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Abstract—This paper presents an optimal observer design 
framework using a recently emerging method, approximate 
dynamic programming (ADP), to minimize a predefined cost 
function. We first exploit the duality between the linear optimal 
observer and the linear quadratic tracking (LQT) control. We 
show that the optimal observer design can be formulated as an 
optimal control problem subject to a specific cost function, and 
thus the solution can be obtained by solving an algebraic Riccati 
equation (ARE). For nonlinear systems, we further introduce an 
optimal observer design formulation and suggest a modified 
policy iteration method. Finally, to solve the problem online we 
propose a framework based on ADP and specifically on an 
approximator structure. Namely, a critic approximator is used 
to estimate the optimal value function, and a newly developed 
tuning law is proposed to find the parameters online. The 
stability and the performance are guaranteed with rigorous 
proofs. Numerical simulations are given to validate the 
theoretical studies. 
  Index Terms—Optimal observer design, approximate dynamic 
programming (ADP), policy iteration. 

I. INTRODUCTION 

In advanced control system design, a critical assumption is 
that the system states are available. This requirement, however, 
may not be always true in practice due to limited transducer 
costs, partial observability or even sensor noise. This fact has 
triggered extensive research on observer design, which can 
reconstruct the system states by means of limited output 
measurements. In the seminal work [1], Luenberger proposed 
a closed-loop observer for linear systems, where the output 
error is added to the observer to guarantee stability. This idea 
was also extended to nonlinear systems [2]. In the past decades, 
other observer design methodologies, e.g. high-gain observers 
[3], robust observers [4], sliding mode observers [5, 6] and 
adaptive observers [7], have also been suggested. 
    The observer usually has the same dynamics as the actual 
system, while appropriate compensators/corrections (e.g. 
output error or sliding mode term) are added to drive the 
observer states to the actual states. However, most observers 
are not optimal in the sense of minimizing a predefined 
performance index [8]. In this respect, the notable Kalman 
filter [9] was proposed to minimize the error covariance by 
choosing an appropriate feedback gain. Specifically, the 
duality of the Kalman filter and the linear quadratic regulation 
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(LQR) was studied in [9]. Another interesting alternative 
derivation of the Kalman filter can be found in [10] in terms of 
optimal control theory [11]. An optimal filter was also studied 
[12] by considering a State Dependent Riccati Equation 
(SDRE). Recent work in [8, 13] investigated the duality of the 
optimal observer design and the linear quadratic tracking 
(LQT) control, and suggested a novel observer design 
methodology to minimize a quadratic performance functional 
with respect to the observer output error and the correction 
action. In this optimal observer synthesis, an algebraic Riccati 
equation (ARE) should be solved offline, which creates 
difficulties for the online implementation. In fact, although 
optimal control theory has been well developed in the past 
decades, optimal observer design has been rarely studied 
beyond Kalman filter.  
    The aim of this paper is to study an optimal observer design 
based on approximate dynamic programming (ADP) [14]. We 
first formulate the observer design as an optimal output 
tracking control problem following their duality property [8, 
13]. Then, for linear systems, we derive an optimal observer 
solution by means of the principle of optimality [11]. This 
eventually relies on the solution of a standard ARE.  The idea 
is then further extended to nonlinear systems. We introduce a 
specific optimal observer formulation for nonlinear systems 
based on ADP [15, 16]. Then, an offline policy iteration 
method is proposed to solve the nonlinear optimization 
equations by further extending the ideas of Kleinman's method 
[20] and modifying the policy iteration approach [21, 22]. 
Finally, we use a critic function approximator to estimate the 
optimal cost value to online solve the derived observer 
Hamilton-Jacobi-Bellman (HJB) equation [17]. Finally a new 
tuning law [18] is derived to estimate the critic parameters, 
along with an appropriate stability proof. Simulations are 
given to show the validity of the suggested algorithms.  

II. LINEAR OPTIMAL OBSERVER DESIGN BASED ON LINEAR 
QUADRATIC TRACKING CONTROL METHOD 

  Consider the linear system of the form 
x Ax Bu
y Cx

= +
 =



         (1) 

where nx ∈  is the unknown system state, py ∈  is the 
measured output, and mu ∈  is the system input, n nA ×∈ , 

n mB ×∈ , p nC ×∈  are system matrices. It is assumed that 
the pair ( , )A C  is observable and ( , )A B  is controllable.  
   The problem to be studied is to design an optimal observer 
for system (1), such that the state x  can be reconstructed, 
while a performance index is minimized. 
Remark 1: It is interesting to find that in [8, 13] the optimal 
observer design for a particular kind of linear systems (i.e. the 
system input is assumed to be zero, 0u = ) can be considered 
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as a standard linear quadratic tracking (LQT) control problem 
[17], [19], and thus solved by using optimal control theory.  
   The aim of this section is to show that the idea of LQT 
control design can be extended to design an optimal observer 
by considering the duality between the LQT and linear 
observer design. This can be achieved by further modifying 
the observer design in [8, 13], where nonzero control input is 
considered. In this case, the observer can be considered as a 
system which tries to track the output of the original system.  
  Thus, the observer should have the same dynamic equation as 
that of the plant. Hence, we design an observer as 

ˆ ˆ
ˆ ˆ
x Ax Bu Bu
y Cx

 = + +


=



       (2) 

where x̂  is the estimate of x , ŷ  is the observer output, and 
mu ∈  is the correction term.  

Remark 2: It is known that the observer response is improved 
using the information of the system output, thus the correction 
term u  in (2) is analogous to a control for a system.  
    Thus, we can now design an 'optimal control', u , which 
minimizes the following cost function  

1ˆ ˆ ˆ( , ) [( ) ( ) ] ,  and 0
2

T T

t
V y x y y Q y y u Ru d x tτ

∞
= − − + ∀ >∫   (3) 

where p pQ ×∈  and m mR ×∈  are positive definite matrices 
chosen to tradeoff the performance and correction effort as 
justified in optimal control [17]. 
    Hence, the problem can be formulated as: to find a 'control' 
u  to minimize the cost function (3) subject to constraint (2) 
for ,x u∀ . Clearly, we can solve this problem in terms of 
optimal control theory [17].  
   We can now define the Hamiltonian as 

1ˆ ˆ ˆ ˆ( , , ) [ ] [( ) ( ) ]
2

T T TH x u Ax Bu Bu y y Q y y u Ruλ λ= + + + − − +   (4) 

where nλ ∈  denotes the adjoint variable. 
   Then the necessary conditions for optimality  are given by 

0H
u

∂
=

∂
,          (5) 

ˆ
H
x

λ ∂
= −

∂
 .         (6) 

By solving (5) and (6) along (4), one has  
1 Tu R B λ−= − ,        (7) 

ˆ( )T TC Q y y Aλ λ= − − .     (8) 
  To obtain the adjoint variable, the 'sweep' method [11] can be 
used by setting  

ˆPx gλ = − ,         (9) 
where n nP ×∈ , ng ∈ are the influence matrix and function. 
It is shown that the correction term (7) with (9) consists of a 
linear feedback term plus an additional feedforward term. 
Then, from (2), (7) and (9) we have that  

1

ˆ ˆ ˆ ˆ( )
ˆ ˆ ˆ[ ( )]T

Px Px g Px P Ax Bu Bu g
Px P Ax Bu BR B Px g g

λ
−

= + − = + + + −

= + + − − −


  

 





 .  (10) 

   On the other hand, by combining (8) and (9) we can find 

ˆ ˆ( ) ( )T TC Q y Cx A Px gλ = − − − .     (11) 
Hence, a feasible solution of above equations (10) and (11) 

can be given as 
1 0T T TP PA A P C QC PBR B P−+ + + − =  ,  (12) 

1( ) 0T T Tg A PBR B g C Qy PBu−+ − + − = .  (13) 
  Since we consider the optimal observer design over infinite 
time horizon, the observer gains tend to constants as shown in 
[11], i.e. , 0P g →

 . Consequently, the feedback gain P  in 
(12) can be obtained by solving a standard ARE 

1 0T T TPA A P C QC PBR B P−+ + − =     (14) 
and the feedforward term g  in (13) is given by  

1 1( ) ( )T T Tg A PBR B C Qy PBu− −= − − − .   (15) 
Remark 3:  In the above analysis, we have shown the duality 
of the optimal control and the optimal observer, that is the 
optimal observer design in (2) to find an optimal compensator 
u  and to minimize the cost function (3) is indeed equivalent 
to the LQT control design for (2) with the cost function (3). 
Thus, the optimal observer design is solved by extending the 
standard solution for the optimal LQT control problem [17].  
  To implement the observer (2), we have to solve a standard 
ARE (14) for P  and calculate (15) for g , respectively. 
However, solving the ARE numerically may lead to 
computational complexity although some commercial 
software (e.g. Matlab) can be used in an offline manner. 
Moreover, the above analysis is for linear systems only.  

III. NONLINEAR OPTIMAL OBSERVER BASED ON ADP  

   In this section, we will generalize the idea of LQT to design 
an optimal observer for nonlinear systems. Moreover, we will 
present an alternative method to solve the optimal equations 
by using the idea of approximate dynamic programming.  
   Consider the following nonlinear system 

( , )x Ax Bf x u
y Cx

= +
 =



       (16) 

where nx ∈  is the unknown system state, py ∈  is the 
measured output, and mu ∈  is the system input, n nA ×∈ , 

n mB ×∈ , p nC ×∈  are system matrices, and ( , ) mf x u ∈  is 
a nonlinear function. It is assumed that ( , )f x u  is Lipschitz 
continuous and 0( , ) / | 0xf x u x =∂ ∂ = , ( , )A C  is observable and 
( , )A B  is controllable. Thus, system (16) is observable. 
   Similarly, we design an observer for system (16) as 

ˆ ˆ ˆ( , )+
ˆ ˆ
x Ax Bf x u Bu
y Cx

 = +


=



       (17) 

where x̂  is the observer state, ŷ  is the observer output, and 
mu ∈  is the correction term to address the nonlinearities 

and to minimize the following infinite-horizon cost function 
1 ˆ ˆ[( ) ( ) ] ,  and 0
2

T T

t
V y y Q y y u Ru d x tτ

∞
= − − + ∀ >∫  

 (18) 

where p pQ ×∈  and m mR ×∈  are positive definite matrices. 

 A. Nonlinear Optimal Observer Design  
    Similar to the analysis for linear systems, the correction 



  

term u  in (17) is analogous to the control input of a system. 
From this perspective, the observer design in (17) can be taken 
as an optimal control problem for (17), which is formulated 
such that we eventually find a 'control' u  to minimize the cost 
function (18) subject to the constraint given by (17).  
   In this respect, we can solve this optimization problem again 
in terms of optimal control theory [17]. We differentiate the 
value function (18) and write the Bellman equation as 

1 ˆ ˆ[( ) ( ) ]
2

T Ty y Q y y u RuV − − += − .   (19) 
   Then we can define the Hamiltonian as 

ˆ ˆ( , , ) ( )

1 ˆ ˆ[( ) ( ) ]
2

ˆ

, ,

T
x

T T

H x u V V Ax Bu

y y Q y y u Ru

Bf

x u

= +

+ − − +

+

∀
  (20) 

where ˆ/xV V x∂ ∂  denotes the partial derivative of the cost 

function ˆ( )V x  with respect to x̂ , and ˆ ˆ( , )f f x u= . 
We are interested to find the optimal cost function * ˆ( )V x  

with any u  within admissible control set ( )Ψ Ω [17] 

*

( )

1 ˆ ˆmin [( ) ( ) ] ,
2

T T

tu
V y y Q y y u Ru d xτ

∞

∈Ψ Ω

 = − − + ∀ 
 ∫    (21) 

which satisfies the HJB equation 
ˆ ˆ0 min ( , , ) [ ]

1 ˆ ˆ[( ) ( ) ], ,
2

ˆT
x

T T

H x u V V Ax Bu

y y Q y y u Ru x u

Bf∗ ∗ ∗

∗ ∗

∗= = +

+ − − + ∀

+  
.  (22) 

Then from the stationarity condition, the ideal optimal 
action u ∗  is derived by solving ˆ( , , , ) / 0H x y u V u∗ ∗ ∗∂ ∂ =  as 

*
1

ˆ
T Vu R B

x
∗ − ∂

= −
∂

.        (23) 

   We are now ready to present the following result:  
Theorem 1: Consider the observer (17) subject to the cost 
function (18). Then the optimal compensator (23) guarantees 
that the observer (17) is stable, and x̂  converges to x for 
t → ∞ . 
Proof: The derivative of the value function ˆ( )V x  with respect 
to t and (17) is given as  

ˆ( )ˆˆ
ˆ

T
xV Ax Bu

dV V V x Bf
dt t x

+
∂ ∂

= + = +
∂ ∂

 .    (24) 

From (20) and (24) we have 
1ˆ ˆ ˆ( , , , ) [( ) ( ) ]
2

T TH x y u V y y Q y y u Ru
dV
dt

= + − − + .  (25) 

  For the optimal solution u u ∗= , the value function V ∗  
satisfies the HJB equation, i.e. ˆ( , , , ) 0H x y u V∗ ∗ = , thus we 
know that 

1 ˆ ˆ[( ) ( ) ]
2

T Ty y Q y y u Ru
dV
dt

∗
∗

∗= − − − + .    (26) 

   Integrating both sides of above equation, it yields 

0

1 ˆ ˆ[( ) ( ) ] 0
2

( ) (0) T Tt
y y Q y y u Ru dV t V τ∗∗ ∗ ∗= − − − + ≤− ∫ . (27) 

In this case, the optimal cost value V ∗  and thus ŷ y−  are 
bounded. Moreover, one may further use LaSalle's extension 

and show that  V ∗ is asymptotically convergent. Then based 
on (23), we know that u ∗  will converge to zero. Thus, we 
consider that the pair ( , )A C  is observable and ( , )f x u  is 
Lipschitz continuous, and have that ŷ y−  asymptotically 
converges to zero. Then according to Proposition 2.1 of [24], 
the observer states x̂  will converge to x asymptotically.  ◇ 

B. Offline Solution via Policy Iteration 
Theoretically, the optimal observer can be synthesized 

from (23). However, the solution may not be obtained directly 
using (22) and (23) because the optimal value function *V  is 
derived by solving the HJB equation (22). This is extremely 
difficult by means of analytical approaches.  Inspired by 
Kleinman’s algorithm [20], we first present an offline policy 
iteration method to obtain the approximated solution of HJB 
equation (22). 

Algorithm 1-Offline Policy Iteration for HJB Equation 
1: Start procedure 
2: Initialization: Start with a correction term 0u , which 

stabilizes the observer (17), and set i=1 

3:      while 1i iV V ε+ − ≥  for a small threshold 0ε > , do 

i) Policy evaluation: Find the cost function iV
using the Bellman equation 

1ˆ ˆ ˆ( ) [( ) ( ) ] 0
2

ˆiT T iT
x

i iV Ax Bu y y Q y y u RuBf + + − − + =+  (28) 

4: ii) Policy improvement: Update the policy by 
1 1 i

x
i TVu R B+ −= −       (29) 

5: iii) Iteration: let : 1i i= +  
6:      end while 
7: end procedure 

    The above Algorithm 1 extends the offline policy iteration 
algorithm in [21] for observer designs of nonlinear systems.    
The following lemma proved in [21] shows that the policies 
are stable if the initial policy is admissible. 
Lemma 1 [21]: If the initial correct 0u  in Algorithm 1 is 
stable, we know: 1) iu  is stable; 2) 1i iV V V∗ +≤ ≤  with V ∗  
being the optimal solution of HJB equation (22); 3) 
lim ,i

i
V V ∗

→∞
=  and lim i

i
u u ∗

→∞
= .   ◇ 

C. Online Solution via ADP 
We will use the idea of ADP and present an online solution 

for the observer design. The basic idea is to introduce an 
online approximator for the optimal value function given in 
(21), which is continuous on a compact set Ω . Thus, a critic 
function approximator for * ( )V X  is defined as [21, 22] 

   * ˆ( ) ( ) , [ , ]T T T T n p
vV X W X X x yφ ε += + ∀ = ∈   (30) 

and its derivative with respect to x̂  is 
* ( )
ˆ

T
v

V X W
x

φ ε∂
= ∇ + ∇

∂
 (31) 



  

where 1[ , , ]T l
lW W W= ∈  is the unknown parameter vector, 

1( ) [ , , ]T l
lXφ φ φ= ∈   is the regressor with 0l > , and vε  

denotes the approximation error. Moreover, ˆ/ xφ φ∇ = ∂ ∂  
and ˆ/v v xε ε∇ = ∂ ∂  define the partial derivative of φ  and ε  
with respect to x̂ . 
Assumption 1 [15, 16, 21]: The critic parameter W and the 
regressor functions φ , φ∇ are bounded by NW W≤ , 

Nφ φ≤ , Mφ φ∇ ≤ ; the approximation errors vε , vε∇  are 

also bounded as v εε φ∇ ≤ .  ◇ 
   Since the ideal parameter W is unknown, a practical critic 
approximator ˆ( )V X  for estimating  * ( )V X  is used 

ˆ ˆ( ) ( )TV X W Xφ=       (32) 

where Ŵ  denotes the estimated parameter of W . 
Using (32), we can rewrite u  as 

1 1
ˆ ˆ( )
ˆ

T T TVu R B R B X W
x

φ− −∂
= − = − ∇

∂
. (33) 

The regressor { }( ) : 1, ,i X i lφ =   can be selected so that 
all elements of ( )Xφ  are linearly independent [21, 22]. Thus, 
based on the Weierstrass approximation theorem, we know 
that V ∗  and ˆ/V x∗∂ ∂  can be represented as (30)-(31) with vε , 

0vε∇ →  for l → +∞ , and thus can be estimated by (32). 
The remaining problem is to find an adaptive algorithm to 

obtain online the estimated parameter Ŵ , which converges 
to W . For any fixed policy u , the approximated Bellman 
equation with (31) can be given as 

( ) 1
ˆ ˆ ˆ[( ) ( ) ]

2
ˆ T TT

HJBAx Bu y y Q y y u RuH W Bfφ ε+ − − + == ∇ + +   (34) 

where ˆ ˆ( )HJB v Ax BuBfε ε += −∇ +  is the residual error due to 
the critic approximation errors vε , vε∇ . We know 

, 0v vε ε∇ →  for l → +∞  and thus HJBε  is bounded  [21].  
To design an adaptive law for estimating W , we denote 

( )ˆ ˆAx BuBfφ +∇ +Ξ = and 1
ˆ ˆ[( ) ( ) ]

2
T Ty y Q y y u Ru− − +Θ = . Thus, 

the Bellman equation (34) can be written as 
T

HJBW εΘ = − Ξ + .        (35) 
One can find from (35) that the unknown parameter W  is 

now linearly parameterized. Therefore, the idea originally 
presented in our previous work [18] for designing adaptive 
laws can be further extended.  We denote the auxiliary matrix 

2
l lP ×∈ and vector 2

lQ ∈  as 

  2 2

2 2

,

,

TP P

Q Q

 = − + ΞΞ


= − + ΞΘ

 

 
 2

2

(0) 0
(0) 0

P
Q

=
=

    (36) 

with 0>  being a constant forgetting factor. Note the above 
equation can be easily implemented to obtain 2P  and 2Q  by 
using a low pass filter. 
   Then a new auxiliary vector lM ∈ can be obtained by 

  2 2
ˆM PW Q= + .        (37) 

where Ŵ  is the estimation of the parameter W , which can 
be updated by 

Ŵ M= −Γ         (38) 
where 0Γ >  is a constant learning gain. 
   The following definition is needed before we state the main 
results of this section.  
Definition 1: A function vector φ  is persistently excited (PE) 
if there exist constants 0, 0τ ε> >  such that 

( ) ( ) ,   0
t T

t
r r dr I t

τ
φ φ ε

+
≥ ∀ ≥∫ . 

Now, we have the following results: 
Theorem 2: Consider the critic approximator in (32) and the 
adaptive law in (38). Assume that the vector Ξ  in (35) is PE, 
then one has: 
i) when the approximation errors are zero (i.e. , 0v vε ε∇ =  

and thus 0HJBε = ), W  converges to zero exponentially, and 
the approximated policy u  in (33) will converge to the 
optimal solution u ∗ given by (23). 
ii)  when , 0v vε ε∇ ≠  and thus 0HJBε ≠ , then W  converges 
to a small compact set around zero, and u  converges to a 
neighborhood around u ∗ . 
Proof: Define the estimation error as ˆW W W= − , then 
similar to  [18, 23], one can solve the matrix equation (36) and 
verify from (37)  that the fact 2M PW υ= − +  holds, where 

( )

0
( ) ( )

t t r T
HJBe r r drυ ε− −= − Ξ∫   is a variable bounded by a 

positive constant 1ε  as 1υ ε≤ .  
    On the other hand, following a similar proof as given in [18, 
23], if the vector Ξ  in (35) is PE, we can verify that the 
matrix 2P  in (36) is positive definite, which means 

min 2 2( ) 0Pλ σ> >  holds for any positive constant 2 0σ > .  

    Select a Lyapunov function as 11
2

TL W W−= Γ  , then the 

derivative L  can be calculated from (37)-(38) as 
1

2
T T TL W W W PW W υ−= Γ = − +

       .   (39) 
i) when 0HJBε = , we know that 0υ = , such that (39) can be 
written as 

  
2

2 2
TL W PW W Lσ µ= − ≤ − ≤ −

      (40) 

where 1
2 max2 / ( )µ σ λ −= Γ  denotes a positive constant. From 

(40), one can claim that W  will exponentially converge to 
zero. Therefore, we know Ŵ W→  for 0vε = . In this case, 
the error between u ∗ in (23) and u  in (33) is given as 

1 1 1ˆT T T T T Tu u R B W R B W R B Wφ φ φ∗ − − −− = − ∇ + ∇ = − ∇  (41) 

Hence, lim 0
t

u u∗

→+∞
− = holds, i.e. u   converges to u ∗ . 

ii) when 0HJBε ≠ , Eq.(39) can be represented as 

2 2 1( )T TL W PW W W Wυ σ ε= − + ≤ − −         (42) 
Based on (42) and Lyapunov's Theorem, we can claim that 



  

W  will converge to a compact set 1Ω : { }1 2| /W W ε σ≤  , 

whose size is determined by the approximator error 1ε  and 
the excitation level 2σ . In this case, we recall (23), (33) to 
evaluate the error of the control policy, and have 

1 1

1 1

ˆ( + )T T T T
v

T T T
v

u u R B W R B W

R B W R B

φ ε φ

φ ε

∗ − −

− −

− = − ∇ ∇ + ∇

= − ∇ − ∇

.   (43) 

Hence, we can verify that  
1

maxlim ( )( )T
M ut

u u R B W ελ φ φ ε∗ −

→+∞
− ≤ + ≤     (44) 

holds for a positive constant 0uε > .   ◇ 
   We can now present an online algorithm to derive the 
approximated solution of equation (22) for observer (17). 

Remark 4: Theorem 2 shows that the suggested Algorithm 2 
with online adaptation can guarantee that the approximated 
policy u  in (33) converges to the optimal solution u ∗ in (23). 
Therefore, based on Theorem 1, the proposed observer (17) 
with online updating compensator  (33) is stable. 
Remark 5: As shown, the Algorithm 2 is implemented in an 
online manner, i.e. an offline iteration procedure is not needed. 
Moreover, the initial stable compensator is not assumed as we 
proved that the suggested adaptive law (38) can guarantee that 
Ŵ  converges to its true value W under PE condition. Thus, 
the approximated policy u  in (33) converges to the ideal 
optimal policy (23). 

IV. SIMULATIONS 

  This section will present two simulation examples to 
validate the efficacy of the suggested methods. 

A. Observer for Linear System  
  We consider a linear system  

1 1

2 2

1

2

0 1 0
0.16 0.56 1

[1 0]

x x
u

x x

x
y

x

      
= +      − −      


  =    



     (45) 

This is indeed the linear system (1) with 
0 1

0.16 0.56
A  

=  − − 
, [0 1]TB =  and [1 0]C = . To 

design the optimal observer, we choose the weighting 
matrices as 100Q = , 0.1R = to obtain satisfactory observer 
error convergence, then the standard observer solution of 

ARE (14) is obtained as 
25.14 3.15
3.15 0.7387

P∗  
=  

 
 by using the 

Matlab command 'care' or 'lqr'.  
   The initial conditions are ˆ(0) [8 2] , (0) [5 0]T Tx x= = . 
then simulation results of observer (2) with (14) and (15) are 
shown in Fig. 1, where the profiles of the plant state and the 
observer state are all illustrated. One may find that the 
observer tracks the derived system dynamics well when the 
optimal correction term is applied.  

 
Fig.1 Observer performance of observer (2) with (14) -(15). 

B. Observer for Nonlinear System  
   Consider the Van der Pol oscillator system given by: 

1 1 2
1 2

2 2

1

2

0 1 0
( )

1 1 1

[1 0]

x x
x x

x x

x
y

x

      
= + −      −      


  =    



        (46) 

Then the observer (17) with the approximated policy (33) and 
adaptive law (38) is implemented with simulation parameters 

1=  and 5 ([1,1,1,1,1])diagΓ = . The regressor vector for 
approximating the cost function is 2 2ˆ ˆ ˆ( ) [ , , , , ]Tx y yy y y yφ = . 
Moreover, the weighting matrices in the performance 
function (18) are set as 0.1R =  and 100Q = . The initial 
conditions are set as ˆ(0) [1,1] , (0) [0,2]T Tx x= = and 

(0) [0,0,0,0,0]TW = . 
   Simulation results are given in Fig.2, where the system state, 
the observer state and the compensation term are illustrated in 
Fig.2 (a), and the profiles of the critic parameters are shown in 
Fig.2 (b). One may conclude from Fig.2 (a) that the observer 
can converge to the given system state after a transient, and 
the correction term converges to zero. Fig.2 (b) also indicates 
that the suggested adaptive law (38) can achieve the 
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Algorithm 2-Online Adaptation for Optimal Observer 
1: Initialization: Select initial condition ˆ (0)W and 

parameters  ,Γ   for adaptive law (38); 
2: Start procedure 

3: i) Online adaptation: Collect ˆ,x y  for ( )Xφ , and 
online calculate 2P , 2Q , M  and ˆ ( )W t  along (38) 
using any ordinary differential equation (ODE) 
solver (e.g. Runge-Kutta) for integration interval  

1[ , ]i it t t +∈ , i N∈ . 

4: ii) Observer implementation: obtain the 
correction term 1 ˆ( )T Tu R B X Wφ−= − ∇ , and 
implement the observer  (17). 

5: iii)  Continuation: let : 1i i= +  
6: end procedure 



  

parameter convergence of the critic parameters.  

   
(a) Profiles of observer state and correction term. 

 
(b) Critic approximator parameter Ŵ . 

Fig.2 Nonlinear observer with optimal policy (33) and 
adaptation (38). 

V. CONCLUSION 

This paper addresses the optimal observer design by 
considering the duality of the observer design and the optimal 
tracking control. For linear systems, the optimal observer is 
reformulated as a linear quadratic tracking (LQT) control 
problem. Then the feedforward and feedback actions in the 
observer can be obtained by solving an ARE. For nonlinear 
systems, we represent the observer design as the output 
tracking control, where a compensation term is used to 
address the nonlinearities and to minimize a cost function. 
Then an offline policy iteration method is introduced to solve 
the optimization problem. Finally, we extend the idea of ADP 
to online solve the optimization equations, where a critic 
approximator is used to estimate the optimal value function, 
and a novel adaptive law is used to online update the 
unknown critic parameters. The convergence to the optimal 
solution is rigorously guaranteed. Simulation results are 
provided to illustrate the efficacy of the proposed observers.  
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