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The rotation of the Earth around its axis generates 24 h cycles of environmental change,
such as daily rhythms of light and temperature. Circadian clocks, cellular biological
oscillators that generate 24-hour rhythms of gene expression and metabolism, are thought to
synchronize the functioning of organisms with these daily environmental changes. Circadian
regulation enables organisms to anticipate environmental changes such as dawn and dusk,
and co-ordinate their metabolism, physiology and behaviour with daily changes in the
environment. This is particularly important for plants, which cannot move to escape

environmental challenges.

In the experimental model Arabidopsis thaliana (Arabidopsis), correct circadian regulation
increases photosynthesis, biomass accumulation, survival, seed number and viability (Green
et al., 2002; Dodd et al., 2005). It is estimated that almost 90% of Arabidopsis transcripts
can oscillate in abundance over the 24 h cycle, with about 30% of transcripts being
circadian-regulated (Michael et al., 2008). This multitude of genes under circadian control
highlights the pervasiveness of circadian regulation in co-ordinating the functioning of plants
with their rhythmic environment. Because photosynthetic light harvesting can only occur
during the day, and stored carbohydrate reserves require mobilization at night to supply

respiration and growth, plant metabolism is intimately associated with cycles of day and
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night. Building upon extensive underpinning research into the molecular genetics of
circadian oscillators, the interactions between metabolism, signalling and circadian
regulation have become an important growth area in plant circadian biology. For example,
breakthroughs have demonstrated that the rate of nocturnal starch breakdown is intricately
timed so that plants do not starve at night (Graf et al., 2010), sugars produced by
photosynthesis can entrain the circadian clock (Haydon et al., 2013), and the concentrations
of ions such as Ca®* and Mg?* are regulated by, and can regulate, the circadian oscillator

(Dodd et al., 2007; Feeney et al., 2016).

In this issue of Plant, Cell and Environment, Shin et al., 2017 identified another potential
connection between metabolism and circadian regulation. The authors established that an
energy-sensing protein complex can influence circadian rhythms. AKIN10 (known also as
KIN10 or SnRK1.1) is a catalytic a-subunit of Snf1 (sucrose non-fermenting1)-related kinase
1 (SnRK1), which is an evolutionarily conserved energy sensor. SnRK1 controls metabolic
enzymes through protein phosphorylation (Sugden et al., 1999), and also regulates > 1000
transcripts in response to starvation by controlling transcription factor activity (Baena-
Gonzalez et al., 2007; Mair et al., 2015). SnRK1 plays such a fundamental role in energy
metabolism that AKIN10 knockouts are lethal (Baena-Gonzalez et al, 2007). By
overexpressing AKIN10 with a chemically-inducible promoter, the authors explored the role
of AKIN10 in circadian regulation. They found that inducing very high levels of AKIN10
expression caused the circadian clock to assume a long period, of up to 5 h longer than
controls, when plants were under conditions of continuous light. Interestingly, the long
circadian period caused by AKIN10 overexpression disappeared in experiments performed
under continuous darkness, such that AKIN10 overexpressing plants had the same circadian
period as the controls. When AKIN10 overexpressors were in constant darkness,
supplementing the growth media with sugars did not restore the long circadian period that
occurred in the light. The authors interpret this to indicate that starvation does not cause the

insensitivity of circadian period to AKIN10 overexpression in darkness. Instead, Shin et al.
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(2017) propose that the influence of AKIN10 upon circadian period forms a response to the

light environment.

The study also found that under both light/dark cycles and constant light, AKIN10
overexpression caused a delay in the peak of expression of transcripts encoding the
evening-expressed circadian oscillator component GIGANTEA (Gl). This is interesting
because gi-11 mutants are insensitive to a long-term effect of sucrose upon the circadian
oscillator (Dalchau et al.,, 2011). Additionally, the authors found that the period of plants
harbouring the tic-2 mutation in the circadian oscillator gene TIME FOR COFFEE (TIC) had
reduced sensitivity to the effects of AKIN10 overexpression, suggesting a role for TIC in the

regulation of circadian period by AKIN10.

It is intriguing that AKIN10, a key player in the regulation of energy metabolism of
Arabidopsis, can influence circadian rhythms. The work of Shin et al. (2017) builds on
studies demonstrating bidirectional regulatory interactions between circadian regulation and
metabolism (Fig. 1). For example, the environmental cycles of day and night dictate when
photosynthesis can occur, and photosynthesis is also regulated extensively by the circadian
oscillator (Dodd et al., 2014). Importantly, the products of photosynthesis can, in turn, entrain
the circadian oscillator (Haydon et al., 2013). Each morning, the upregulation of
photosynthesis causes an accumulation of sugars, which alters circadian oscillator gene
expression and can adjust the circadian phase (Haydon et al., 2013). Similarly, the circadian
oscillator controls the rate of nocturnal starch consumption (Graf et al, 2010), with one
mathematical model for the regulation of nocturnal starch degradation assuming the
presence of a sugar sensing mechanism (Feugier & Satake, 2013). In this way, the
environment affects metabolism, metabolism regulates the circadian oscillator, and the

circadian oscillator regulates metabolism (Fig. 1).

By demonstrating that a subunit of the central energy sensor SnRK1 affects the functioning
of the circadian oscillator, Shin et al. (2017) have identified a mechanism that has the

potential to couple metabolism with circadian regulation. This adds to the evidence that
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reciprocal regulation between the circadian oscillator and energy metabolism exists across
several Kingdoms of life. For example, in mammals there are circadian rhythms of NAD" and
ATP synthesis and feeding can reset the circadian oscillator, and in both plants and
cyanobacteria, the availability of energy can regulate circadian rhythms (Rust et al., 2011;
Bass, 2012; Haydon et al., 2013). Therefore, the long circadian period caused by AKIN10
overexpression (Shin et al. 2017) could point to a role for AKIN10 in interfacing the circadian
oscillator with both metabolism and environment, given the extensive influence of
environmental conditions upon the metabolic state of plants. In future, it will be informative to
determine the function and position of ShnRK1 within the circadian system, to understand
how a sensor of cellular energy status contributes to the responses of plants to the daily

changes that occur in the environment.

Figure legend

Figure 1. Reciprocal regulation between the environment, metabolism and circadian
rhythms in Arabidopsis thaliana. SnRK1 is thought to regulate metabolic enzyme activity and
transcription in response to energy availability. In this issue, Shin et al. (2017) have identified
a new role for the SnRK1 catalytic subunit AKIN10 in regulating circadian period (shown in

red).
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