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Abstract Reactive transport modelling (RTM) is a powerful tool for understand-
ing subsurface systems where fluid flow and chemical reactions occur simultane-
ously. RTM has been widely used to understand the formation of dolomite by
replacement of calcite, which can be an important control on carbonate reservoir
quality. Dolomitisation is a reactive transport process governed by slow dolomite
precipitation and cannot be correctly simulated without a kinetic rate model.

The new CSMP++GEM coupled RTM code uses the GEMS3K kernel for
solving geochemical equilibria by the Gibbs energy minimization method with
the CSMP++ framework that implements a hybrid finite element – finite volume
method to solve partial differential equations. The unique feature of the new cou-
pling is the mineral reaction kinetics, implemented via additional metastability
constraints.

CSMP++GEM is able to simulate single-phase flow and solute transport in
porous media together with chemical reactions at different pressure, temperature
and water salinity conditions. This RTM assures mass conservation which is cru-
cial when simulating transport of solutes with low concentrations over geological
time. A full feedback of mineral dissolution/precipitation on the fluid flow is pro-
vided via corresponding porosity/permeability evolution and two source terms in
the pressure equation. First, the mass source term accounts for the mass of so-
lutes released during mineral dissolution or taken from the solution by mineral
precipitation. The second source term attributes to the fact that the solution den-
sity is affected by mineral dissolution/precipitation, too. This effect is included
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through the equivalent water salinity, which is calculated from the total amount
of dissolved solutes and is used to update the properties of saline water from the
H2O-NaCl equation of state.

This paper puts emphasis on the thorough mathematical derivation of the
governing equations and a detailed description of the numerical solution procedure.

Two sets of benchmarking results are presented. The first benchmark is a well-
known 1D model of dolomitisation by MgCl2 solution with thermodynamic reac-
tions. In the second benchmark, CSMP++GEM is compared with TOUGHRE-
ACT on a 1D model of dolomitisation by seawater taking into account mineral
reaction kinetics. The results presented in this paper demonstrate the ability of
the CSMP++GEM code to correctly reproduce dolomitisation effects.

Keywords Reactive transport modelling · Gibbs energy minimization ·

Finite Element Finite Volume method · Sequential Non-Iterative Approach ·

Dolomitisation

Mathematics Subject Classification (2010) 80A32 · 76M10 · 76M12 · 76S05

1 Introduction

Dolomitisation (replacement of calcite CaCO3 by dolomite CaMg(CO3)2) is a
case of mineral replacement that modifies the volume of the solid phases (Putnis
2002). Dolomite has a higher density than calcite and 1:1 molar replacement can
generate up to 13% additional porosity. On the other hand, dolomite forming
as a primary precipitate from supersaturated fluids leads to porosity occlusion.
Dolomitisation can also significantly modify permeability by reorganising the pore
geometry of the pore network, for example by replacing allochems and matrix
with sucrosic dolomite crystals (Gregg 2004). With regard to carbonate-hosted
petroleum reservoirs, understanding the spatial distribution of dolomite bodies
and the resulting changes in petrophysical properties (porosity-permeability) is
key for the accurate estimation of hydrocarbon reserves and improving recovery
efficiency.

Dolomitisation has been simulated using reactive transport modelling (RTM)
in a number of diagenetic settings, driven by different fluid circulation systems.
These include near surface and shallow burial reflux of platform-top evaporative
brines (Jones and Xiao 2005; Al-Helal et al. 2012; Gabellone and Whitaker 2015;
Lu and Cantrell 2016), intermediate and deep burial geothermal circulation and
compactional flow (Wilson et al. 2001; Whitaker and Xiao 2010; Consonni et al.
2010), and high-temperature fluid expulsion through faults and fractures (Corbella
et al. 2014).

Dolomitisation is a kinetically controlled, partial equilibrium process (Machel
2004). At near-surface conditions the precipitation rate of dolomite (Arvidson and
Mackenzie 1999) can be a million times slower than that of calcite (at the same
supersaturation) or calcium sulphates, whereas the dissolution rates of dolomite
and calcite are comparable (Palandri and Kharaka 2004). Slow dolomitisation
processes need to be simulated over geological time (hundreds of thousands up to
millions of years), which implies long computation times, even if fast numerical
methods and algebraic solvers are used. Although RTM has more than 30 years
long history (Lichtner 1985; Steefel and Lasaga 1994; Steefel and MacQuarrie
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1996), only now sufficient computational power becomes available to perform long-
time 3D simulations on detailed grids; nevertheless full-scale simulations are still
rare. To date there is only one example of a massively parallel reactive transport
code PFLOTRAN (Hammond and Lichtner 2010) that has shown an almost ideal
linear scaling on high-performance computers for various problems.

The motivation of this work was to create a versatile runtime coupled RTM
code (called CSMP++GEM) by combining the best features of the CSMP++ and
GEM families of codes.

Complex Systems Modelling Platform (CSMP++) framework (Matthai et al.
2001) is an object-oriented software library written in C++ that uses unstructured
grids to represent model geometry and finite element – finite volume method to
solve partial differential equations. To solve systems of algebraic linear equations
CSMP++ uses the SAMG solver (SAMG 2010), which recommended itself for
being accurate, robust and fast.

GEMS3K is an open-source standalone C++ code for Gibbs energy minimiza-
tion that computes (partial) equilibrium chemical speciation in complex hetero-
geneous multi-phase systems from the elemental bulk composition of the system,
thermodynamic data for the temperature and pressure of interest, parameters of
mixing (Kulik et al. 2013; Wagner et al. 2012), and kinetic rate parameters control-
ling additional metastability restrictions for certain phases and components. The
initial chemical systems for RTM can be set up and tested using the GEM-Selektor
v.3 grahical user interface with built-in thermodynamic and model databases and
then exported as sets of GEMS3K input files.

The main advantage of CSMP++GEM over the existing CSMP-GEM coupled
code (Fowler et al. 2016), is that the current version of the code also implements
detailed controls on mineral-water reaction kinetics, which is a crucial issue for
modelling reactions such as dolomitisation (Arvidson and Mackenzie 1999).

The choice of the finite volume method for solute transport is important for
maintaining the local mass conservation. Unlike the finite element method that
is used in OpenGeoSys code (and OpenGeoSys-GEM coupled code (Shao et al.
2009)) for solving both flow and solute transport, in the finite element - finite
volume method used in the CSMP++GEM coupling, flux continuity across the
finite volume facets guarantees the local mass conservation. The Integral Finite
Differences method (IFD) that is used in TOUGHREACT (Xu et al. 2012) is based
on the conservation laws, but only allows the use of corner point grids that are
much less flexible as unstructured grids.

In codes such as TOUGHREACT, the chemical speciation solver uses the so-
called LMA (Law of Mass Action) method, which is based on a selection of master

species (usually aqueous ions and water, sometimes minerals) whose amounts en-
ter the material balance equations directly, and product species whose amounts
are defined via the LMA equations for reactions of formation of product species
from master species and respective equilibrium constants. The systems of material
balance and LMA equations are then solved simultaneously using the Newton-
Raphson method (Reed 1982). Implicit to the LMA method are the assumptions
that the aqueous solution phase is predominant in the system; redox state, alka-
linity and assemblage of stable phases are known beforehand; and, if a non-ideal
solid solution is involved, its equilibrium composition can be obtained from the
aqueous phase composition.
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As stated by Reed (1982), the real challenge of LMAmethod lies in the selection
of stable mineral phases, especially solid solutions to be included into the mass
balance equations. This is normally done by checking the saturation indices (SI) of
the whole list of minerals in the process of solving the LMA speciation task many
times and adding/removing mineral phases one-by-one. Some LMA algorithms,
like the Geochemists Workbench (Bethke 2008), cannot solve equilibria with gas
mixtures, solid solutions or melts in the material balance, because gases, minerals
or melt components are treated as master species.

By contrast with the LMA method, the Gibbs Energy Minimization (GEM)
method (Karpov et al. 1997; Kulik et al. 2013) finds the unknown phase assemblage
and speciation of all phases from the elemental bulk composition of the system
by minimizing its total Gibbs energy while maintaining the elemental material
balance. All species (components) in all phases must be provided with their ele-
mental formulae and standard Gibbs energy per mole; no separation into master
and product species is needed.

Compared with LMA, GEMmethods do not require any assumptions about the
equilibrium state, and are capable of solving equilibria in complex heterogeneous
chemical systems with many non-ideal multicomponent solution phases (Wagner
et al. 2012; Kulik et al. 2013). This makes possible RTM simulations of complex
heterogeneous equilibria with intrinsic redox states, aqueous electrolyte, non-ideal
gas mixtures (fluids), mineral solid solutions, melts, adsorption and ion exchange.

The new CSMP++GEM reactive transport code combines relevant features of
CSMP++ framework and the GEMS3K standalone code for simulation of THC
systems with complex geometry and complex chemistry in wide ranges of temper-
atures, pressures, compositions and various transport regimes.

When simulating Thermal-Hydrological-Chemical (THC) processes, various ef-
fects need to be taken into account, such as density changes due to changes in pres-
sure, temperature and salinity, as well as mass sources due to chemical reactions
such as aqueous and surface complexation, mineral dissolution or precipitation.
This leads to a complex system of coupled flow-transport-chemistry equations that
can be solved following either a fully implicit approach or an operator-splitting
approach. Sequential “operator-splitting” not only allows the use of a chemical
speciation solver as a black box, but was also shown to be faster than the fully
implicit method, at least for advection-dominated problems in 1D (de Dieuleveult
et al. 2009), and was therefore adopted in this study.

This article starts with a mathematical problem statement that includes a
derivation of the governing equations for flow, solute transport and chemical re-
actions. This is followed by a description of numerical methods, used to solve
the resulting system of partial differential equations and the Gibbs energy min-
imisation problem. After that, benchmarking results for a simple 1D model of
dolomitisation without and with dolomite precipitation/dissolution kinetics are
presented, including the comparison of this RTM with TOUGHREACT. At the
end conclusions are briefly outlined.
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2 Governing equations for single phase flow in porous media, heat and
solute transport

In this section, the governing equations that describe single-phase multi-component
flow in a fully saturated porous media coupled with chemical reactions are pre-
sented. A brief description of the Gibbs energy minimization method with empha-
sis on the phase stability index and on how partial equilibria are controlled by the
kinetic rates of mineral-water interaction can be found in the Appendix.

The flow is assumed to be slightly compressible and non-isothermal. Minerals
(calcite, dolomite) are either in equilibrium or under kinetic control; their dissolu-
tion and/or precipitation result in changes in porosity and permeability.

Chemical composition of the system is defined in terms of the total amounts of
so-called independent components (IC), typically chemical elements and electric
charge. Each IC can be present in various aqueous ions and molecules dissolved in
water, as well as in different minerals of the solid phase. Aqueous concentration
ci is the total amount of moles of the i-th independent component in all species
dissolved in the aqueous phase per unit volume.

For each IC, the conservation of mass in the following form holds:

∂(φci)

∂t
+∇ · (civi) = qi, ∀i = 1, N, (1)

where φ is the porosity, vi is the flow velocity of the i-th independent component,
qi is the source/sink term that accounts for the exchange of i-th IC between solid
and aqueous phases due to mineral dissolution/precipitation, and N is the number
of independent components. There are no other sources/sinks other then caused
by chemical reactions.

Let us define the aqueous solution density ρ =
∑N

i=1 ciMi, using Mi – the
molar mass of the i-th independent component. The solution mass flux is equal to
the sum of mass fluxes of individual components:

ρv =

N
∑

i=1

ciMivi.

The sum of the product of equations (1) by Mi yields the continuity equation for
the aqueous phase:

∂(φρ)

∂t
+∇ · (ρv) = Q, (2)

where v is the solution velocity, and Q is the source term that accounts for the
mass exchange between aqueous and solid phases due to chemical reactions:

Q =
N
∑

i=1

qiMi.

The fluid velocity is related to the fluid pressure by means of Darcy’s law:

v = −
k

µ
(∇p− ρg), (3)

where k is the permeability, µ is the fluid viscosity, p is the fluid pressure, and g
is the gravity acceleration vector.
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The equivalent salinity is calculated from the chemical composition of a solu-
tion:

X = 1−
mw

m
,

where m is the solution mass, mw is the mass of pure water (solvent).
We assume that solution density ρ = ρ(p, T,X) depends on pressure p = p(t,x),

temperature T = T (t,x) and chemical composition X = X(t,x), and calculate it’s
time derivative:

∂ρ

∂t
=

∂ρ

∂p

∂p

∂t
+

∂ρ

∂T

∂T

∂t
+

∂ρ

∂X

∂X

∂t
= ρβf

∂p

∂t
− qTX/φ, (4)

where

βf = −
1

V

∂V

∂p
=

1

ρ

∂ρ

∂p

is the isothermal isosaline fluid compressibility, defined as the relative change of
the solution volume V (or solution density ρ) with a change in pressure, and

qTX = −φ

(

∂ρ

∂T

∂T

∂t
+

∂ρ

∂X

∂X

∂t

)

is the source term that accounts for the temperature and salinity induced solution
density change at constant pressure.

Neglecting the thermal expansion of the rock, the porosity change is expressed
in terms of isothermal pore compressibility:

βφ =
1

φ

∂φ

∂p
,

∂φ

∂t
=

∂φ

∂p

∂p

∂t
= φβφ

∂p

∂t
. (5)

Porosity changes caused by chemical reactions are discussed below.
Using equations (4) and (5), the left-hand side of (2) may be rewritten to first

get:
∂(φρ)

∂t
= φ

∂ρ

∂t
+ ρ

∂φ

∂t
= φρβf

∂p

∂t
− qTX + ρφβφ

∂p

∂t
,

and then inserting (3) into the right hand side of (2), yields the transient pressure
equation:

ρφ(βf + βφ)
∂p

∂t
= ∇ · (ρ

k

µ
(∇p− ρg)) + qTX +Q. (6)

The energy conservation equation is written in the following form (Bejan and
Kraus 2003):

(φρcpf + (1− φ)ρrcpr)
∂T

∂t
= ∇ · ((φKf + (1− φ)Kr)∇T )−∇ · (vρcpfT ), (7)

where T is the temperature, Kf and Kr are the fluid and rock thermal conduc-
tivities, cpf and cpr are the fluid and rock specific heat capacities, respectively; ρr
is the rock density. Thermal effects of the chemical reactions are not taken into
account.
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Returning to the component transport equation (1), we introduce the entity
Ji = ci(vi−v) – the diffusive mass flux of i-th species with respect to the average
flow velocity (Bear 1972).

Using this definition the second term on the left-hand side of (1) can be written
as: ∇ · (civi) = ∇ · Ji +∇ · (civ), the diffusive flux can be described using Fick’s
law Ji = −D∇ci, and equation (1) can be rearranged in the following form:

∂(φci)

∂t
+∇ · (vci)−∇ · (D∇ci) = qi, ∀i = 1, N, (8)

where D is the diffusion-dispersion coefficient, assumed to be constant and the
same for all species.

Equations (6), (7) and (8) together with the equation of state form the total
system of equations that describe the non-isothermal slightly compressible single
phase multi-component transport in porous media. In this work, an equation of
state for brine from (Driesner 2007) was used.

3 Solution method

The resulting system of equations (6), (7) and (8) is solved using a hybrid fi-
nite element - finite volume method (Geiger et al. 2006) implemented within the
CSMP++ framework software library (Matthai et al. 2001), an algebraic multigrid
solver (SAMG) is used for solving the arising systems of linear algebraic equations
(SAMG 2010). The chemical speciation calculations are performed by means of
the open-source GEMS3K software library (Kulik et al. 2013).

CSMP++GEM reactive transport code is written in the C++ programming
language and has a flexible modular structure that can be configured for par-
ticular simulation needs: stationary or transient pressure with/without gravity,
constant, stationary or transient temperature, implicit or explicit time stepping.
Reactive transport simulations based on 1D, 2D and 3D unstructured grids can
be performed.

A consistent initialization is important for RTM. The initial chemical compo-
sition/speciation is read from text-format input files exported from GEM-Selektor
(Kulik et al. 2013). Initial and boundary conditions for pressure and tempera-
ture are read from a CSMP++ configuration file. Dirichlet, Neumann and mixed
boundary conditions for pressure and temperature, as well as fluid and heat sources
can be specified. First, initial pressure and temperature distributions across the
model are calculated. Next, chemical speciation is computed for each finite volume
at the initial pressure-temperature conditions. Last, fluid properties are computed
from the equation of state for the given pressure, temperature and salinity.

After the model initialization, the main time stepping loop is executed. A flow
chart for a single time step is shown in Figure 1, with a detailed description given
in the following subsections.

3.1 Pressure-temperature coupling

The pressure equation (6) and the heat transport equation (7) are solved in a
sequential order implicitly in time, as represented by the following semi-discrete
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Fig. 1 Flowchart of a single time step as implemented in CSMP++GEM

equations (9) and (10) in which constant properties lack the superscripts. The rule
for the porosity/permeability update is explained below. The pressure equation is
solved using the finite element method on an unstructured grid:

φnρn(βn
f + βφ)

pn+1
− pn

∆t
= ∇ ·

((

ρ
k

µ

)n

(∇pn+1
− ρng)

)

+ qnTX +Qn, (9)

where p0 is the initial pressure distribution, ρ0, β0
f , µ0 are the initial fluid prop-

erties, φ0, k0 are the initial rock properties, q0 = 0, Q0 = 0.
After the pressure calculation, the density is updated from the equation of

state (Driesner 2007): ρn+1/2 = ρ(pn+1, Tn, Xn) and stored for the calculation of
qTX .

The heat transport equation is solved using the finite volume method on a
complementary sub–grid (Geiger et al. 2004):

(φnρn cnpf + (1− φn)ρrcpr)
Tn+1

− Tn

∆t
= (10)

∇ ·

(

(φnKf + (1− φn)Kr)∇Tn+1
)

−∇ · (vρn cnpf Tn+1),
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with T 0 – initial temperature distribution.
After the pressure-temperature calculations, the transport-chemistry calcula-

tions are performed, and then the fluid properties: ρn+1 cn+1
pf , µn+1, βn+1

f are

updated using the equation of state, and new values for qn+1
TX and Qn+1 are cal-

culated.

3.2 Transport-chemistry coupling: Sequential Non-iterative Approach

The transport equations (8) are solved using the Sequential Non-Iterative Ap-
proach (SNIA) (de Dieuleveult et al. 2009) in two steps:

φn (c
n+1/2
i − cni )

∆t
+∇ · (vc

n+1/2
i )−∇ · (D∇c

n+1/2
i ) = 0, (11)

φn (cn+1
i − c

n+1/2
i )

∆t
= qn+1

i , ∀i ∈ 1, N. (12)

This approach allows us to use the GEM chemical partial equilibrium solver as
a “black box” to calculate the values for the chemical source qi. The source term
qi in (12) can be expressed as:

qn+1
i = −φn fn+1

i − fn
i

∆t
,

where fi is the amount of i-th IC in the solid phase per unit pore volume. The
negative sign indicates that, as the amount of IC in the solid phase decreases, its
amount in the aqueous phase increases, and vice versa.

Calculations are performed in the following way. First, equations (11) are solved
using the finite volume method. For each aqueous concentration ci, a transport
equation is solved on the entire grid. After that, equations (12) are solved using
the GEM IPM3 algorithm implemented in the GEMS3K code. Chemical speciation
calculations are performed for each finite volume independently. The new values
for cn+1

i are computed from:

(cn+1, fn+1) = F (cn+1/2 + fn),

where F denotes the GEMS3K solver that takes as an input the vector of total
concentrations (the sum of aqueous and solid concentrations) and yields the vec-
tors of aqueous and solid concentrations: c = (c1 . . . cIC) and f = (f1 . . . fIC),
respectively.

A new CSMP++ data structure – the Array Variable – is used to store the
vectors c and f associated with the nodes. This vector structure allows efficient
advective-diffusive transport and chemical speciation computations.

3.3 Porosity/permeability feedback from reactions

The complete discrete form of the equation for species transport would be:

φn+1cn+1
i − φncni
∆t

+∇ · (vic
n+1
i )−∇ · (D∇cn+1

i ) = −
φn+1fn+1

i − φnfn
i

∆t
. (13)
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In this work, we assume as a simplification that porosity is constant during the
transport/chemistry computations, solving the following equation instead:

φn c̃n+1
i − cni

∆t
+∇ · (vic̃

n+1
i )−∇ · (D∇c̃n+1

i ) = −φn f̃n+1
i − fn

i

∆t
.

After the transport step and the chemical equilibration step, the porosity is up-
dated using the formula:

φn+1 = 1− Vinert −

Nmin
∑

i=1

V n+1
mini

,

where Vinert is the volume fraction of the non-reactive rock , V n+1
mini

is the new

volume fraction of the i-th mineral, calculated by multiplication of fn+1
i with the

mineral molar volume, Nmin is the number of minerals.
As a further simplification, the updated value of permeability is obtained from

the Kozeny-Carman correlation (Bear 1972):

kn+1 = kn (1− φn)2

(1− φn+1)2
(φn+1)3

(φn)3
(14)

The new porosity and permeability values are used in the pressure calculation
(9) for the next time level.

In order to maintain the mass balance, the species concentrations ci and fi
are re-scaled with respect to the new porosity, before being used in the transport
calculations for the following time step:

cn+1
i =

φn

φn+1
c̃n+1
i ,

fn+1
i =

φn

φn+1
f̃n+1
i .

3.4 Calculation of qTX and Q

After the transport and chemical speciation calculations are finished, the source
terms are determined. The fluid expansion source is calculated from the change in
fluid density due to temperature and salinity changes:

qn+1
TX = −φn+1 ρ

n+1
− ρn+1/2

∆t
= −φn+1 ρ(p

n+1, Tn+1, Xn+1)− ρ(pn+1, Tn, Xn)

∆t
,

where density is calculated from the equation of state.
As stated above, the chemical source is calculated using the output data from

GEMS3K:

Qn+1 = −φn+1

∑N
i=1(f

n+1
i − fn

i )Mi

∆t
,

where fn+1
i Mi is the new mass of the i-th IC in the solid phase, fn

i Mi is its value
at the previous time step.
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3.5 Property values placement

As described above, porosity is updated based on the mineral amounts that are
stored on the nodes, as a consequence of finite volume- (nodal-) based chemi-
cal calculations. There is no conservative way to interpolate/extrapolate porosity
from the nodes to the elements and back. For this reason, both nodal and elemen-
tal porosity are stored. For the permeability update, porosity from the nodes is
interpolated to the elements, and then the new element permeability values are
calculated using equation (14).

The transient pressure equation (6) is solved using the linear finite element
method. Within the finite element – finite volume framework of CSMP++, fluid
properties are stored on the nodes (density, viscosity, fluid compressibility, fluid
thermal expansion coefficient), material properties (rock compressibility, perme-
ability) are stored on the elements. In order to increase the accuracy of the finite
element solution of the pressure equation, the following composite (involving node
and element variables) properties:

ρφ(βf + βφ)

– the total system mass compressibility,

λ = ρ
k

µ

– the mass conductivity,

ρ
k

µ
ρg

– the mass gravity term, are stored on the element integration points. This process
is exemplified for the calculation of mass conductivity in Figure 2. Density and
viscosity are placed on the nodes, and permeability is an elemental property. For
each element integration point the value of mass conductivity will be calculated
from the density and viscosity values of the corresponding node and a permeability
value that is constant on the element.

The advection-diffusion heat transport equation (7) is solved using the finite
volume method, where the finite element integral corresponding to diffusion is
accumulated into the same solution matrix (Matthai et al. 2009).

The total mass heat capacity, Ct = φρcpf + (1 − φ)ρrcpr, is stored on the
finite volume sector integration points; the value from the upstream node is used
for fluid mass heat capacity ρcpf calculation. Figure 3 illustrates calculation of
the first, fluid–related term in total mass heat capacity (φρcpf ): finite elements
are dashed line triangles; finite volume of the dual mesh is drawn in solid lines;
porosity φ, density ρ and fluid heat capacity cpf are placed on the nodes; each
finite volume sector has one integration point where ci = φiρcpf is stored. The
second, rock–related term ((1 − φ)ρrcpr) is interpolated from finite elements to
the finite volume sector integration points.

4 Benchmarking results

As a first step, CSMP++GEM was benchmarked against the OpenGeoSys-GEM
coupled code (that also uses GEM-IPM3 as chemical solver) on a well-known
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Fig. 2 Mass conductivity is placed on finite element integration points

Fig. 3 Total mass heat capacity is placed on the finite volume sector integration points

calcite dissolution – dolomite precipitation benchmark without mineral dissolu-
tion/precipitation kinetics from Shao et al. (2009).

After that, CSMP++GEM was benchmarked against TOUGHREACT on a
1D dolomitisation model that accounts for kinetics of dolomite.

4.1 Dolomitisation by MgCl2 without mineral kinetics

The test model is a 1D porous medium column of 0.5m length, with a bulk density
ρb = 1800 kg/m3 and porosity φ = 0.32. Fluid pressure of 1bar and temperature
of 25◦C are assumed. Pore fluid is initially equilibrated with calcite. The column
is flushed from left to right with MgCl2 solution at a flow rate q = 3 · 10−6 m/s,
diffusion-dispersion coefficient D is equal to 2 · 10−8 m2/s. Initial and boundary
concentrations for aqueous species and minerals are presented in Table 1 (Shao
et al. 2009). Chloride does not react with solids, but serves as a tracer. Both calcite
and dolomite are equilibrium-controlled minerals.

The model domain is discretized into 100 elements of equal length (∆x =
0.005m) and a time step ∆t = 200 s is used in the simulation. As the reaction



RTM of dolomitisation using CSMP++GEM 13

Table 1 Calcite-dolomite benchmark: aqueous and solid boundary and initial concentrations

Boundary Initial Units

Ca2+ 1 · 10−7 1.22 · 10−4 mol/kgwater

CO2−
3 1 · 10−7 1.22 · 10−4 mol/kgwater

Mg2+ 1 · 10−3 1 · 10−7 mol/kgwater

Cl− 2 · 10−3 1 · 10−7 mol/kgwater

Calcite 0.0 2.17 · 10−5 mol/kgsoil
Dolomite 0.0 0.0 mol/kgsoil

front progresses, dolomite is formed temporarily as a moving zone, and calcite is
dissolved. Simulation results after 21000s, compared with the results from Shao
et al. (2009) for the concentrations of ions and minerals, are presented in Fig. 4
and 5 respectively. The results match well; minor deviations can be explained
by different numerical methods used for transport calculations – finite element
method (OpenGeoSys) and finite volume method (CSMP++).

Fig. 4 Calcite-dolomite benchmark: concentrations of Ca2+, Mg2+ and Cl− ions after 21000s

Fig. 5 Calcite-dolomite benchmark: concentrations of calcite and dolomite after 21000s
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Table 2 Rock properties

porosity 0.4 -
permeability 1 · 10−12 m2

rock compressibility 1 · 10−10 Pa−1

rock density 2710 kg/m3

rock specific heat capacity 1000 J/kg ·K
total thermal conductivity 2 W/m ·K
diffusion-dispersion coefficient 3 · 10−11 m2/s

4.2 Dolomitisation by seawater with mineral kinetics

Following earlier 1D reactive transport simulations of dolomitisation in reflux sys-
tems using TOUGHREACT (Gabellone and Whitaker 2015), another 1D bench-
mark was created in order to compare these results with those obtained using
the CSMP++GEM code. The goal was to simulate changes in the mineralogy of
a limestone infiltrated by seawater, taking into account the reaction kinetics of
dolomite. Kozeny-Carman correlation was applied for calculating the permeabil-
ity evolution from changing porosity, supported by studies by Ehrenberg (2004,
2006) on Miocene carbonate platforms and Fabricius (2007) on North Sea chalk
reservoirs. These studies have demonstrated that carbonates often show a porosity-
permeability relationship following the ideal Kozeny-Carman curve, although this
can break down, for instance where there is significant vuggy or micro porosity.

Description

The simulation model is a 10m–long vertical column, with a cross section of 1m2,
divided into 50 cells (∆x = 0.2m). Rock properties are listed in the Table 2. The
initial mineral composition is 99% of calcite and 1% of dolomite. Calcite is under
equilibrium control, whereas ordered dolomite is under kinetic control.

The column is initially saturated with formation water, and “boundary-condition”
water is injected at the top. The normal seawater composition (3.5% salinity) was
taken from Nordstrom et al. (1979), and is supersaturated to both calcite and
dolomite. The initial water composition was derived from this model seawater by
equilibrating it with calcite and ordered dolomite, while the boundary water was
equilibrated with calcite only.

A thermodynamic database suitable for both CSMP++GEM and TOUGHRE-
ACT was not available, and therefore two different databases presenting quite
close equilibrium constants for dolomite and calcite (see Table 3) were used. The
PSI/Nagra thermodynamic database (Thoenen et al. 2014) was used to prepare
the CSMP++GEM input in GEM-Selektor and in the simulation runs, while the
THERMODDEM database (Blanc et al. 2012) was used in the TOUGHREACT
simulations.

The extended Debye-Huckel activity model with parameters derived by Helge-
son et al. (1981) was used in both software packages. Initial and boundary water
compositions for CSMP++GEM and TOUGHREACT at 30◦C (in TOUGHRE-
ACT input format) are listed in Table 4 and Table 5.

As the precipitation rate of dolomite is very slow at these given temperature
conditions (5-6 orders of magnitude less than the dissolution rate of calcite or
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Table 3 Thermodynamic data comparison: equilibrium constants at 1 bar, 25◦C

logK PSI/Nagra THERMODDEM

CaCO3 1.8490 1.8470
CaMg(CO3)2 3.5680 3.5328

Table 4 Initial water compositions for CSMP++GEM and TOUGHREACT runs at 1 bar,
30◦C: basic species molalities

CSM++GEM TOUGHREACT

pH 7.117 7.037
Ca2+ 3.874 · 10−2 3.666 · 10−2

Mg2+ 2.644 · 10−2 2.871 · 10−2

HCO−

3 1.594 · 10−3 1.652 · 10−3

Na+ 4.839 · 10−1 4.854 · 10−1

K+ 1.055 · 10−2 1.058 · 10−2

SO2−
4 2.917 · 10−2 2.926 · 10−2

Cl− 5.649 · 10−1 5.657 · 10−1

Table 5 Boundary water compositions for CSMP++GEM and TOUGHREACT runs at 1 bar,
30◦C: basic species molalities

CSMP++GEM TOUGHREACT

pH 7.626 7.528
Ca2+ 1.040 · 10−2 1.041 · 10−2

Mg2+ 5.489 · 10−2 5.508 · 10−2

HCO−

3 1.710 · 10−3 1.913 · 10−3

Na+ 4.839 · 10−1 4.854 · 10−1

K+ 1.055 · 10−2 1.058 · 10−2

SO2−
4 2.917 · 10−2 2.926 · 10−2

Cl− 5.649 · 10−1 5.657 · 10−1

dolomite), calcite can be assumed to dissolve or precipitate instantly, and thus
should be considered as an equilibrium-controlled phase.

We used the kinetic rate of dolomite precipitation:

r = κA(1−Ωθ)η,

where κ is the rate constant, A is the reactive surface area, Ω is the mineral
saturation ratio, θ and η are empirical parameters, and the values of corresponding
parameters from Arvidson and Mackenzie (1999). This ensures that simulations
are consistent with previous RTM simulations of dolomitisation (Wilson et al.
2001; Jones and Xiao 2005; Al-Helal et al. 2012; Gabellone and Whitaker 2015).

TOUGHREACT has the following built-in temperature correction for the rate
constant:

κ = κoe
−Ea
R (

1

T
−

1

298.15
),

whereas in CSMP++GEM a slightly different but equivalent formulation is used:

κ = κ̃oΛe
−Ea
RT ,
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Table 6 Kinetic rate parameters for ordered dolomite

CSMP++GEM TOUGHREACT

κo - 4.58 · 10−19 mol/m2 · s
κ̃o 10000 - mol/m2 · s
Λ 11.22 - -
Ea 133.47 · 103 133.5 · 103 J/mol
κ at 30◦C 1.129 · 10−18 1.113 · 10−18 mol/m2 · s
A 1000 1000 m2/kg
η 2.26 2.2 -
θ 1 1 -

Table 7 Essential conditions for the flow simulation

initial pressure 101325 Pa
initial temperature 30◦C
pressure top 101623 Pa
pressure bottom 201375 Pa

where Ea is the activation energy, κo and κ̃o are rate constants at 25◦C, Λ is
the Arrhenius parameter, R is the universal gas constant. Kinetic parameters for
dolomite precipitation are listed in Table 6, and values for the rate constant at
30◦C are compared. A constant specific reactive surface area of 1000m2/kg was
assumed, corresponding to small dolomite rhombs (2.5µm).

The system was assumed to be isothermal; simulations were performed at 30,
40 and 50◦C. Dirichlet boundary conditions for pressure at the top and the bot-
tom of the column were assigned, resulting in a flow rate of ∼ 1m/yr (2.79 ±

0.25 × 10−8m/s). Essential conditions for the flow simulation are listed in Ta-
ble 7. In the TOUGHREACT runs, top and bottom cells were infinite volume
cells; in CSMP++GEM, Dirichlet boundary conditions were assigned for species
concentrations at both column ends. In CSMP++GEM simulations, thermophys-
ical properties of seawater were taken from the equation of state for brine from
(Driesner 2007). In TOUGHREACT, the EOS7 module (water, brine, air) was
used (Pruess 1991).

In the RTM simulations, two different time steps were used. In the main time
loop, a time step of 10 years was employed, in the inner loop (solute transport and
chemistry) the time increment was chosen according to the Courant–Friedrichs–
Lewy (CFL) condition. This is a necessary condition for the convergence of SNIA,
as with a ∆t = CFL the fluid will move no more than one cell at a time, so it is
guaranteed that in the subsequent chemistry calculation the fluid will have had a
chance to react with the rock before it leaves the cell.

Results

Three sets of simulations for 30, 40 and 50◦C were performed in CSMP++GEM
and TOUGHREACT, and the results were compared after 10 kyrs. Fig. 6 shows
the results of the simulation at 50 ◦C. Within the first meter of the column some
boundary effects occurred, due to the fact that in both codes the boundary water
was slightly undersaturated with respect to calcite and therefore a higher amount
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of calcite (compared to the rest of the column) dissolved in the first few cells
adjacent to the column top.

Apart from the first meter from the top, the changes in mineral amounts are
almost constant across the column. After the first few years of injection, the water
composition becomes approximately the same along the whole column. Conse-
quently, the kinetic rate of dolomite precipitation and the resulting rate of cal-
cite dissolution are constant, indicating flow rates are high relative to reaction
rates. The amount of dissolved calcite is approximately two times greater than the
amount of precipitated dolomite, consistent with the stoichiometric assumption,
i.e. that two moles of calcite are consumed to form one mole of dolomite.

Fig. 6 Results of the simulation at 50◦C: changes in mineral amounts after 10kyrs

The porosity evolution is shown in Fig. 7. After such a short (in geological time
scale) period of time, the change in porosity is minor; the slight increase is due to
the differences in molar volumes of calcite and dolomite.

Fig. 7 Results of the simulation at 50◦C: porosity after 10kyrs

Table 8 compares the results of the simulations at 30, 40 and 50 ◦C, presenting
the average values of calcite dissolved, dolomite precipitated, and porosity in-
crease across the column after 10kyrs of simulation time. The changes of mineral
amounts and change in porosity increase by a factor of 8-9 with a change of 10 de-
grees in temperature. These results agree with the saturation indices for dolomite
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Table 8 Results of the simulations at three different temperatures: amount of calcite dissolved,
amount of dolomite precipitated, change in porosity. Average values across the model after
10kyr

CSMP++GEM TOUGHREACT

ncal, ndol, ∆φ ncal, ndol, ∆φ
mol/m3 mol/m3 - mol/m3 mol/m3 -

30◦C 0.91 0.46 4.6 · 10−6 0.79 0.39 3.9 · 10−6

40◦C 8.03 4.03 3.7 · 10−5 7.06 3.55 3.3 · 10−5

50◦C 68.1 34.2 3.3 · 10−4 61.5 31.0 2.8 · 10−4

Table 9 Saturation indices for dolomite at different temperatures

CSMP++GEM TOUGHREACT

30◦C 0.884 0.889
40◦C 0.970 0.967
50◦C 1.052 1.040

(boundary water) at different temperatures (Table 9), and with the acceleration of
dolomite precipitation rates at increasing temperature (eq. 24). At all three tem-
peratures, calcite dissolution is driven by dolomite growth, and the ratio between
the amount of calcite dissolved and dolomite precipitated remains approximately
equal to 2. After such a short time calcite remains dominant (98.6% of mineral
phase after 10 kyrs) and dolomitisation rate is limited by reactive surface area.

Results using the two different simulators are similar and minor differences
can be explained by (1) different numerical methods for flow and transport (fi-
nite difference method in TOUGHREACT and finite element - finite volume
method in CSMP++GEM), (2) different numerical methods for chemical reac-
tions (Law of Mass Action in TOUGHREACT and Gibbs energy minimization in
CSMP++GEM), (3) different thermodynamic databases and small differences in
aqueous activity models and mineral kinetic rate models, (4) differences in equa-
tions of state for the aqueous fluid.

For the 50 ◦C case, the simulations were run for 200 kyrs, and the evolution
of the mineral composition and porosity in two cells with a distance of 1 and 5
meters from the top of the column was traced.

Fig. 8 shows the changes in mineral amounts in the cell located at 1 meter
distance from the injection point. Simulations with both codes result in a simi-
lar behaviour. The dolomite growth rate (in mol/m2/s) is a function of specific
dolomite reactive surface area, temperature and dolomite saturation index. The
amount of precipitated dolomite is, however, a function of the total reactive sur-
face area (specific RSA multiplied by the dolomite mass) and therefore a non-linear
function of time. Calcite dissolution and dolomite precipitation occur simultane-
ously as calcite dissolution is driven by the reduction in Ca2+ in the fluid during
dolomite precipitation. At the time when all calcite is replaced by dolomite the
amount of precipitated dolomite is equal to half of the original calcite. After all the
calcite has dissolved, dolomite continues to precipitate from the aqueous solution
at a linear rate determined solely by the degree of the solution oversaturation with
respect to dolomite.
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Fig. 8 Results of the simulation at 50◦C: changes in mineral amounts, plot over time of
200kyrs at x=1m from the column top

The porosity evolution in the cell located at 1 meter distance from the in-
jection point is presented in fig. 9. After a period of very slow dolomitisation at
the start of the replacement phase, the dolomite precipitation rate increases non-
linearly with the increase in reactive surface area (the dolomite saturation index
stays constant) and porosity increases from 40% to 47% in CSMP++GEM and to
50% in TOUGHREACT from an initial value of 40%. The highest porosity value
coincides with the time of the total calcite replacement, after which porosity starts
to decrease due to formation of dolomite cement.

Fig. 9 Results of the simulation at 50◦C: changes in porosity, plot over time of 200kyrs at
x=1m from the column top

At the end of the 200kyr simulation, overdolomitisation (primary precipitation
of dolomite cement) reduces porosity to 42% in CSMP++GEM and to 47% in
TOUGHREACT at the distance of 1m from the top of the column. However, the
rate of overdolomitisation is similar in the two models, with porosity reduction at a
rate of 0.09%/kyr (CSMP++GEM) and 0.08%/kyr (TOUGHREACT) (calculated
from the linear part of the porosity graphs from fig. 9)



20 Yapparova et al.

Fig. 10 shows the changes in mineral amounts in the cell located at 5 meter
distance from the model top. In contrast to the cell close to the top of the column
(fig. 8), in the middle of the column almost no overdolomitisation occurs following
complete replacement of the calcite, because the solution is depleted in ions by
prior precipitation next to the column top. After the complete calcite replacement
dolomite amount in the middle of the column remains nearly constant. Comparing
the graphs in fig. 8 and 10, it can be seen that the time to complete calcite
dissolution increases with the distance from the top of the column.

Fig. 10 Results of the simulation at 50◦C: changes in mineral amounts, plot over time of
200kyrs at x=5m from the column top

Changes in porosity in the middle cell are presented in fig. 11. In agreement
with fig. 10 porosity decreases only slightly after achieving its maximum value,
indicating that overdolomitisation takes place close to the injection point and
only minor amounts of dolomite cement are present at the 5 meter distance from
the model top.

Fig. 11 Results of the simulation at 50◦C: changes in porosity, plot over time of 200kyrs at
x=5m from the column top



RTM of dolomitisation using CSMP++GEM 21

Although the results presented above are in a good agreement during the first
50 kyrs of simulation time (replacement of the first 2-3% of calcite), they pro-
gressively diverge thereafter as the amount of precipitated dolomite increases with
the increasing total dolomite reactive surface area and the differences between the
kinetic rates in two codes get more prominent. The time point of complete cal-
cite replacement is about 25kyrs delayed for the TOUGHREACT simulation as
compared with CSMP++GEM. In the middle of the column the match between
the two codes is closer than at the distance of 1 meter. This example shows how
even small differences in activity and kinetic rate models can lead to significant
differences between model predictions over geological times.

5 Conclusions

The new CSMP++GEMS coupled code is a new tool for reactive transport mod-
elling that allows to take into account mineral dissolution/precipitation kinetics.
It differs from RTM codes due to the combination of the finite element – finite
volume method for the solution of flow and transport equations and the Gibbs
energy minimisation method for chemical equilibrium calculations.

A new reactive transport code CSMP++GEM was benchmarked against
OpenGeoSys-GEM and TOUGHREACT. Differences (especially regarding calcite
dissolution) can be rationalized in terms of differences in numerical methods for
flow (finite element – finite volume vs finite differences) and chemistry (Law of
Mass Action vs Gibbs energy minimisation), equations of state, kinetic rate mod-
els.

The CSMP++GEM coupled framework permits to represent the following
effects of dolomitisation. At the replacement stage, the amount of precipitated
dolomite is equal to the half of the dissolved calcite; porosity increases in the
whole model during the mole per mole replacement, but is subsequently plugged
by dolomite cementation in the first few cells close to the model top. Calcite disso-
lution is a reactive transport phenomenon driven by a slow dolomite precipitation.
The models show that the rate of dolomitisation by replacement of calcite increases
by factor of 9 with an increase of 10◦C in temperature.

The development of the CSMP++GEM code has just started, there are still
many improvements to be made. The use of the Sequential Iterative Approach
can increase solution accuracy, but the simulation time will grow proportionally
to the number of SIA iterations. Adaptive time stepping, if implemented in the
numerical integration of kinetic rates, similar to (Leal et al. 2015), might make the
numerical solution more stable. Kinetic rates of mineral precipitation/dissolution
depend on the mineral saturation index, time and mineral reactive surface area.
Specific surface area correction upon growth or dissolution dependent on the par-
ticle/pore size distribution, particle/pore size evolution and shape factor should
be implemented in the future, which will make the model more realistic.

The results of this work illustrate the challenges faced when comparing RTM
software that uses different methods for transport and chemistry and different
thermodynamic databases. The match between two codes is reasonably close, but
it can be seen that the discrepancy grows proportional to the increasing amount
of precipitated dolomite.
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The RTM simulator presented in this paper can be used to check the existing
conceptual models of dolomitisation, by trying to reproduce the patterns observed
in the case studies and outcrop analogues. The new coupled CSMP++GEM code
has proven itself reliable through testing and benchmarking and can be applied to
simulations of more complex systems.

A Gibbs energy minimization method

The GEM IPM3 algorithm (Kulik et al. 2013), as implemented in the GEM software
(http://gems.web.psi.ch), is capable of thermodynamic modelling of partial equilibria con-
trolled by mineral-water reaction kinetics with multiple reaction pathways. In GEM IPM3, the
chemical system is defined by a bulk composition vector, n(b), specifying the input amounts
of chemical elements and charge; the standard Gibbs energy per mole for all dependent com-
ponents (DC, chemical species), go, at T , p of interest; the parameters of (non)ideal models
of mixing in solution phases (Wagner et al. 2012), needed to calculate the activity coefficients
γj of DCs indexed with j; and additional metastability restrictions (AMR) on mole amounts
of some DCs in some phases.

The GEM problem consists in finding the (unknown) equilibrium speciation n(x) and phase

amounts n(φ) in the system at p, T , and bulk composition n(b) (i.e. mole amounts of ICs).

The number of elements in n(b) vector is n(N), i.e. the number of ICs including the charge;

the size of n(x) vector is n(L), i.e. the total number of DCs in all phases.

The Gibbs energy minimization problem

Find n(x) =
{
n
(x)
j , j ∈ L

}
such that

G(n(x)) = min
{
G(n(x)) : n(x) ∈ M1

}
,

M1 =
{
n(x) ∈ R1 : An(x) = n(b)

}
, (15)

where A = {aij , i ∈ N, j ∈ L} is a matrix composed of the stoichiometry coefficients of ICs

in the formulae of DCs; L is the set of n(L) DC indices; R1 is the set of constraints on n(x)

composed of trivial non-negativity constraints (set D0), and optional two-side AMRs (set D3),

R1 =

{

n(x) :
n
(x)
j ≥ 0, j ∈ D0

n
(x)
j ≤ n

(x)
j ≤ n

(x)
j , j ∈ D3

}

and sets of indices D0, D3 are such that L = D0
⋃

D3 (Karpov et al. 2001; Kulik et al. 2013).

Note that n
(x)
j ≥ 0; n

(x)
j ≥ 0, and n

(x)
j ≥ n

(x)
j .

The normalized total Gibbs energy of the chemical system is a scalar:

G(n(x)) =
∑

j

n
(x)
j µj , j ∈ L,

where µj is the normalized chemical potential of the j-th dependent component, written in a
simplified dimensionless form as:

µj =
goj

RT
+ lnCj + lnγj + Ξ, j ∈ L, (16)

with goj is the standard chemical potential (Gibbs energy per mole) of j-th DC at p, T of

interest; R is the universal gas constant (8.31451 J/K/mol), and Cj = f(n
(x)
j ) is the j-th DC

concentration relative to the standard concentration scale for the respective phase. For a DC in
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k-th condensed non-electrolyte solution phase, and for the water-solvent in aqueous electrolyte,
Cj is defined as mole fraction xj :

Cj = xj =
n
(x)
j

n
(φ)
k

=
n
(x)
j

∑
jp n

(x)
jp

, jp ∈ lk, (17)

where lk is the subset of indices of all DCs belonging to the k-th phase. For an aqueous
electrolyte species (not water-solvent), concentration is defined as molality mj (moles per
kilogram of water-solvent),

Cj = mj =
1000

18.0153
·

xj

xjw
, j, jw ∈ laq , (18)

where jw is the index of water solvent, 18.0153 is the molar mass of water in g/mol, and laq
is the subset of indices of DCs in the aqueous electrolyte phase. For gas or plasma or gaseous
fluid DCs with indices belonging to the subset lg , the concentration is partial pressure,

Cj = xjp, j ∈ lg ,

and for any DC forming a stable pure substance phase, the concentration is unity,

Cj = xj = 1, j ∈ lk and n(lk) = 1.

The activity coefficient γj of the j-th DC in its respective phase is obtained from the chosen
model of non-ideal mixing (details in Wagner et al. (2012)). The non-logarithmic asymmetry
term Ξ is

Ξ = 1− xjw, ∀j ∈ laq\jw

for the aqueous species,
Ξ = 2− xjw − 1/xjw, jw ∈ laq

for the water-solvent, while Ξ = 0 for components of condensed mixtures, gaseous, and pure-
substance phases (Karpov et al. 2001).

The convex set M1 is called a feasible domain, composed of the system of mass balance
constraints, with additional set of constraints R1. If only trivial non-negativity constraints are
present in the R1 set, i.e. D3 = ∅, then the speciation vector n̂(x) will be the primal solution
of the problem (15) only if such a dual solution vector û exists such that Karush-Kuhn-Tucker
(KKT) necessary and sufficient conditions (written in vector-matrix notation) are satisfied:

µ−AT û ≥ 0,

An̂(x) = n(b), n̂(x) ≥ 0,

n̂(x)(µ−AT û) = 0, (19)

where ̂ denotes optimal. For components with two-side AMRs (D3 6= ∅), the extended KKT
conditions (Karpov et al. 2001; Kulik et al. 2013) must be satisfied:

µ−AT û+ q̂ ≥ 0,

An̂(x) = n(b), n̂(x) ≥ 0,

(n(x) − n̂(x))(µ−AT û+ q̂) = 0,

q̂ ≥ 0, (n̂(x) − n(x))q̂ = 0,

where q̂ is a vector of Lagrange multipliers conjugate to AMRs, and n(x), n(x) are vectors of
lower- and upper AMRs, respectively. These KKT conditions are used by the IPM3 algoriththm
(Kulik et al. 2013) to iteratively find accurate and precise primal n̂(x) and dual û optimal
solutions of the GEM problem.

The first condition from (19), re-written with indices using (16)

goj

RT
+ lnCj + lnγj + Ξ − η̂j ≥ 0,

j ∈ L, i ∈ N, (20)
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implies that, for a j-th DC present in some equilibrium concentration Cj ≥ 0 in its phase, the
primal chemical potential µj must numerically equal the dual chemical potential η̂j :

η̂j =
∑

i

aij ûi, j ∈ L, i ∈ N. (21)

After a GEM run has converged (see more about the GEM IPM3 algorithm in GEMS3K code
and its performance compared with LMA codes in Kulik et al. (2013)), the results, namely

the primal speciation vector n̂(x), and the dual vector û(b) of chemical potentials of chemical
elements and charge, provide for concentrations, activities and amounts of all components in
each phase.

The stability index Ωk of any phase, even of that absent from the mass balance, is found
as a sum of anticipated mole fractions x̂j of all DCs belonging to this phase:

Ωk =
∑

j

x̂j =
∑

j

exp
(
η̂j − goj /RT − lnγj − Ξk

)
,

j ∈ lk. (22)

Equation (22) follows from combining equations (20, 21), with (17) or (18).

B Modelling kinetics as partial equilibrium

In the GEM IPM3 algorithm, the Ωk index (eq. 22), which has the physical meaning of a
saturation index of a (mineral) phase, is used as a criterion for checking the stability of any
phase. If −ǫ < log10Ωk < ǫ then the non-negative amount of this phase is in equilibrium with
the rest of the system with a numerical tolerance 0 < ǫ ≪ 1. If log10Ωk < ǫ then the phase is

unstable (under-saturated), but may be kept in the mass balance by the lower AMR(s) n
(x)
j > 0

set on some of its components. If log10Ωk > ǫ then the phase is over-stable (oversaturated)

due to a positive or zero upper AMR(s) n
(x)
j > 0 set on some or all of its components.

Overall, the GEM output phase stability index Ωk together with input AMRs make the
GEMS3K code a versatile tool for simulating phase metastability and kinetics as a series of
partial equilibrium states. Thus, lower-AMRs allow stepwise simulation of dissolution of a
mineral as long as its Ωk < 1; upper-AMRs allow stepwise simulation of mineral precipitation
as long as Ωk > 1. In this way, it is possible to model the kinetics of mineral-aqueous reactions
and of trace element uptake (Thien et al. 2014).

In a sequence of partial equilibria, each AMR can be set as a function of the time step
duration ∆t, the time variable t, the surface area Ak,t of k-th solid phase, and the (absolute)
net kinetic rate Rn,k,t. In a stepwise simulation, the mole amount nk,t+∆t of the mineral at
time t+∆t is set by the upper AMR nk,t+∆t for precipitation or by the lower AMR nk,t+∆t
for dissolution:

nk,t+∆t = nk,t +Ak,tRk,t∆t if log10Ωk > ǫ

nk,t+∆t = nk,t −Ak,tRk,t∆t if log10Ωk < −ǫ

The surface area of k-th solid phase is obtained as

Ak,t = AS,kMM,knk,t,

where AS,k is the input specific surface area (m2/kg); MM,k is the molar mass (kg/mol), and
nk,t is the current amount (mol) of the k-th phase.

Implementation of metastability and kinetics differs from code to code; so far, there is no
conventional data structure for kinetic rate parameters. Because the experimental rate con-
stants are typically normalized per unit area, they must be scaled by the current reactive
surface area of the mineral, which depends on many factors, some of them are external to
the chemical system, and some are related to the particle/pore morphology, initial size dis-
tributions, and surface roughness. This is in focus of current research efforts in geochemistry
of mineral water interfaces (Marini et al. 2000; Scislewski and Zuddas 2010; Mironenko and
Zolotov 2012).
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Kinetic rate laws usually contain the so-called activity product term related to a particular
reaction mechanism, catalysis, inhibition, etc. (Palandri and Kharaka 2004; Schott et al. 2012).
Near-equilibrium kinetic rates also depend on the affinity term based on the phase stability
index Ωk. Particular forms of this term reflect different nucleation, growth or dissolution
mechanisms (Schott et al. 2012).

Some relevant kinetic rate equations for dissolution, precipitation, and trace element up-
take in solid solutions have been implemented in the TKinMet code library used in the GEM-
Selektor and the GEMS3K codes (Kulik et al. 2012; Thien et al. 2014). The mineral-water
kinetic rate laws are considered in the general form (with input parameters implemented in
Phase definition records):

dnk

dt
= Ak,tRk,t = −Ak,t

N(r)k∑

r

θk,r,tf1(κ,E)k,rf2(Πa)k,r,tf3(Ω)k,r,t (23)

where k is the index of solid phase of interest (pure solid or solid solution); nk is the mole
amount of k-th phase at time t; Ak,t is the current surface area of the phase in m2; Rn,k,t is the

total precipitation or dissolution rate (in mol/m2/s); N(r)k is the number of parallel reaction
mechanisms or pathways that affect the amount of k-th phase; r is the index of a mechanism or
pathway (dissolution, nucleation, and precipitation can be treated simultaneously as different
mechanisms); θk,r,t is the effective fraction of surface area of k-th phase assigned to the r-th
reaction mechanism.

Time-dependent parameters Ak,t and θk,r,t may either depend on a built-in model of
particle size/area evolution or be externally controlled from the mass transport code.

In eq. (23),

f1(κ,E) = κo
k,rΛk,re

−Ek,r
RT (24)

is the reaction rate constant term including the temperature correction, where: κo
k,r is the rate

constant at reference temperature (25◦C) in (mol/m2/s) or other appropriate units, having
positive sign for dissolution and negative sign for precipitation; T is temperature in K; Λk,r is
the Arrhenius factor (1 by default); and Ek,r is the activation energy (J/mol) of r-th reaction
mechanism.

The expression e
−Ek,r

RT in eq. (24) occurs in literature in a different form

e
−E∗

k,r
R

( 1

T
−

1

298.15
) that involves the reference temperature 298.15K (Palandri and Kharaka

2004). Both forms are connected as:

Λk,re
−Ek,r

RT = Λ∗

k,re
−E∗

k,r
R

( 1

T
−

1

298.15
),

where

Λk,r = Λ∗

k,re
−E∗

k,r
R·298.15

and E∗

k,r = Ek,r.

In eq. (23), f(Πa)k,r,t is the activity product term

f2(Πa)k,r,t = IbI,k,rpHbpH,k,rpebpe,k,rEhbEh,k,r ×

(

n(j)k,r∏

j

a
bj,k,r

j,k,r )pk,r (25)

is the current (at time t) activity product term, combined to accommodate most of the liter-
ature rate laws, where: I is the (effective molal) ionic strength; bI,k,r is the related empirical
parameter; bpH,k,r is the empirical parameter related to pH; bpe,k,r is the parameter related
to pe; bEh,k,r is the parameter related to Eh, (V ); pk,r is the reaction order parameter; n(j)k,r
is the number of (aqueous or gaseous or surface) species from other reacting phases involved;
aj,k,r is the activity (fugacity) of j-th species (aH+ = 10−pH , ae = 10−pe); bj,k,r is the (reac-
tion stoichiometry coefficient) parameter. Note that in eq. (25), any term can be disabled, if
the respective power coefficient is set to the default value of zero.
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Finally, in eq. (23), f(Ωk,r) is the affinity term for r-th reaction, which can take several
different forms, all using the current (at time t) k-th phase stability index Ωk (eq. 22). The
classic affinity term is taken in the form

f3(Ωk,r) = (1 + uk,r −Ω
qk,r

k )mk,r ,

where qk,r and mk,r are the reaction order parameters (default 1; mk,r = 0 disables the affinity
term); and uk,r is the empirical parameter (default 0).

In eq (23), the net rate Rk,t is taken in (mol/m2/s) by default. However, in many models of
mineral dissolution or growth (Wolthers et al. 2012; Nielsen et al. 2013), the mean orthogonal
velocity of surface propagation RL,k,t in (m/s) is considered. RL,k,t is related to Rk,t as

RL,k,t = VM,kRk,t =
MM,k

ρk
Rk,t,

where VM,k is the molar volume in m3/mol; MM,k is the molar mass in kg/mol; and ρk is the

density in kg/m3 of the mineral phase.
Specific surface area of the mineral is defined as AS,k = Ak/mk in (m2/kg) or AV,k =

Ak/Vk in (1/m). Upon growth or dissolution, both AS,k and AV,k values vary with time
because of changing particle size, shape, and surface roughness. Hence, specific surface areas
must be corrected after each time step, either internally in TKinMet functions, or externally
by the reactive transport model.

Some parameters, e.g. the dissolution rate constant, the activation energy, the reaction
type and order constants for parallel mechanisms, can be considered as chemical properties
of the solid phase, kept in the respective Phase definition record in GEM-Selektor project
database or in GEMS3K input file. Other, “non-chemical” parameters, such as the reactive
specific surface area assigned to r-th mechanism, are related to evolving particle or pore size
and shape distributions. Such varying parameters should come at each time step into TKinMet
calculations from the transport part of the coupled RTM code.

Nomenclature

βf fluid compressibility [Pa−1]

βt total system compressibility [Pa−1]
βφ pore compressibility [Pa−1]
∆t time step
γi activity coefficient of j-th DC
κ rate constant [mol/m2/s]
κo rate constant at reference temperature 25 ◦C [mol/m2/s]
Λ Arrhenius parameter
g gravitational acceleration vector [m/s2]
J component flux [mol/l ·m/s]
v Darcy velocity [m/s]
µf fluid dynamic viscosity [Pa · s]
µj normalized chemical potential of the j-th DC
Ωk stability index of the k-th phase

n
(x)
j upper AMR for the j-th DC

φ porosity [−]
ρf fluid density [kg/m3]

ρr rock density [kg/m3]

n
(x)
j lower AMR for the j-th DC

n̂ GEM problem primal solution vector
q̂ vector of Lagrange multipliers
û GEM problem dual solution vector
Ak,t surface area of the k-th solid phase at time t [m2]

AS,k specific surface area of the k-th solid phase [m2/kg]
ci aqueous concentration of the i-th IC [mol/l]
cpf fluid specific heat capacity [J/kg ·K]
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cpr rock specific heat capacity [J/kg ·K]
D diffusion-dispersion coefficient [m2/s]
Ea activation energy [J/mol]
G total Gibbs energy of the system [J ]
goj standard chemical potential (Gibbs energy per mole of j-th DC) [J/mol]

K thermal conductivity [W/m ·K]
k permeability [m2]
Mi molar mass of the i-th IC [kg/mol]
mj molality (moles per kilogram of water-solvent of the j-th species) [mol/kgw]

n(φ) vector of equilibrium phase amounts
n(b) bulk composition vector, n(N) components
n(x) equilibrium speciation vector, n(L) components
nk,t mineral mole amount of the k-th mineral at time t [mol]
p pressure [Pa]
Q source/sink term for the mass exchange between the aqueous and solid phases [kg/m3/s]
qi source/sink term, accounting for mineral dissolution/precipitation of the i-th IC [mol/l/s]
qTX source/sink term, accounting for the temperature and salinity induced solution density
change at constant pressure [kg/m3/s]

Rk,t net kinetic rate of the k-th mineral at time t [mol/m2/s]
T temperature [K]
t time [s]
X solution salinity [−]
xj mole fraction of the j-th species
AMR Additional metastability restrictions
CFL Courant-Friedrichs-Lewy condition
DC Dependent Component
Eh reduction potential (redox potential) [V]
GEM Gibbs energy minimization
IC Independent Component
KKT Karush-Kuhn-Tucker conditions
LMA Law of Mass Action
pe negative logarithm of electron concentration in a solution [-]
pH decimal logarithm of the reciprocal of the hydrogen ion activity in a solution [-]
RTM Reactive Transport Modelling
SIA Sequential Iterative Approach
SNIA Sequential Non-Iterative Approach
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