forall_openmp.hxx(155,1)	inlined	into	RAJAStream.cpp(149,3)
<Peeled	loop	for	vectorization>
……
LOOP	END

LOOP	BEGIN	at	/RAJA/install/include/RAJA/exec-
openmp/forall_openmp.hxx(155,1)	inlined	into	RAJAStream.cpp(149,3)
remark	#15412:	vectorization	support:	streaming	store	was	generated	for	
loop_body.a[…]			[	RAJAStream.cpp(151,7)	]
…
remark	#15300:	LOOP	WAS	VECTORIZED
…
remark	#15449:	unmasked	aligned	unit	stride	stores:	1
remark	#15450:	unmasked	unaligned	unit	stride	loads:	2
remark	#15467:	unmasked	aligned	streaming	stores:	1

….
LOOP	END

Peeled	Loop,	Vectorized	
main	loop	+	Aligned	non-

temporal	stores



Triad	Performance
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Model Original GB/s Optimized GB/s Original GB/s Optimized GB/s

McCalpin	Stream 448 - 129 -

OpenMP 302 438 95 130

Kokkos 298 436 96 129

RAJA 124 436 96 129

Intel®	Xeon Phi™	(Knights	Landing) Intel®	Xeon®	E5-2697v4 (Broadwell)



Conclusions	and	Insights
▪ Out	of	the	box,	C++	and	OpenMP	struggle	to	show	close	to	peak	achievable	

memory	bandwidth.

▪ Partially	down	to	the	knowledge	the	compiler	has	at	compile	time.
▪ Needs	to	know	the	alignment	and	trip	counts	to	generate	the	best vector	code.

▪ Can	use	OpenMP to	give	the	compiler	enough	knowledge	to	do	the	right	
thing.

▪ Using	an	abstraction	layer	hides	some	detail	away.
▪ Must	ensure	the	abstraction	layer	holds	enough	information	to	generate	the	same	

best	vector	code.

▪ Key	optimizations:
▪ Ensure	memory	alignment	(Align	and	tell	compiler).
▪ Remove	abstraction	layer	loop	iteration	typecasts (Avoid	datatype	conversions)
▪ Non-temporal	stores	(for	peak	memory	bandwidth,	use	only	where	applicable)
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