
 Stanley-Oakes, R. (2018). A Provably Secure PKCS#11 Configuration
Without Authenticated Attributes. In Financial Cryptography and Data
Security: 21st International Conference, FC 2017, Valletta, Malta, April 3-7,
2017, Revised Selected Papers (pp. 145-162). (Lecture Notes in Computer
Science). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-319-
70972-7

Peer reviewed version

Link to published version (if available):
10.1007/978-3-319-70972-7

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Springer at http://www.springer.com/gb/book/9783319709710#aboutBook. Please refer to any applicable
terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/96780692?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-319-70972-7
https://doi.org/10.1007/978-3-319-70972-7
https://doi.org/10.1007/978-3-319-70972-7
https://research-information.bris.ac.uk/en/publications/a-provably-secure-pkcs11-configuration-without-authenticated-attributes(9c4c4384-4882-4fd9-97db-91b62f65c0c5).html
https://research-information.bris.ac.uk/en/publications/a-provably-secure-pkcs11-configuration-without-authenticated-attributes(9c4c4384-4882-4fd9-97db-91b62f65c0c5).html

A Provably Secure PKCS#11 Configuration
Without Authenticated Attributes

Ryan Stanley-Oakes?

University of Bristol
ryan.stanley@bristol.ac.uk

Abstract. Cryptographic APIs like PKCS#11 are interfaces to trusted
hardware where keys are stored; the secret keys should never leave the
trusted hardware in plaintext. In PKCS#11 it is possible to give keys
conflicting roles, leading to a number of key-recovery attacks. To prevent
these attacks, one can authenticate the attributes of keys when wrapping,
but this is not standard in PKCS#11. Alternatively, one can configure
PKCS#11 to place additional restrictions on the commands permitted
by the API.
Bortolozzo et al. proposed a configuration of PKCS#11, called the Se-
cure Templates Patch (STP), supporting symmetric encryption and key
wrapping. However, the security guarantees for STP given by Bortolozzo
et al. are with respect to a weak attacker model. STP has been imple-
mented as a set of filtering rules in Caml Crush, a software filter for
PKCS#11 that rejects certain API calls. The filtering rules in Caml
Crush extend STP by allowing users to compute and verify MACs and
so the previous analysis of STP does not apply to this configuration.
We give a rigorous analysis of STP, including the extension used in Caml
Crush. Our contribution is as follows:

(i) We show that the extension of STP used in Caml Crush is insecure.
(ii) We propose a strong, computational security model for configura-

tions of PKCS#11 where the adversary can adaptively corrupt keys
and prove that STP is secure in this model.

(iii) We prove the security of an extension of STP that adds support for
public-key encryption and digital signatures.

1 Introduction

In high-risk environments, particularly where financial transactions take place,
secret and private keys are often stored inside trusted, tamper-proof hardware
such as HSMs and cryptographic tokens. Then ordinary host machines, which
could be compromised by malware or malicious users, can issue commands to the
trusted hardware via an interface called a cryptographic API. The operations
that can be carried out using the API often include key wrapping, which is the
encryption of one key under another to enable the secure exchange and storage of
keys. The API can also be used to add new keys to the trusted hardware, either
by issuing a key generation command or unwrapping a wrapped key. The API
refers to each key by a handle, which has attributes used to specify the intended

? The author is supported by an EPSRC Industrial CASE studentship.

use of the key. By wrapping and unwrapping, it is possible for different handles,
each with different attributes, to point to the same key. This could cause a key
to have conflicting roles within the API.

The study of cryptographic APIs was initiated by Bond and Anderson in
2001, when they described attacks against ATMs and prepayment utility meters,
exploiting weaknesses in the interfaces to the trusted hardware, rather than in
the cryptographic algorithms performed by the hardware: “The basic idea is that
by presenting valid commands to the security processor, but in an unexpected
sequence, it is possible to obtain results that break the security policy envisioned
by its designer.” [3].

While Bond and Anderson identified vulnerabilities in particular devices with
bespoke APIs, Clulow then used their approach to find devastating key recovery
attacks against a widely-used, generic API [6]. This API, called PKCS#111 is
independent of the hardware with which it communicates and was designed to
enable interoperability between the trusted hardware from different manufactur-
ers [10].

In 2008, Delaune et al. presented a formal, Dolev–Yao style model of PKCS#11
and used model-checking tools to find new attacks [7, 8]. Bortolozzo et al. then
developed an automated tool called Tookan, built on the model by Delaune
et al., that found and executed attacks against real hardware devices using
PKCS#11 [4]. As a result of these attacks, an important research question has
been to find a configuration of PKCS#11, i.e. a set of restrictions on the com-
mands that can be issued to the API, such that the API is secure with these
restrictions.

Bortolozzo et al. suggested a configuration of PKCS#11, supporting just
symmetric encryption and symmetric key wrapping, called the Secure Tem-
plates Patch (STP) [4]. In STP, newly-generated keys are separated into en-
cryption/decryption keys and wrapping/unwrapping keys, while keys imported
by unwrapping can be used for encryption and unwrapping, but not decryption
or wrapping. STP has been implemented as a set of filtering rules in Caml Crush,
a software filter that rejects certain PKCS#11 calls [1]. However, the filtering
rules in Caml Crush allow users to compute and verify MACs, which is not cap-
tured by the model from Delaune et al. [7,8]. Therefore the previous analysis of
STP does not apply to what is implemented in Caml Crush. Furthermore, while
STP is resistant to attack by Tookan, there has not yet been a formal proof of
security for this configuration, which is the problem we address here.

1.1 Our Contribution

As a first result, we show that the filtering rules in Caml Crush are not sufficient
to secure PKCS#11. The attacker is assumed to have knowledge of how the filter
operates, but can only interact with the API via the filter. Two sets of filtering

1 PKCS#11 is actually the name of the cryptographic standards document that de-
scribes the API, which is called Cryptoki. However, it is conventional to refer to the
API itself as PKCS#11.

rules are offered; the first set is trivially broken if the attacker can read the source
code of the filter. The second set of rules is designed to emulate STP, but offers
MAC functionality that was not modelled by Delaune et al. and hence is not
exploited by Tookan. We show that the filtering does not enforce a separation
between encryption and MAC keys. We also show that there exist encryption
and MAC schemes that are individually secure, but completely insecure when
the same keys are used for both primitives. Therefore STP, as implemented in
Caml Crush, is only safe to use if one is certain that the encryption and MAC
schemes are jointly secure.

Our second contribution is a computational security model for configurations
of PKCS#11, where certain API calls are rejected according to the policy in the
configuration. The policy may determine, for example, what attributes newly-
generated or newly-imported keys can have. Our model captures the use of both
symmetric and asymmetric variants of encryption and signing primitives within
the API. We say that an API is secure if, for any cryptographic primitives used
by the API, encrypting and signing data using the API is as secure as using the
primitives themselves in isolation. This is strictly stronger than the model from
Delaune et al., where an API is considered secure if the attacker cannot learn
the values of honestly-generated secret keys [7, 8]. Moreover, the adversary in
our model is allowed to adaptively corrupt certain keys.

Our main result is a PKCS#11 configuration that is provably secure in our
model. We first show that STP as proposed by Bortolozzo et al. is not secure;
STP allows the same keys to be used for encryption and unwrapping, so an
attacker can encrypt (rather than wrap) their own key, import this key by un-
wrapping and use this key to encrypt or sign data. Since keys used by the API
could have been generated by the adversary, there can be no guarantees for data
protected by the API, even if the cryptographic primitives are secure. However,
we prove that if the policy prevents the encryption (rather than wrapping) of
keys, then the configuration is secure. Moreover, our main result holds for an
extension of STP that supports public-key encryption and digital signatures.

The proof of our main result is highly non-trivial since we allow the adversary
to adaptively corrupt keys. Adaptive corruption captures the realistic threat sce-
nario that certain keys are leaked through side-channel attacks, which, due to the
key wrapping operation, can have devastating consequences for the API. Never-
theless, most existing analyses of cryptographic APIs avoid this strong attacker
model because traditional proof techniques cannot be used; for a standard cryp-
tographic reduction, one has to know in advance which keys will be corrupted to
correctly simulate the environment of the adversary. Instead, our security proof
uses techniques from Panjwani’s proof that the IND-CPA security of encryption
implies its Generalised Selective Decryption (GSD) security [11]. This is a com-
plex hybrid argument where one first guesses a path, in the wrapping graph that
will be adaptively created by the adversary, from a source node (corresponding
to a key that does not appear in a wrap) to a challenge node (corresponding to
a key used for encryption of data, or signing, etc.). Then the way in which one
responds to wrap queries depends on the positions of the corresponding nodes

relative to the guessed path. To our knowledge, we are the first to adapt Pan-
jwani’s result to the API setting. A detailed discussion of related work is given
in the full version of the paper [14].

2 Preliminaries

We use the term token to refer to any trusted hardware carrying out crypto-
graphic operations. All keys are stored inside the token and the user has an API
used to issue commands to the token.

We assume the API used by the token is compliant with at least v2.20 of the
PKCS#11 standard.2 While the PKCS#11 specification distinguishes between
normal users and security officers, we conflate these roles and assume the adver-
sary can perform any operations permitted by the API. Security in this sense
automatically implies security against adversaries who can only interact with
the API as normal users or security officers.

We assume that tokens store no keys in their initial state. Then keys can
be added to the device using one of the following commands: C GenerateKey

or C GenerateKeyPair, which cause the token to generate a new key or key
pair using its own internal randomness; C UnwrapKey, which causes the token to
decrypt the supplied ciphertext and store the plaintext as a new key (without
revealing it); C CreateObject, which we used to model importing public keys
from other tokens; or C TransferKey, which we use to model an out-of-band
method for securely transferring long-term secret keys between tokens (this could
happen during the manufacturing process, for example).

The API refers to keys using handles; these are public identifiers. So, for
example, if the user issues the command C Encrypt(h,m), they expect to receive
the encryption of the message m under the key pointed to by the handle h. The
class of a key is whether it is public, private or secret. For each handle, the token
stores the corresponding key, the class of this key and its template, which is a set
of attributes that determine how the key can be used. Attributes are either set
or unset. For example, PKCS#11 mandates that the command C Encrypt(h,m)
must fail if the attribute CKA ENCRYPT is not set in the template associated to h.

In the language of PKCS#11, the value of a key is also an attribute of its
handle, and the API has to prevent the reading of this attribute if the attribute
CKA SENSITIVE is set, i.e. the API should not reveal the values of keys that are
supposed to be secret. For simplicity we say that templates do not contain the
value of keys. This way all attributes are binary and can be disclosed to the
user. Accordingly we have no need for the attribute CKA SENSITIVE; all public
keys will be returned to the user at generation time and other keys can only be
revealed by corruption.

PKCS#11 allows an incomplete template to be supplied when a new handle
is created, forcing the API to choose whether to set or unset the unspecified at-

2 Version 2.20 of the standard was published in 2004, and was the first to introduce
the attributes CKA TRUSTED and CKA WRAP WITH TRUSTED, which we use to prevent
key cycles.

tributes; we simply assume that the operation fails if the template is incomplete.
For convenience, we also assume that the template of a handle contains the class
of the corresponding key.

In PKCS#11, some attributes can be changed by the user (or by the API).
For example, perhaps the attribute CKA ENCRYPT is not initially set in the tem-
plate of some handle h pointing to the key k, but later the user wishes to use
k to encrypt data. We exclude this from our model, preferring to assume that
the intended use of all keys is known at generation time. In the language of
PKCS#11, all our attributes are sticky.

There are nine attributes relevant to our analysis, as follows: CKA EXTRACTABLE,
which we abbreviate by CKA EXTR, is used to identify those keys that can be
wrapped (in the case of private or secret keys), or given out (in the case of
public keys). CKA WRAP WITH TRUSTED, which we abbreviate by CKA WWT, is used
to identify those keys that can only be wrapped by keys with CKA TRUSTED set.
CKA TRUSTED is used to identify those keys that are considered trusted wrap-
ping keys. CKA WRAP, CKA UNWRAP, CKA ENCRYPT, CKA DECRYPT, CKA SIGN and
CKA VERIFY are used to identify those keys that can wrap keys, unwrap keys,
encrypt data, decrypt data, sign (or MAC) data and verify signatures (or MAC
tags), respectively.

PKCS#11 specifies some rules, which we call the policy, about how attributes
must be used (like how the template of h must have CKA ENCRYPT set in order
for C Encrypt(h,m) to succeed). But the standard also allows manufacturers,
in their own configurations of PKCS#11, to impose additional restrictions on
how the API operates. For example, the PKCS#11 policy allows a symmetric
key to be generated with both CKA WRAP and CKA DECRYPT set, leading to the
famous wrap/decrypt attack [6]. Manufacturers should therefore disable this
command in their configuration. We assume that the policy in the manufacturer’s
configuration allows a subset of commands allowed by the PKCS#11 policy (so
that the configuration is actually compliant with the specification) and therefore
we use a single policy algorithm to capture both the standard PKCS#11 policy
and any additional restrictions, i.e. any command not rejected by our policy
algorithm is automatically allowed within PKCS#11.

3 Vulnerabilities in Caml Crush

In Caml Crush, the idea is that the interface to some trusted hardware is a
PKCS#11-compliant, but insecure, API [1]. The software is then used to filter
out API calls that could lead to attacks. This is rather like having a more restric-
tive policy within the API and so the authors adapt the PKCS#11 configurations
suggested by Bortolozzo et al. to filtering rules. Bortolozzo et al. suggested two
configurations of PKCS#11 that are resistant to attack by Tookan [4], both of
which are implemented in Caml Crush as sets of filtering rules [1]:

1. In the Wrapping Formats Patch (WFP), the attributes of a key are trans-
mitted as part of a wrap of the key and authenticated using a MAC.

2. In the Secure Templates Patch (STP), wrapping and encryption keys are
separated at generation time and imported symmetric keys can be used for
unwrapping and encryption, but not wrapping or decryption.

We remark that the first patch is actually a violation of the PKCS#11 stan-
dard: the standard mandates that a wrap of a key is solely the encryption of the
value of the key, i.e. the attributes of the key are not included in the output and
no MAC tag is added. Tokens whose APIs use WFP are not interoperable with
tokens using PKCS#11-compliant APIs.

Moreover, the way WFP is implemented in Caml Crush is trivially insecure.
Examining the source code, the MAC used to authenticate the attributes of the
wrapped key is computed using a key that is stored in plaintext in the con-
figuration file of the filter [2]. This is a clear violation of Kerckhoffs’ principle:
the attacker who knows how the filter is constructed (i.e. can read the source
code of the filter) can immediately circumvent the additional protection pro-
vided by the MAC and use the wrap/decrypt attack to learn the value of any
extractable secret key. The authors of Caml Crush acknowledge this vulnerabil-
ity in a comment: “We use the key configured in the filter configuration file ...
You might preferably want to use a key secured in a token”. We feel this is an
understatement of the insecurity of their solution.

We focus our attention on STP, as this is compliant with the PKCS#11
specification. Note that STP, as presented by Bortolozzo et al., only enables the
symmetric encryption, decryption, wrapping and unwrapping functions of the
API and not, for example, the MAC and verify functions [4]. The implementation
in Caml Crush adds MAC functionality to STP, but does so in a potentially
insecure way. Their filtering rules allow freshly generated symmetric keys to be
used for wrapping and unwrapping, encryption and decryption, or signing and
verifying (using a MAC scheme). Then keys imported via the unwrap command
can either unwrap and encrypt, or unwrap, sign and verify. At first glance, these
restrictions appear to maintain a separation between encryption and MAC keys,
but this is not the case. One can generate an encryption key, wrap it, and unwrap
it as a MAC key. This configuration is only secure if the encryption and MAC
schemes are jointly secure, i.e. it is safe to use the same key for both primitives.
In the full version of the paper, we show that this assumption does not always
hold [14].

4 Security Model and Assumptions

PKCS#11 supports both symmetric and asymmetric primitives for encrypting
and signing data and for wrapping keys. For simplicity we will assume that
all keys and key pairs are generated using the same two algorithms KG and
KPG. Moreover, we assume that the key wrap mechanisms use the same en-
cryption schemes as for encrypting data. Therefore our model of a configuration
of PKCS#11 is parameterised by four cryptographic primitives: a probabilistic
symmetric encryption scheme E = (KG,Enc,Dec), a probabilistic public-key en-
cryption scheme PKE = (KPG,AEnc,ADec), a MAC scheme

M = (KG,Mac,MVrfy) and a digital signature scheme S = (KPG,Sign,SVrfy).
The syntax of these primitives and the formal definitions of correctness and
security are all given in the full version of the paper [14].

The API also has an algorithm NewHandle for generating fresh handles. This
will be called when keys are imported via unwrapping or the C CreateObject

command or new keys are generated. This algorithm is assumed to be stateful so
that it never returns the same value. For each handle h returned by NewHandle,
the API stores a template h.temp and a pointer p to the token memory where the
value of the key is stored. By abuse of notation, the contents of the token memory
at p will be written h.key (even though this value is not directly accessible to
the API). The class of the key, i.e. secret, public or private, is stored in h.class.

The configuration of the API is defined by the policy. We model the policy
by the algorithm P that takes the name of the API command and the inputs to
that command as inputs, then returns 1 if this combination is permitted and 0
otherwise.

Before giving the formal security definition, we introduce a restriction which
is necessary for security and considerably simplifies the model:

Remark 1. Asymmetric key wrapping must be disabled.

Even before a formal security definition is given, it should be clear that
any mechanism for key wrapping must provide integrity as well as secrecy. If
it were not the case, then an adversary could generate their own keys, forge
wraps of these keys, unwrap them and use them to wrap honestly-generated
keys or encrypt and sign data. If this attack is possible, there can be no guar-
antees for data and keys protected by the API, since any keys used by the API
could be adversarially generated. Of course, the notion of integrity of cipher-
texts makes no sense in the public key encryption setting without the sender
needing a private key as well as a public key to encrypt. Therefore we make the
standard assumptions from the literature that all key wrapping is symmetric
and, for bootstrapping, there is an out-of-band method for securely exchanging
long-term secret keys [4, 9, 12,13].

4.1 Security Definition

Following [9,12,13], we give a computational, rather than symbolic, security def-
inition for a configuration of PKCS#11, where the adversary has access to a
number of oracles and plays a game. Winning the game means violating the
security of one of the cryptographic primitives used by the token. We say, infor-
mally, that a configuration of PKCS#11 is secure if using the API to encrypt
and sign data is as secure as encrypting and signing with the separate, individ-
ual primitives. This notion of security is similar to the one used by Cachin and
Chandran [5].

Formally, for each adversary A and each b ∈ {0, 1}, we define an experiment
APIb(A) := APIbE,M,PKE,S,P(A) where the adversary has access to a number of
oracles capturing the commands one can issue to the API, and some challenge
oracles whose responses depend on b. The oracles all first check, using the policy

P, that the command from the adversary is allowed. If this succeeds, then the
oracles perform the cryptographic operations that would be carried out by the
token. Note that our formal model conflates the roles of the API and the token,
which simplifies notation considerably, but is without loss of generality since we
know how PKCS#11-compliant APIs interact with tokens. The only thing we do
not know is how the token implements the cryptographic operations, and these
details are abstracted away in our model.

After interacting with the API oracles, the adversary returns a guess b′.
Provided that certain conditions are met whereby the adversary cannot trivially
learn b, the experiment returns b′. Otherwise, the experiment returns 0. The
advantage of A against the API is defined to be the following quantity:

AdvAPI(A) :=
∣∣P[API1(A) = 1]− P[API0(A) = 1]

∣∣ .
The experiment APIb is shown in Fig. 1, with the oracles available to A shown
in Figs. 2 and 3.

Experiment APIbE,M,PKE,S,P(A):

i← 0
Chal← ∅,Cor = {0}
W ← ∅, E ← ∅, V ← {0}
P ← ∅,K ← ∅
for all j ∈ [n],

C1[j], C∗1 [j], C2[j], C∗2 [j], T [j], T ∗[j], S[j], S∗[j]← ∅
b′ ← AO
if Chal ∩ Comp 6= ∅ then return 0
if ∃j ∈ [n] such that:

C1[j] ∩ C∗1 [j] 6= ∅
or C2[j] ∩ C∗2 [j] 6= ∅
or T [j] ∩ T ∗[j] 6= ∅
or S[j] ∩ S∗[j] 6= ∅:

then return 0
else return b′

Fig. 1. The Security Experiment APIb(A) for a cryptographic API supporting symmet-
ric and asymmetric encryption, a MAC scheme and a signature scheme. The oracles O
are defined in Figs. 2 and 3.

Now we explain some of the rationale behind the security game. We have
two challenge oracles OEnc-Challenge

b and OSign-Challenge
b , corresponding to confi-

dentiality (of public key and symmetric encryption) and authenticity (of signa-
tures and MACs), respectively. These oracles closely resemble the IND-CCA and
EUF-CMA games. For encryption, the bit b determines which of the messages
m0 and m1 is encrypted under the challenge key. As usual, to avoid trivial wins
we have to record the ciphertexts output by OEnc-Challenge

b and the queries made
to the decryption oracle OC Decrypt, and check that the two sets corresponding to
the same key are disjoint. For signing and MACs, the bit b determines whether

Oracle OC CreateObject(pk, t):

if P(C CreateObject, pk, t):
h← NewHandle
h.key← pk
h.temp← t
h.class← public
X ← {h′ ∈ P : h′.key = pk}
if X 6= ∅:

idx(h)← minh′∈X idx(h′)
else idx(h)← 0
return h

Oracle OC TransferKey(k, t):

if P(C TransferKey, k, t):
h← NewHandle
h.key← k
h.temp← t
h.class← secret

X ←
{
h′ ∈ K :
h′.key = k ∧ h′.temp = t

}
if X 6= ∅:

idx(h)← minh′∈X idx(h′)
else idx(h)← 0
return h

Oracle OC GenerateKey(t):

if P(C GenerateKey, t):
i+ +
h← NewHandle
K = K ∪ {h}
idx(h)← i
V ← V ∪ {i}
h.key← KG
h.temp← t
h.class← secret
return h

Oracle OC GenerateKeyPair(t, t′):

if P(C GenerateKeyPair, t, t′):
i+ +
h← NewHandle
h′ ← NewHandle
P = P ∪ {h}
idx(h)← i
idx(h′)← i
V ← V ∪ {i}
(h.key, h′.key)← KPG
h.temp← t
h′.temp← t′

h.class← public
h′.class← private
return h, h′, h.key

Oracle OC WrapKey(h, h′):

if P(C WrapKey, h, h′):
if h.class = secret:

if h′.class = private
or h′.class = secret:
w ← Enc(h.key, h′.key)
W ←W ∪ {(h, h′, w)}
E ← E ∪ {(idx(h), idx(h′))}
return w

Oracle OC UnwrapKey(h,w, t):

if P(C UnwrapKey, h, w, t):
if h.class = secret:
k′ ← Dec(h.key, w)
if k′ ∈ SecretKeys
or k′ ∈ PrivateKeys:
h′ ← NewHandle
h′.temp← t
h′.key← k′

unwrapbookkeeping
return h′

Macro unwrapbookkeeping:

X ←
{
h2 : (h1, h2, w) ∈W
∧ idx(h1) = idx(h)

}
if X 6= ∅:

idx(h′)← minh2∈X idx(h2)
else if idx(h) ∈ Comp:

idx(h′)← 0
else:

i+ +
idx(h′)← i
V ← V ∪ {i}

Oracle OCorrupt(h):

if h.class = private
or h.class = secret:

Cor← Cor ∪ {idx(h)}
return h.key

Fig. 2. Oracles Representing PKCS#11 Key Management Commands and Key Cor-
ruption

Oracle OC Encrypt(h,m):

if P(C Encrypt, h,m):
if h.class = secret:

return Enc(h.key,m)
if h.class = public:

return AEnc(h.key,m)

Oracle OC Decrypt(h, c):

if P(C Decrypt, h, c):
if h.class = secret:
c← Dec(h.key, c)
C1[idx(h)]← C1[idx(h)] ∪ {c}
return c

if h.class = private:
c← ADec(h.key, c)
C2[idx(h)]← C2[idx(h)] ∪ {c}
return c

Oracle OC Sign(h,m):

if P(C Sign, h,m):
if h.class = secret:
τ ← Mac(h.key,m)
T [idx(h)]← T [idx(h)] ∪ {τ}
return τ

if h.class = private:
σ ← Sign(h.key,m)
S[idx(h)]← S[idx(h)] ∪ {σ}
return σ

Oracle OC Verify(h,m, s):

if P(C Verify, h,m, s):
if h.class = secret:

return MVrfy(h.key,m, s)
if h.class = public:

return SVrfy(h.key,m, s)

Oracle OEnc-Challenge

b (h,m0,m1):

if P(C Encrypt, h,m0):
if P(C Encrypt, h,m1):

if |m0| = |m1|:
if h.class = secret:

Chal← Chal ∪ {idx(h)}
c← Enc(h.key,mb)
C∗1 [idx(h)]← C∗1 [idx(h)] ∪ {c}
return c

if h.class = public:
Chal← Chal ∪ {idx(h)}
c← AEnc(h.key,mb)
C∗2 [idx(h)]← C∗2 [idx(h)] ∪ {c}
return c

Oracle OSign-Challenge

b (h,m, s):

if P(C Verify, h,m, s):
if h.class = secret:
T ∗[idx(h)]← T ∗[idx(h)] ∪ {s}
Chal← Chal ∪ {idx(h)}
if b = 0 return MVrfy(h.key,m, s)
else return 0

if h.class = public:
S∗[idx(h)]← S∗[idx(h)] ∪ {s}
Chal← Chal ∪ {idx(h)}
if b = 0 return SVrfy(h.key,m, s)
else return 0

Fig. 3. Oracles Representing PKCS#11 Cryptographic Operations and the IND-CCA
and EUF-CMA Games

the adversary sees the genuine result of the verification algorithm, or always sees
the bit 0 (indicating that the verification has failed). To avoid trivial wins here,
we record the signatures and tags output by OC Sign and the candidate signatures
and tags submitted to OSign-Challenge

b and check that the two sets corresponding
to the same key are disjoint.

In our model, we include an oracle OCorrupt that allows the adversary to
adaptively corrupt certain keys. This captures the situation where some keys
may be leaked, for example through side-channel attacks. Obviously, if such
keys are used by the challenge oracles, then A can trivially recover the bit b.
Moreover, if the adversary were to wrap a key under a corrupt key, then the
wrapped key must be assumed compromised, since it can be trivially recovered
by the adversary. Like corrupt keys, compromised keys are not safe for use by
the challenge oracles. Therefore we keep track of a set Comp of corrupt and
compromised keys and a set Chal of keys used by the challenge oracles, and the
experiment only returns the guess b′ from A if Comp and Chal are disjoint.

The situation is complicated by the fact that the adversary queries OCorrupt

with handles, not keys, and learns the value of the key pointed to by the handle.
But by wrapping and unwrapping a key, the adversary obtains a new handle for
the same key and clearly all handles pointing to the same key are compromised
by the corruption of just one of them. Therefore we keep track of which handles
point to the same key by giving them the same index idx(h) and store which in-
dices are compromised, rather than which handles. This is based on the security
model by Shrimpton et al. [13].

We assume that there is an authenticated channel for transmitting public
keys using the C CreateObject command. Therefore we check that any public
keys imported via OC CreateObject had at some point been honestly generated by
a token. If so, the new handle is given the same index as the handle that was
given out when the key was first generated. If not, the new handle is given index
0, which is used to represent automatically compromised keys (and therefore if
this new public key is used in the challenge oracles, the guess output by A will be
ignored). Note that we do not check that the template of the imported public key
matches the template of the key when it was first generated. This is because we
are not assuming that the attributes of keys are always authenticated. Therefore
the policy of our configuration will have to restrict the roles of imported public
keys.

Similarly, we assume there is a secure out-of-band method for transferring
long-term wrapping keys, modelled by the C TransferKey command, so we check
that keys imported via OC TransferKey were previously generated on the token. If
this check fails, the new handle is given index 0. Unlike with OC CreateObject, we
check that the template of the key matches the template it had when it was first
generated. This is because the transfer mechanism is designed for keys of the
highest privilege, so we must ensure that keys imported this way were always
intended to have this role. As a result, the transfer mechanism cannot really
benefit the adversary, since they can only import a key with the same value and

role as it had previously. We only include this oracle to model a system with
multiple tokens.

Finally, when a key is imported viaOC UnwrapKey, we check if the wrap had been
previously generated by the token. To carry out this check, we maintain a list
W of triples (h, h′, w) such that the query OC WrapKey(h, h′) received the response
w.3 If the wrap submitted to OC UnwrapKey was indeed generated by the token, we
know the contents of the wrap, so the new handle is given the same index of
the originally wrapped handle.4 If the wrap submitted to OC UnwrapKey was not
generated by the token, then it was forged by the adversary. If the unwrapping
key is compromised, then the new handle is assumed compromised and given
index 0. This is because it is trivial to forge a wrap under a compromised key
and so we do not allow the adversary to win the security game this way. However,
if the unwrapping key is not already compromised, then the new handle is given
a fresh (non-zero) index, even though there can be no security guarantees for the
imported key. This allows the adversary to benefit from creating forged wraps
without compromising the wrapping key, which is a realistic attack. It will be
necessary for security to prove that this can never happen, using the integrity
of the wrapping mechanism.

Now we give the formal definition of the security of a PKCS#11 configura-
tion. Suppose AdvAPI(A) ≤ ε for all adversaries A running in time at most t,
making at most q oracle queries and such that the number of non-zero handle
indices used in APIb, i.e. the number of keys generated by the token or imported
into the token by forgeing a wrap under an uncompromised key, is at most n.
Then we say the API is (t, q, n, ε)-secure.

4.2 Security Assumptions

In order for an API to securely support both symmetric and asymmetric crypto-
graphic primitives, we have to assume that the encoding of keys is such that the
three key classes cannot be confused.5 More precisely, algorithms that are sup-
posed to use secret keys will automatically fail if one tries to use a public key or a
private key instead, and so on. This is necessary to avoid otherwise secure primi-
tives exhibiting insecure behaviour (such as returning the value of the key) when
used with a key of the wrong class. Moreover, when one imports a new key using
the C CreateObject command or the C UnwrapKey command, the class of the
new key will be automatically determined by the input to the command. We cap-
ture these assumptions in our formal syntax by having the keyspaces SecretKeys,
PublicKeys and PrivateKeys be disjoint sets. These assumptions mean that, for
example, a secure symmetric encryption scheme and a secure digital signature

3 A real API does not need to maintain such a list; it is purely for preventing trivial
attacks in our model.

4 Actually it is given the minimal index of all wrapped handles satisfying these con-
ditions, but if the API is secure then all these indices will agree, or they will all be
in Comp.

5 In practice, the length of the bitstring could determine the class of the key.

scheme are automatically jointly secure, but different primitives using the same
class of keys, e.g. a symmetric encryption scheme and a MAC scheme, could still
interfere with each other.

Furthermore, as explained above, the wrapping mechanism must provide in-
tegrity (in addition to secrecy) to prevent the adversary from importing their
own keys. While we assume the wrapping mechanism authenticates the values of
keys, we do not assume that the attributes of keys are authenticated. We remark
that some wrapping mechanisms supported by early versions of PKCS#11, e.g.
LYNKS from v2.20, attempted to authenticate the values of keys by adding an
encrypted checksum to the ciphertext, which was then checked when unwrap-
ping. On the other hand, even the latest version of PKCS#11 does not explic-
itly support including and authenticating the attributes of keys when wrapping.
While we assume the use of a strong wrapping mechanism, we show how security
can be achieved without any changes to the PKCS#11 standard.

5 Secure Templates

Since we do not assume that the PKCS#11 wrapping mechanism authenticates
the attributes of keys, we have no way of knowing what the attributes of imported
keys were when the keys were first generated. This means the API must impose
attributes on imported keys regardless of user input.

Furthermore, it is very difficult to separate the roles of imported keys of
the same class without authenticated attributes. This is because forcing the
adversary to choose between templates of imported keys (such as unwrap and
encrypt or unwrap and sign/verify) does not limit the adversary at all, since
the adversary can just unwrap the same wrapped key twice with different roles.
Moreover, if one tries to prevent this attack by rejecting unwraps of a ciphertext
that has previously been unwrapped on the same token, the adversary can just
unwrap the same key on multiple tokens and use them together. The only way
to avoid this entirely is with a central log of all the operations performed on
any token, as suggested by Cachin and Chandran, which is impractical for more
than one token [5]. Since we do not assume that attributes are authenticated or
that there is a central log of all operations, our configuration must have exactly
one template for all imported keys of the same class. Under our assumption that
the three classes of keys cannot be confused, we can have a different template
for each class.

Recall that, in STP, imported secret keys can be used for encryption, but not
decryption [4]. This is because these keys may be stored under a different handle
with the ability to wrap other keys and so we must prevent the wrap/decrypt
attack. Similarly, such keys can be used for unwrapping, but not wrapping,
since they may be stored under a different handle with the ability to decrypt
ciphertexts. However, this does not prevent all the attacks that we consider: STP
is actually not secure in our model.

There are two reasons why we will not be able to reduce the security of
STP to the confidentiality and integrity of the underlying symmetric encryption

scheme. The first is technical: STP allows the creation of key cycles, since any key
with CKA WRAP set can wrap any key with CKA EXTR set, and key cycles cannot
be modelled by standard, computational security notions for encryption. How-
ever, one can prevent key cycles using the attributes CKA TRUSTED and CKA WWT:
we allow the creation of trusted wrapping keys that are not extractable and
untrusted wrapping keys that are extractable but can only be wrapped under
trusted wrapping keys. Moreover, all imported secret keys must have CKA WWT

set, since they may be stored under a different handle as an untrusted wrapping
key.

The second security flaw is more serious. While Tookan found no attacks
against STP, this was with respect to a weak security notion that honestly-
generated keys cannot be recovered by the adversary. Our stronger security no-
tion requires that all keys on the token that are not trivially compromised are
safe to use for encryption and signing. This means the attacker should not be
able to import their own keys, which is why we need INT-CTXT security for the
wrapping mechanism. However, since STP allows the same keys to be used for
encryption and wrapping, the adversary could encrypt their own key and then
unwrap the ciphertext, without violating the integrity property of the wrapping
mechanism. The newly-imported key, known to the adversary, can then be used
by the encryption challenge oracle, trivially leaking the hidden bit b. To prevent
this attack, our policy must not allow the encryption (as opposed to wrapping)
of any element of SecretKeys.

Let STP+ be the PKCS#11 configuration obtained by restricting STP as
described above, thereby preventing the creation of key cycles and the encryp-
tion, rather than wrapping, of secret keys. We will extend STP+ by enabling
public-key encryption and signatures and our main result (Theorem 1) is a secu-
rity reduction for this configuration to the security of the underlying primitives.
As an immediate corollary, we see that the security of STP+ is implied by the
confidentiality and integrity of the underlying symmetric encryption scheme.

In describing STP, Bortolozzo et al. did not consider MAC functionality [4].
As mentioned in Sec. 3, the extension of STP used in Caml Crush is such that
secret keys can have both MAC and encrypt functionality. We also show in the
full version of the paper that a secure MAC scheme and a secure encryption
scheme are not always jointly secure [14]. Therefore, if we do not assume the
joint security of the encryption and MAC schemes, we cannot prove the security
of our configuration of PKCS#11 if it allows unwrapped secret keys to compute
or verify MACs. Thus there is no generically secure way to exchange MAC keys
between tokens and so we must only use (asymmetric) signatures to provide data
authenticity.

Then, since unwrapped private keys need to be used to create signatures,
such keys cannot be allowed to decrypt messages (without assuming the joint
security of public key encryption and signing). So private decryption keys must
be unextractable, meaning there is no way to safely transmit such keys between
tokens. However we do not need to disable public-key encryption altogether, since

tokens can exchange public encryption keys over an authenticated channel and
decrypt ciphertexts using their unextractable, locally-generated private keys.

Since tokens are required to transmit public keys for encryption and verifying
signatures, it is quite possible for the adversary to use an encryption key to
verify signatures, by generating the key in one role and then re-importing it
with a different role. However, this does not affect the joint security of the
encryption scheme and the signature scheme. The verification algorithm has
no way of knowing that the key it uses was ‘intended’ as an encryption key
and will function as normal. Moreover, as the key is public there is no risk from
leaking parts of the key not needed for verification. Similarly there is no risk from
encrypting data using keys intended for signature verification. In summary, it is
not necessary to authenticate the attributes of public keys, only the values of
these keys. As a result our configuration of PKCS#11 allows all imported public
keys to have both encryption and verification capabilities.

Bringing together this analysis, we obtain a set of attribute templates that,
without assuming the joint security of different primitives, is maximal among
those with which the API is secure:

1. Generated secret keys must have one of the following templates:
(a) TRUSTED: trusted wrapping keys that are unextractable and cannot be

used for encryption or decryption,
(b) UNTRUSTED: untrusted wrapping keys that can themselves be wrapped

under trusted wrapping keys, but cannot be used for encryption or de-
cryption,

(c) ENC: keys that can be wrapped and used for encryption and decryption,
but cannot wrap other keys.

2. Imported secret keys have the template IMPORTSECRET: they can encrypt
data and unwrap keys, but cannot decrypt data or wrap keys. To prevent key
cycles, imported secret keys must only be wrapped under trusted wrapping
keys.

3. Only trusted wrapping keys, i.e. keys with template TRUSTED, can be trans-
ferred using the secure out-of-band mechanism C TransferKey (for boot-
strapping).

4. The templates of generated public and private key pairs must be one of the
following:
(a) AENC, ADEC: the public key can encrypt data and the private key can

decrypt data; neither can wrap or unwrap and the private key is not
extractable.

(b) VERIFY, SIGN: the public key can verify signatures and the private key
can create signatures; neither can wrap or unwrap and both are ex-
tractable.

5. Finally, imported public keys must have the template IMPORTPUBLIC: such
keys can encrypt data and verify signatures, but cannot wrap or unwrap
keys.

In Tables 1 and 2, we define our set of secure templates with respect to the
PKCS#11 attributes CKA EXTR, CKA WWT, CKA TRUSTED, CKA WRAP, CKA UNWRAP,

CKA ENCRYPT, CKA DECRYPT, CKA SIGN, and CKA VERIFY. Any attributes from this
set that are not shown in the tables, or not marked with!, are unset. The only
exception to this rule is CKA TRUSTED, which is not shown in any of the tables
due to limitations on space, but is set in the template TRUSTED and unset in all
other templates.

The policy P used in our configuration is given in Table 3. We remark that
P(C UnwrapKey, h, w, t) sometimes depends on the value of Dec(h.key, w). Since
h.key is not accessible to the API, what this means is that the API makes the
relevant decryption call to the token, receives a response, and then determines
whether or not to release the response to the user based on its value. Note that
this policy could not be achieved by simply using a filter (like Caml Crush). For
comparison, we also give the default PKCS#11 policy and the STP+ policy in
the full version of the paper [14]. One can see that our configuration is indeed
PKCS#11 compliant and STP+ is a special case of our configuration.

Let tmax be the maximum run time of any of the following operations: Enc,
AEnc, ADec, Sign, SVrfy, one call to NewHandle and one call to Dec; one call to
NewHandle and two calls to KG; and two calls to NewHandle and two calls to
KPG. Then, with the configuration presented here, we obtain our main result,
which is proved in the full version of the paper [14]:

Theorem 1. Suppose P is as defined in Table 3, E is (t, ε1)-IND-CCA-secure
and (t, ε2)-INT-CTXT secure, PKE is (t, ε3)-IND-CCA-secure and S is (t, ε4)-
EUF-CMA-secure. Then the API is (t′, q, n, ε′)-secure, where:

t′ = t− q · tmax, ε′ = n
[(

8n2 + 4n+ 1
)
ε1 + 2ε2 + ε3 + ε4

]
.

6 Conclusion and Acknowledgements

We have given a security definition for configurations of PKCS#11, where the
adversary can adaptively corrupt keys. We proved the security, in this strong
attacker model, of a configuration of PKCS#11 that extends the Secure Tem-
plates Patch from Bortolozzo et al. [4]. Unlike most existing analyses of APIs in
the literature, we do not assume the attributes of keys are authenticated when
wrapping.

Our result holds under the assumption that private, public and secret keys
cannot be confused. Moreover, since our configuration does not support asym-
metric key wrapping, we have to assume for bootstrapping that there is a secure
channel for transmitting long-term secret keys and also an authenticated channel
for transmitting public keys. We feel that these assumptions are likely to hold
in practice.

Our security proof is far from tight: the advantage of the adversary against
the API is potentially n3 times bigger than the advantage against the underlying
symmetric encryption scheme used for wrapping, where n is an upper-bound on
the number of distinct keys stored on the token. Whether such losses can ever
be avoided is the subject of ongoing research.

The author would like to thank Bogdan Warinschi, Martijn Stam and the
anonymous reviewers for their useful feedback on the paper.

Template Name CKA EXTR CKA WWT CKA WRAP CKA UNWRAP CKA ENCRYPT CKA DECRYPT

TRUSTED ! !

UNTRUSTED ! ! ! !

ENC ! ! !

IMPORTSECRET ! ! ! !

Table 1. Templates for Secret Keys (note that CKA SIGN and CKA VERIFY are always
unset). The attribute CKA TRUSTED, not shown here, is set in the template TRUSTED and
unset in all other templates.

Template Name CKA EXTR CKA WWT CKA ENCRYPT CKA DECRYPT CKA SIGN CKA VERIFY

AENC ! !

ADEC !

SIGN ! !

VERIFY ! !

IMPORTPUBLIC ! ! !

Table 2. Templates for Public and Private Keys (note that CKA TRUSTED, CKA WRAP and
CKA UNWRAP are always unset).

Function Value

P(C CreateObject, pk, t)
1 if t = IMPORTPUBLIC,
0 otherwise

P(C TransferKey, k, t)
1 if t = TRUSTED,
0 otherwise

P(C GenerateKey, t)
1 if t ∈ {TRUSTED, UNTRUSTED, ENC},
0 otherwise

P(C GenerateKeyPair, t, t′)
1 if (t, t′) ∈ {(AENC, ADEC) , (VERIFY, SIGN)},
0 otherwise

P(C WrapKey, h, h′)
1 if CKA WRAP ∈ h.temp, CKA EXTR ∈ h′.temp

and if CKA WWT ∈ h′temp then CKA TRUSTED ∈ h.temp,
0 otherwise

P(C UnwrapKey, h, w, t)

1 if CKA UNWRAP ∈ h.temp and
Dec(h.key, w) ∈ SecretKeys and t = IMPORTSECRET

or Dec(h.key, w) ∈ PrivateKeys and t = SIGN,
0 otherwise

P(C Encrypt, h,m)
1 if CKA ENCRYPT ∈ h.temp and m /∈ SecretKeys,
0 otherwise

P(C Decrypt, h, c)
1 if CKA DECRYPT ∈ h.temp,
0 otherwise

P(C Sign, h,m)
1 if CKA SIGN ∈ h.temp,
0 otherwise

P(C Verify, h,m, s)
1 if CKA VERIFY ∈ h.temp,
0 otherwise

Table 3. The policy of our configuration (where a ∈ h.temp means that the attribute
a is set in h.temp)

References

1. Benadjila, R., Calderon, T., Daubignard, M.: Caml Crush: a PKCS#11 filtering
proxy. In: Joye, M., Moradi, A. (eds.) Smart Card Research and Advanced Appli-
cations - 13th International Conference, CARDIS 2014, Paris, France, November
5-7, 2014. Revised Selected Papers. Lecture Notes in Computer Science, vol. 8968,
pp. 173–192. Springer (2014)

2. Benadjila, R., Calderon, T., Daubignard, M.: Source code for Caml Crush.
https://github.com/ANSSI-FR/caml-crush (2016), accessed: 2016-10-19

3. Bond, M., Anderson, R.J.: API-level attacks on embedded systems. IEEE Com-
puter 34(10), 67–75 (2001)

4. Bortolozzo, M., Centenaro, M., Focardi, R., Steel, G.: Attacking and fixing
PKCS#11 security tokens. In: Proceedings of the 17th ACM Conference on Com-
puter and Communications Security, CCS 2010, Chicago, Illinois, USA, October
4-8, 2010. pp. 260–269 (2010)

5. Cachin, C., Chandran, N.: A secure cryptographic token interface. In: Proceedings
of the 22nd IEEE Computer Security Foundations Symposium, CSF 2009, Port
Jefferson, New York, USA, July 8-10, 2009. pp. 141–153 (2009)

6. Clulow, J.: On the security of PKCS#11. In: Cryptographic Hardware and Em-
bedded Systems - CHES 2003, 5th International Workshop, Cologne, Germany,
September 8-10, 2003, Proceedings. pp. 411–425 (2003)

7. Delaune, S., Kremer, S., Steel, G.: Formal analysis of PKCS#11. In: Proceedings of
the 21st IEEE Computer Security Foundations Symposium, CSF 2008, Pittsburgh,
Pennsylvania, 23-25 June 2008. pp. 331–344 (2008)

8. Delaune, S., Kremer, S., Steel, G.: Formal security analysis of PKCS#11 and pro-
prietary extensions. Journal of Computer Security 18(6), 1211–1245 (2010)

9. Kremer, S., Steel, G., Warinschi, B.: Security for key management interfaces. In:
Proceedings of the 24th IEEE Computer Security Foundations Symposium, CSF
2011, Cernay-la-Ville, France, 27-29 June, 2011. pp. 266–280 (2011)

10. PKCS#11 cryptographic token interface base specification version 2.40
(April 2015), latest version: http://docs.oasis-open.org/pkcs11/pkcs11-
base/v2.40/pkcs11-base-v2.40.html

11. Panjwani, S.: Tackling adaptive corruptions in multicast encryption protocols. In:
Vadhan, S.P. (ed.) Theory of Cryptography, 4th Theory of Cryptography Confer-
ence, TCC 2007, Amsterdam, The Netherlands, February 21-24, 2007, Proceedings.
Lecture Notes in Computer Science, vol. 4392, pp. 21–40. Springer (2007)

12. Scerri, G., Stanley-Oakes, R.: Analysis of key wrapping APIs: Generic policies,
computational security. In: IEEE 29th Computer Security Foundations Sympo-
sium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016. pp. 281–295. IEEE
(2016)

13. Shrimpton, T., Stam, M., Warinschi, B.: A modular treatment of cryptographic
APIs: The symmetric-key case. In: Robshaw, M., Katz, J. (eds.) Advances in Cryp-
tology - CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I. Lecture Notes in
Computer Science, vol. 9814, pp. 277–307. Springer (2016)

14. Stanley-Oakes, R.: A provably secure PKCS#11 configuration without au-
thenticated attributes. Cryptology ePrint Archive, Report 2017/158 (2017),
http://eprint.iacr.org/2017/158

