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 We appreciate the commentaries provoked by our paper [1]. Our intent was to flesh out 

unacknowledged assumptions and problematic framings and practices pertaining to “causal inference” 

in our field of epidemiology, and we did so with full recognition that our debates are not unique and 

have counterparts in virtually all disciplines involved in testing empirical claims about the world and 

universe in which we humans find ourselves [2-4]. The commentaries indicate we have accomplished 

our purpose, whereby the articles, considered together, productively point to important tensions 

between our epidemiologic questions and methods, as they relate to our mission of generating 

knowledge vital for improving population health and promoting health equity. 

 In our reply, we address where we agree and disagree with each commentary. Rather than 

rehash arguments provided in our original paper, we elaborate only on the substantive disagreements 

that we consider important to the discussion underway. 

 Our starting point, one well-recognized both by practicing scientists and by those who study 

scientific disciplines, is that use of valid methods and their development is essential for scientific 

advancement, even as no science, including epidemiology, is defined solely by its methods [2-4]. 

Improved methods are essential to expand the types of data we can obtain and how we analyze them, 

increasing the odds for generating valid inferences. They can, as several of the commentaries stress, also 

help clarify which empirical questions we currently have the material capacity to ask and answer (as 

related to technologies of discovery and informatics), and those which we cannot – thereby motivating 

new work to make asking the currently unanswerable questions more tractable, as well as provide 

better answers to questions already thought to be answered. 

 We can never lose sight, however, that the questions we even think to pose, or believe we can 

ask, depend, first and foremost, on the theories, concepts, and material evidence that inform each and 

every scientific effort to explain the material workings of our world [4-6]. In our field, involving dynamic 

populations of people in dynamic societies and ecosystems, methodical triangulation of diverse types of 
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evidence from diverse types of study designs and involving diverse population is essential [7,8], as is 

recognition that any “causal effect” detected in a given empirical study is the effect estimated in that 

study – it is not “the” (as in: “universal”) “causal effect.” Indeed, as Sander Greenland and Jamie Robins 

observed back in 1988 [9, p. 1195]: 

“…the dependency of epidemiologic measures on cofactor distributions points out the need to avoid 
considering such measures as biological constants. Rather, epidemiologic measures are 
characteristics of particular populations under particular conditions …” 
 

Testing hypotheses under diverse conditions (e.g., study designs that use different methods with 

uncorrelated biases and that conducted in diverse populations with different prevalence of exposures 

and confounders), i.e., systematic triangulation of approaches to posing scientific questions – and 

listening to the material world “talk back,” not solely statistical manipulation of data from any given 

study – is the surest route to challenge our explanations and gaining new robust knowledge about how 

this world works to produce the patterns of health, disease, and well-being we seek to analyze and alter. 

It is for this reason that we maintain that a critical orientation to evidence, explanation, and methods is 

essential, as provided by the incisive and flexible framework of “Inference to the Best Explanation” [10]. 

 Or, as the Professor of Social Biology and statistician, experimental embryologist, and 

evolutionary biologist Lancelot Hogben stated in the conclusion to his 1933 opus Nature and Nurture, 

which robustly challenged the era’s dominant eugenics orientation to the analysis of population health 

[11, p. 121]: 

 “   The application of statistical technique in the study of human inheritance is beset with pitfalls. On 
the one hand the experimental difficulties of the subject-matter necessitate recourse to 
mathematical refinements which can be dispensed with in animal breeding. On the other there is the 
danger of concealing assumptions which have no factual basis behind an impressive façade of 
flawless algebra. The student may well recall the words of Wilhelm Ostwald: 

Among scientific articles there are to be found not a few wherein the logic and mathematics are 
faultless but which for all that are worthless, because the assumptions and hypotheses upon 
which the faultless logic and mathematics rest do not correspond to actuality.” 
 

And with this caveat in mind, we turn to our responses to the individual commentaries [12-16]. 
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Response to commentaries 

1) Blakely, Lynch, and Bentley: “DAGs and the restricted potential outcomes approach are tools, not 

theories of causation” [12]  

 We agree: that DAGs can be very useful tools, that tools are not theories – and that critical deep 

substantive knowledge is required to use these tools well. As Blakely et al. note, use of DAGs can be 

“meaningless and perhaps even misleading without a well formed theory of why one node causes 

another” [12]. We also agree, per their Figure 1, that science necessarily involves epistemology – 

defined, by the Oxford English Dictionary as: “the theory of knowledge and understanding, esp. with 

regards to its methods, validity, and scope, and the distinction between justified belief and opinion” 

[17]. Equally necessary, however, is engaging with ontology: “the science or study of being” [17], 

referring to the understandings of the phenomena and processes of our world, including their causal 

relationships and the apt contrasts that can make them visible [4,5,10]. If our paper succeeds in 

cautioning against, in Blakely et al.’s words, a “blinkered approach” to using DAGs while clarifying where 

and how DAGs can be used well in “situations where it is apposite to apply” [12], we are satisfied. 

 

2) VanderWeele: “On Causes, Causal Inference, and Potential Outcomes” [13] 

 We appreciate five key points raised by VanderWeele’s thoughtful commentary. These pertain 

to the commentary’s:  

(1) distinction between what may be theorized to be a “cause” and what may, more narrowly, 

comprise a “causal effect estimand” (point #1);  

(2) recognition that epidemiology tackles many problems that involve “composite exposures,” 

thereby making it “difficult to speak of the causal effect estimand,” a problem further compounded 

by it being difficult to uphold the stringent assumption of “no unmeasured confounding” (point #3), 

let alone no misclassification or uncertainty in measurement! – which are critical issues we address 
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further on, including in Textboxes 1, 2 and 3. 

(3) acknowledgement of the value, in the case of composite exposures, of considering the impact of 

multiple types of interventions and also the value of recognizing when it is appropriate to “abandon 

any attempt at a precise interpretation of a quantitative estimand and simply speak of evidence for 

general causation, for something to be a cause” (point #3);  

(4) realization that there are “important questions that are not amenable to the potential outcomes 

framework” (such as health impacts of “social movements, societal trends such as more married 

women going to work, and even war”), whereas the latter is more apt for “narrower policy 

evaluations and decisions” (point #4); and 

(5) acceptance that that “scientific reasoning is much broader than causal inference,” that “inference 

to the best explanation is important in causal inference and diverse types of evidence can and should 

be used,” and that there can be substantial disagreement among scientists as to what constitutes the 

“best explanation,” a matter that cannot be resolved solely by use of counterfactual reasoning, 

however powerful such reasoning can be (point #6).  

The larger message, which we support, is that it is essential to recognize the limits of any particular set 

of methods and the questions that can be asked using them, without dismissing as unimportant 

questions that cannot (currently) be asked using these methods.  

 We disagree, however, with some key aspects of how the commentary frames scientific 

research and knowledge. Specifically, in point #2, the commentary presents science as being an activity 

in which: (1) “investigators collect data – encoded as strings of numbers,” (2) “a data analyst performs 

various computations on these strings,” after which “the investigators may produce written or verbal 

sentences concerning causal relationships,” a practice which requires that the investigators use “a 

formal framework for translation” to discern “the relationship between these strings of numbers and 

the resulting sentences.” In point #3, it privileges, for causal analysis, the physical sciences and “laws of 
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nature” against the study of “complex systems” in the “social and biomedical sciences.” 

 Yet, “data” are never simply a “given,” something that are simply “collected” [4-6]. Instead, and 

as we recognize VanderWeele and other epidemiologists deeply appreciate, substantial  causal 

theorizing in relation to critical substantive knowledge is required for conceptualizing the variables and 

hypotheses in the first place, not to mention choice of study design and comparison groups, let alone 

operationalizing and actually measuring the conceptual variables of interest [4-6]. Scientific inquiry does 

not start with “data”: even so-called hypothesis free approaches (such as genome wide association 

studies [18] or phenome wide association studies [19] are predicated on an understanding of the 

structuring of genotype and phenotype.   

 Additionally, not only are there fierce debates over what are “laws of nature” and whether they 

can be legitimately conceptualized as the epitome of “cause” [4,5,20-22], but physical sciences are not 

immune to engaging with complexity, context, and historical contingency: consider only the evolution of 

such complex non-living physical systems and phenomena such as galaxies, stars, black holes, planets 

and planetary systems. Life, of course, introduces the additional complexity of dynamic living beings 

interactively engaging (instinctively and/or consciously) with other living beings, both in the same and 

different species, while simultaneously actively constructing their niches as they grow, develop, eat, 

relate, sometimes reproduce, and ultimately die [6,23]. In fields where dynamic and context-dependent 

phenomena comprise the domain of study, such as epidemiology or ecology, few exposures could ever 

be expected to yield precise “causal estimands” that are indifferent to the actual contexts in which 

people and other organisms live. Of course there are exceptions: no human fetus will survive if is missing 

one of its chromosomes #1 (regardless of environmental context)[24], and no humans will survive if they 

breathe carbon monoxide at concentrations of greater than 200 ppm for prolonged intervals (regardless 

of their genome)[25]. Most of what epidemiology studies, however, occupies the far more messy turf of 

non-deterministic exposures and outcomes that are context-dependent (to a greater or lesser degree, 
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depending on the phenomenon under study), and our methods must engage accordingly.  

 It is therefore surprising that VanderWeele writes (point #1) that “For a hypothetical 

intervention it [i.e. the potential outcomes approach] defines the causal effect for the individual.” Such a 

stance is at odds with the essence of epidemiology: that it is a population science [6,26,27]. We contend 

that the notion of individual causal effects is fundamentally non-epidemiological: for the vast majority of 

epidemiological endpoints the notion of an individual causal effect is simply incoherent [27-29]. 

Granted, there are some deterministic exposures that invariably lead to the same consequence in all 

individuals, as per the two examples provided above (regarding a missing chromosome #1 or breathing 

too much carbon monoxide), as well as more complex scenarios, e.g., the onset of severe 

neurocognitive anomalies persons with Huntington’s disease for those carrying a sufficient number of 

expansions, as compared to persons who do not carry these expansions (given survival until age of 

onset) [30]. That deterministic models can be rewritten as probabilistic ones does not detract from the 

conceptual distinction between population-level and individual-level causal effects, a distinction that 

underpins epidemiological science [26,27,31]. 

 VanderWeele makes strong claims for the potential outcomes approach, stating that: (a) it has 

led to “[truly] major advances over what was available previously” (point #2) and (b) “What little 

progress has been made ... has in fact come out of extensions of the potential outcomes or causal 

diagram framework” (point #3) [13]. However the assumptions made in the application of these 

approaches are – as VanderWeele partly acknowledges – nothing short of heroic. The notion of “no 

unmeasured confounding” (point #3)[13] not only assumes perfect measurement even for those 

confounders that have been measured, but also is an ideal that rarely, if ever, is reached in any 

epidemiologic analyses of real-world (as opposed to simulated) data. Underscoring the 

underappreciated nature of this problem, a recent cogent review on causal inference for research using 

high dimensional biological data (which minimally is what comprehensive epidemiological data on 
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exposures and outcomes are!) perceptively observed that the assumption that “variables are measured 

without measurement error” is a “a subtle assumption that is required … [in causal analysis methods] 

often not realized by practitioners who apply these techniques” [32]. Being clear about the limitations 

and assumptions of methods is crucial to preventing invalid inference, as well as to identifying issues 

requiring more methodological development.  

  Finally, the commentary errs in suggesting that: (a) we think the problem is the dismissal of 

“race” as a cause (e.g., by those who argue that “causes” in a counterfactual framework must be 

“manipulable”), and that (b) this problem can be righted by acknowledging “ ‘race is a cause’ in the 

sense that whatever might be meant by race, or however one might define or conceptualize race, that 

conception would entail also certain features such as skin color …” (point #7) [13]. 

 As we explicitly stated, and as the commentary quotes, “the relevant counterfactual pertains to 

racism, not ‘race.’” We will not here restate the myriad reasons why it is invalid to conceptualize “race” 

as inherent trait, let alone reduce “race” to a matter of “skin color” (think only of the popular, albeit 

complex, saying in Brazil that “money whitens” [33,34]). Nor will we restate the quotes provided (in 

Textbox 4 of our original paper) of researchers asserting that “race” cannot be a “cause” in a 

counterfactual framework because it is not “manipulable,” a stance that necessarily and erroneously 

assumes “race” is an a priori intrinsic trait. Our point, worth restating, concerns the necessity of 

epidemiologic research seriously grappling with analyzing how racism harms health, including by 

constructing the notion of “race” as an inherent biological variable, which apparently then becomes (at 

least to some) immune to counterfactual interrogation.  

 Here we note that we are heartened that VanderWeele supports research using counterfactual 

reasoning to examine how racism harms health, as evidenced by the study he mentions in which one of 

us (NK) collaborated. Indeed, clarifying how “race” was conceptualized, the text in the first paragraph of 

this paper explicitly stated: “Here, we adopt a counterfactual causal inference framework to investigate 
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determinants of black–white disparities as proposed by VanderWeele and Robinson, framed by an 

understanding that inequitable race relations, not "race" per se, are the cause of racial/ethnic health 

inequities, that is, unjust, unfair, and preventable social inequalities in health ” [35, p. 83]. We strongly 

encourage more epidemiologists to take on these types of questions, using counterfactual-based 

methodologies where apt, but not letting methods alone drive the research questions they pose. 

 

 

3) Weed: “Causal inference in epidemiology: potential outcomes, pluralism and peer review [14] 

 If Weed deems scientific critique as an exercise of “academic tower” egos only (to “gain 

attention”; to incite “intellectual competitions”), and thinks graduate instruction should be geared to 

simplified rules, and that scientific reviews need only take into account a study’s methods to assess the 

merits of its causal claims, that is his prerogative. We disagree. 

 Additionally, with regard to Weed’s concern that we are raising a false alarm over a non-existent 

danger, see our response to Robins and Weissman [15], below, and also Textboxes 1-3. 

 

4) Robins JM, Weissman MB. “Counterfactual causation and streetlamps: what is to be done?” [15] 

 Offering a refreshingly different take on the value of productive scientific debate and exchange, 

we welcome Robins and Weissman’s vigorous engagement with the issues we epidemiologists and other 

scientists face in the difficult work of framing and testing causal claims. That they think the stakes are 

high is evidenced by the second clause of their title: we venture to guess that many readers of Int J 

Epidemiol might not be aware that “What is To Be Done?” is intended to evoke What is To Be Done? 

Burning Questions of our Movement, written in 1902 by Vladimir Ilyich Ulyanov (later to adopt the 

pseudonym Lenin), in which he argued that only a revolutionary party, not solely working class 

organizations (such as trade unions), could lead the kind of revolution needed to overthrow the Czar and 
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the rest of the Russian state and replace it with, in the terminology of the day, a Marxist Social-

Democratic state [36]. To some, Ulyanov’s tract precipitated the split of the Russian Social Democratic 

Labour Party (RSDLP) into the Bolshevik and Menshevik factions a year later. While we are curious 

whom in the current debate Robins and Weissman cast as the Bolsheviks and as the Mensheviks  (or, for 

that matter, the Okrana [the state secret police], or the vacillating Georgi Plekhanov, elder statesman of 

the RSDLP in dismay as his authority washed away), we are happy to let those particular sleeping dogs 

lie (!).  

 To start, we are encouraged to see clear acknowledgment of the “streetlamp” problem, i.e., that 

“recent causal methods illuminate some potential treatments much more directly than they illuminate 

others” [15]. Types of problems outside of their arc of light include those that, in the parlance of political 

and policy scientists, are “wicked” problems, i.e., involve complex systems whose very properties can be 

changed by virtue of the interventions introduced – and issues of health inequities certainly belong to 

this category of problem [37-39]. Restricting a focus to only “well-behaved” problems, however, is not a 

solution, especially since, as Robins and Weissman acknowledge, turning on or off the “lamps” of better 

research methods by itself does not determine the location of the “keys” that can help generate 

solutions. 

Better instead to take on the challenge of making less tractable problems more tractable, at 

least to the point of being able to come to some general statements about “causation,” per 

VanderWeele’s formulation [13], even if generating a precise “causal estimand” is not possible. Here, 

the reflective warnings of Robert May, whose training is in physics, zoology, and ecology (and who has 

served as President of the Royal Society in the UK, and also Chief Scientific Advisor to the UK 

Government and Head of the UK Office of Science and Technology [40]) are instructive [41, p. 196]: 

“In the USA, the National Science Foundation (NSF) went through a rather irritating hiccup from the 
mid 1970s to the mid 1980s when a bunch of people (who didn’t understand physics but thought 
that ecology ought to be more like what they thought physics was) decided that the NSF ecology 
programme really ought to be doing reductionist things, and reductionism got confused with doing 
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manipulative experiments. The outcome of this was an interesting phase: if you look at the 
manipulative experiments in ecological studies published over this time, 75% were of a spatial scale 
of less than 10 metres and 95% of them were on a time scale of five years or less, the time scale of a 
PhD thesis. It is not at all clear that the most important questions in understanding community 
structure and response to disturbance necessarily happen on a scale of less than a metre or over a 
timescale of three years or less.” 
 

The truth of these words is ever more apparent in this era of global climate change, and it is no accident 

that May has served on the UK Government’s Climate Change Committee. 

 We find it interesting that Robins and Weissman treat “Inference to the Best Explanation” [10] 

as the “standard approach to science.” Would that it were so. As we recount, it is in fact a contested 

approach [2-4,10] – and, as we noted, one barely mentioned in the epidemiological literature [1]. 

Moreover, regarding triangulation, their analogy of meaninglessly “triangulating” across the different 

“truth” meanings of the word “gay,” used differently in different contexts to mean entirely different 

things, is erroneous. In the case of empirical research in which evidence is being triangulated, the 

studies are presumably seeking to generate what ought to be roughly similar – though not precisely the 

same - causal estimands, if it is indeed true that the underlying theorized causal relationship actually 

occurs in the shared biophysical world we inhabit. This is a completely different scenario from that of 

the same “word” (i.e., same set of letters) having different meanings, precisely because of how language 

evolves and changes (see, for example, Raymond Williams’ classic text Keywords for an historically 

grounded study of etymology in cultural context [42]).  

 The example of HDL cholesterol that Robins and Weissman discuss illustrates several issues we 

have with their claim – echoed in the commentaries by VanderWeele [13] and Daniel et al [16] – that 

the methods advocated produce estimates of causal effects that are not only “unavailable by other 

techniques” but, beyond this, can provide “more or less reliable, relatively assumption-free estimates of 

relatively well-defined causal effects that are unavailable by other techniques” [15]. The saga of HDL 

cholesterol and cardiovascular disease, as we explain in Textbox 1, suggests otherwise – and instead 

underscores our view that major advances in identification of causal processes that allow for individual 
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and public health improvement depend considerably more on advances in understanding the material 

basis of human biology than in how we draw diagrams of such processes [43]. 

 From this standpoint, we also find it instructive that Robins and Weissman find our choice of 

empirical examples to be puzzling. All of the examples share a common point: the need for deep 

substantive knowledge about the theorized causal processes. Several also highlight surprising new 

scientific observations to serve as a reminder of how we must always temper our claims about “causal 

estimands” because we cannot know if all relevant causal relationships and confounders have been 

taken into account. From this standpoint, we thoroughly endorse the statement Robins and Weissman 

quote that is attributed to Keynes: “When my information changes, I alter my conclusions. What do you 

do, sir?” [15]. (Would only that such an attitude towards evidence were evident in current policy and 

political discourse …).  

 The larger point is that data are never simply “strings of numbers” (as per VanderWeele’s 

formulation [13]). Instead, application of methods to data, including counterfactual causal methods, can 

only contribute to generating robust knowledge if there is clear theorizing about the nature (often 

dynamic) of the variables involved and their possible causal relations. Cogent DAGs could have been 

drawn for etiologically incorrect explanations of pellagra, and the elimination and addition of variables 

from and to the picture came about because of deep biological knowledge combined with causal 

reasoning (including but not limited to counterfactual reasoning). Of course one would wish this to be 

the standard approach. But consider only the legions of studies and teaching examples, including those 

using DAGs, that assume “race” is “simply” an intrinsic “biological” variable and that never consider 

asking how racism simultaneously harms health and delimits not only the “racial” categories employed 

but who is put in them, and by whom [6,44-46]. A DAG won’t make a researcher see the gaps: theory 

and deep substantive knowledge of the complexities of the phenomena under study are vital, as is 

knowledge about the historical controversies concerning their study [4-6].  
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 Finally, we welcome Robins and Weissman’s closing examples pertaining to studying such 

questions as: “How will our lives differ if we build suburbs versus dense walkable cities?”; and also: what 

is the impact of greenhouse gases on climate change? [15] Their examples include the kind of 

triangulation of evidence from diverse sources that we were advocating, and recognize that any 

estimates of health impact of complex exposures and policies will have uncertainty. That is the world we 

live in – and the world in which we are trying to improve population health and promote health equity. 

As responsible scientists, we not only have to be clear about uncertainty and the limitations of our 

knowledge, but also be clear about trying to get the best evidence we can, especially for understudied 

(and often controversial) topics that require more light – or even light of different wavelengths – than 

the illumination provided by the proverbial streetlamps. By the same token, we have to expose the 

restrictive assumptions (along with typically poor evidence) that inevitably feed into dominant accounts 

that justify inequity. We make no presumption that social movements and “social variables” necessarily 

point in the direction of health equity: certainly the Nazis had a mass base and plenty of some types of 

“social capital.” 

 These tensions between our field’s questions, methods, and mission are not new, and nor do we 

claim new insights about their existence and resolution. What we do offer is a reminder that these 

tensions exist, a reminder that needs to be repeated in each and every generation, and we are glad to 

contribute our part. Or, as Edgar Sydenstricker concluded, in his 1933 landmark book Health and 

Environment [47, p. 210]: 

“What is needed is more knowledge, dispassionately collected and scientifically analyzed with a 
wholesome respect for the complexities of human societies and of the individuals who compose it, to 
form a sound basis for the conscious control of our destinies.” 

 

5) Daniel, De Stavola, Vansteelandt: “The formal approach to quantitative causal inference in 

epidemiology: misguided or misrepresented?” [16] 

 There has long been a sense that an appreciation for the material and complex realities of the 
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issues we analyze in epidemiology may be obscured by an exclusive focus on the methods of how we 

conduct our analyses [6]. We see this disconnect in the commentary by Daniel and colleagues [16]. 

Approaching 40 years ago, in the early days of this journal, Edmond Murphy in 1978 wrote eloquently 

and explicitly about the disconnect between biological and statistical understandings, stating that 

“multivariate analysis (which in certain quarters is being substituted for scientific perception), can 

spread its soporific effect” and also that (with respect to some analyses) “I am driven to believe that 

however excellent the prediction, the formula, from an aetiological and ontological standpoint, provides 

no insights whatsoever” [48]. Two other leading epidemiologists expressed similar views around the 

same time: in 1980 Reuel Stallones lamented that recent work in epidemiology demonstrated a 

“continuing concern for methods, and especially the dissection of risk assessment, that would do credit 

to a Talmudic scholar and that threatens at times to bury all that is good and beautiful in epidemiology 

under an avalanche of mathematical trivia and neologisms” [49], a view Jerry Morris shared [50].  

 We quote these earlier contributions (which bear re-reading today) as they illustrate the sense 

that method was coming to dominate over matter in the epidemiological enterprise. Our analysis of 

historical examples, far from giving license to “conclude that science does not need formal deductive 

theory at all” – as asserted by Daniel et al [16] -- instead shows that science needs not only theories 

pertaining to methods but theories pertaining to substance, as well as an openness to learning from 

history (if only not to repeat prior errors) [2-6]. 

 First, however, we are glad to see that Daniel et al. do not hold that “hypothetical interventions 

must be currently humanly feasible” or that the randomized clinical trial is always “the best choice of 

study design for causal inference” [16]. One corollary of the first statement is their view that the causal 

effects of inherited genes can be studied, since a particular mutation “could instead hypothetically not 

have been inherited,” even if inducing such a mutation (or preventing it) is “currently unfeasible to 

implement” [16].  
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 By contrast, we find Daniel et al.’s discussion about health inequities involving “sex, race, and 

genes” to be confused, and this problem is compounded by their dismissal of concerns raised as 

“something of a storm in a teacup” [16]. Such a stance implies unfamiliarity with the literature on health 

inequities, let alone the toll they take on people’s lives [44-46,51,52]. This approach to the subject 

matter stands in stark contrast to their stated credo that a “Formal Approach to quantitative Causal 

inference in Epidemiology” (FACE) necessarily recognizes “the central role played by subject-matter 

knowledge” [16]. 

 Yet, pointing to serious limitations in “subject-matter knowledge” [16], Daniel et al. describe 

“race” solely in genetic terms, and as examples of racial groups refer to “Caucasian” and 

“Afrocaribbean” [16]. Never mind that the term “Caucasian” is a discredited pseudo-scientific term, 

invented by Blumenbach in the late 1700s and premised on the idea that humanity originated in the 

mountainous area of the Caucuses, near Mount Ararat (the Biblical resting place of Noah’s ark), and that 

the other “races” of humankind descended (or, in Blumenbach’s terminology, “degenerated”) from this 

original stock of humanity [53-56]. Such a thesis not only flies in the face of current evidence strongly 

supporting the out-of-Africa origins of Homo sapiens but also obscures how terms like “Caucasian” put a 

seemingly scientific gloss on the unwarranted assumption that “race” is an a priori intrinsic biological 

property of individuals [54-60]. It also deflects attention from who gets to count, according to whom, as 

being either “Caucasian” (or “white”) or “Afrocarribean” (or “black”): both Europe and the Caribbean 

have a muddy and bloody history over who has been counted, by whom, as belonging to which 

categories, and approaches to classification and self-identification can differ by country, by island, by 

historical period, and, among emigrants, by the country in which they newly reside [33,34,57-62]. For an 

article that repeatedly stresses the importance of intellectual precision, the laxity of its approach to 

“race” and racism is striking indeed. Related, to suggest that the issue of “exchangeability” merely 

entails considering whether an individual is raised by a family of the same or different “racial” group 
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entirely misses the point of analyzing structural racism as a determinant of population health: what 

would happen if people lived in a society premised on racial justice rather than one which in which racial 

discrimination flourishes?  

 The suggestion that what primarily matters is “the perception of race/sex” is not defensible. 

Such a statement ignores, for instance, the impact of the intergenerational accumulation – within both 

families and the neighborhoods and societies in which they reside – of privilege vs. adversity. At issue 

are entangled and entrenched racial/ethnic inequities in wealth, neighborhood living conditions, and 

safety, co-occurring with gender inequities in education, occupation, and income, along with 

interpersonal and structural violence shaped by class, race, and gender relations [44-46,51,52]. These 

are the circumstances into which infants are born and which they inherit, long before anyone has 

perceived them. 

 It is additionally a misreading of what we wrote to suggest we were implying that “race” can and 

should be construed as a “cause” once the objection that it is not “manipulable” is removed. In fact, we 

said exactly the opposite. Our argument is that “race” should NOT be considered a “cause” – not 

because of the arguments about it being “non-modifiable,” but because: (a) “race” is not a valid 

biological category [57-60], and (b) the societal relations and practices that constitute structural racism 

along with its interpersonal expressions are the causal phenomena of interest [44-46]. Of concern is how 

biologically embodying racism in its many manifestations (which, yes, can be and are carefully parsed in 

the literature) has profound effects on people’s health [44-46,51,52]. There is an extensive literature on 

analyzing racism and gender inequality as determinants of health and health inequities [6,44-46,51,52], 

which provides the “subject-matter knowledge” as to who and what may cause racial/ethnic and gender 

health inequities. Such knowledge needs to be assimilated, both substantively and theoretically, if an 

informed view of how they should be analyzed is to be produced.  

 Our alleged misconceptions about the roles of DAGs in causal inference are additionally 
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puzzling. To reiterate, we think DAGs can often be useful, and (as Daniel et al. appear to agree with) that 

serious substantive knowledge and causal theorizing is required for a DAG to be valuable, rather than 

potentially misleading. However DAGs should not lead the search for causes, because even if the 

tendency is resisted, there will be an inevitable move to studying what can be reduced to a tractable 

DAG (just as when you have the proverbial hammer, every problem can look like a nail). This concern, of 

course, applies to all approaches aimed at strengthening causal inference, from negative controls to 

Mendelian randomization and other instrumental variables methods. 

 We further note that in our experience -- and contrary to what Daniel et al. assert [16] -- many 

of the DAGs presented in the literature or in the classroom do not adhere to the high standard of: (a) 

reflecting deep subject area knowledge; (b) being presented in all plausible forms (including taking into 

account the potential problem of equivalence, whereby different causal DAGs can be consistent with 

closely similar or identical correlation structures [63]); (c) fully acknowledging the possibility of rapid 

feedback networks that challenge meaningful acyclicity; and (d) incorporating all possible measurement 

imprecision and unmeasured confounders, whilst being tractable. In Textboxes 2 and 3, we present two 

examples – respectively pertaining to C-reactive protein and cardiovascular disease and to education 

and diabetes, among many that could have been selected – in which the use of DAGs does not adhere to 

these standards and which also make no attempt at triangulation or inference to the best explanation 

(IBE).  

 As Elwert has observed, “one obvious challenge of working with DAGs is that the true causal 

DAG is often not known,” and “[t]his is a problem because identification always hinges on the validity of 

the causal model” [64]. No matter how nicely drawn the DAG (as now facilitated by the tidy program 

DAGitty [65] – see Textbox 3), if its underlying theoretical premises are unsound, so too will be its causal 

estimands. If our paper encourages more critical thought as to what goes into DAGs (or is left out), so 

much the better. 
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 Indeed, the DAGs that Daniel et al. present in their commentary are illustrative of the problems 

at issue. First, for the pellagra example, their Figure 1 misses the point that the initial DAGs that would 

have been drawn would never have included all the elements incorporated into their Figure; one cannot 

do Whig science and impose current knowledge on the past. In the pre-Goldberg era, the two sorts of 

DAGs that would have been drawn (had anyone drawn DAGs back then; Sewall Wright was only just 

beginning to innovate in this direction, with his work on path analysis in the 1920s [63,66], including his 

recognition of the need to include anchors that could allow understanding of direction of cause [43]), 

would have focused, respectively, on: (a) contaminated food, and (b) infectious etiology, and both 

would have been missing the key unobserved variable that was in fact the true causal agent: vitamin 

deficiency, as set into motion by the political economy of sharecropping and institutionalization of 

impoverished orphans, persons with disabilities, and prisoners. Putting the variables we mentioned into 

one DAG, and perhaps allowing DAGitty to suggest a “minimally sufficient adjustment set” [65], is 

unlikely to have yielded the correct answer in this case. 

 The analysis of the DAG for the “birthweight paradox” (Figure 2) is equally problematic. The 

2014 commentary by VanderWeele [67] that Daniel et al. mention, and which we affirmatively cited in 

favor of the position we were arguing, was published only after DAGs had been employed to infer that 

the “paradox” could be explained away, methodologically, as opposed to engaged with, biologically [68]. 

As we discussed in our paper, the value of VanderWeele’s commentary is that it recognizes that similar 

DAGs could encode different causal scenarios (i.e., the underappreciated “equivalence” problem [63]). 

This is a major advance over initial views that DAGs help demonstrate that the “paradox” is in effect a 

methodological artifact, whereby use of the DAGs was stated to show that “this apparent paradox can 

be characterized as selection bias due to stratification on a variable (birthweight) that is affected by the 

exposure of interest (smoking) and those share common causes with the outcome (infant mortality).” 

[68]. From the telling of the tale by Daniel et al., however, DAGs uncomplicatedly have pointed to an 



  Page 19 of 37 

adequate solution all along, which demonstrably is not the case. Ignoring the history of a problem is not 

a path to better knowledge. 

 

Concluding thoughts: theory & rendering the invisible visible  

 Our paper and the various commentaries do share a common theme: the need for rigorous 

thoughtful science that can address the myriad questions of our times – and also alert us to future 

challenges. Three commentaries, moreover, come close to surmising why we may have written our 

paper as we have, at this present time:  

1) Commenting on the current enthusiasm for the potential outcomes approach for analyzing 

structural relationships between variables, Blakely et al. warn that “when teaching epidemiology it 

would be unfortunate to solely rely on DAGs and counterfactual approaches,” since this would lead 

to an “unfortunate and unhelpful restriction of epidemiology’s scope, but more importantly, would 

limit understanding of how the health of a population is shaped” [12]. 

2) VanderWeele likewise observed that the “popularity of the potential outcomes approach within 

epidemiology” may have resulted in questions “which are not amenable to a potential outcomes 

analysis … perhaps receiving less attention,” a problem which in turn means it is important to ensure 

“that, within teaching, and in the published literature, more examples of broader questions 

concerning systems and movements are discussed” [13]. 

3) Robins and Weissman similarly note “[S]ince the theory and application of formal counterfactual 

causal methods is undergoing rapid and novel development, it is natural that many such papers are 

being published,” such that “current methodological research literature naturally appears highly 

skewed towards papers on counterfactual causality” [15]. 

Add these statements to all three commentaries’ recognition that many important social problems with 

major implications for population health cannot readily be analyzed by these increasingly popular 
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methods, and the problem should be clear. As other scientific fields recognize that share these same 

tensions [2-5, 41], we can confine our field to the small plot of terrain near the proverbial streetlamp – 

or we can recognize that a commitment to discovery and explanation of determinants of population 

health and health inequities additionally requires us to expand the scope and venture further. No dog 

relies on sight alone. 

 In 1935, Major Greenwood, the first-ever Professor of Epidemiology and Vital Statistics at the 

London School of Hygiene and Tropical Medicine [69] published his classic book Epidemics and Crowd 

Diseases: An Introduction to the Study of Epidemiology [70]. It notably encompassed not only diseases of 

infectious etiology, the dominant focus of late 19th and early 20th c CE epidemiology, but also touched 

upon diseases involving nutritional, occupational, and psychological causes. Knowledge regarding the 

latter outcomes, however, was much more scarce, because, in Greenwood’s words, “the bacteriological 

school had become psychologically omnipotent” [70, p. 60]. As he acutely observed, there was not “any 

logical reason why identification of contagia viva should lead us to discard general epidemiological 

principles … but … such was the practical effect of the discovery” [70, p. 60]. 

 The warning is clear. Much as we welcome the strengthening of epidemiologic knowledge 

through application of counterfactual causal reasoning and methods, both of which are the products of 

deep scientific insight and hard work, we know – from what we see around us now, from our knowledge 

of our discipline’s history, and from our broader study of the history and philosophy of science – that it 

would be counterproductive to limit epidemiology solely to use of this framework and the questions it 

can answer with precision.  
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Textbox 1. The saga of HDL cholesterol & heart disease: what led to improved causal inference from 
observational data? 

     To briefly recap the long-running story: whether HDL (high density lipoprotein, popularly known as “good 
cholesterol”) protects against coronary heart disease (CHD), and thus treatments that raise HDL would reduce CHD 
risk, has been investigated for decades. By the late 20th c CE, a general consensus emerged in favor of this 
hypothesis, leading to the launching of large-scale randomised clinical trials (RCTs) of HDL cholesterol raising, to the 
cost of many hundreds of millions of dollars [71,72]. 

     In 1991, two decades before these RCTs were initiated, one of us (GDS) co-authored a paper which argued that it 
was not possible, using observational data, to generate separate reliable estimates of any putative effects of HDL 
and triglycerides, given issues involving analysis of imprecisely measured highly correlated exposures, in particular 
triglyceride levels [73]. Nevertheless, observational studies of HDL which statistically adjusted for triglyceride 
continued to appear, and in 2009 an influential international collaborative effort reported that the apparently 
protective HDL effect was robust to covariate (including triglyceride) adjustment, whereas the apparently 
detrimental triglyceride effect was not [74]. The authors concluded that the “current findings suggest that therapy 
directed at HDL-C as well as non-HDL-C may generate substantial additional benefit” [74], an unambiguous 
prediction as to what RCTs of HDL cholesterol raising would show. A paper by pioneers of the causal inference field 
used HDL and heart disease as a hypothetical example [75], and various attempts at improved inference through 
propensity scores (e.g. [76]) were carried out, but the status of HDL cholesterol as a protective factor remained the 
majority view.  

     Yet, only a few years later, these conclusions based on observational data were challenged by new data. What 
changed was not new ways of analyzing conventional observational data – or representing the problem graphically. 
Instead, the advance was the introduction of an approach predicated on recent advances in molecular genetics – 
Mendelian randomization (MR), which takes advantage of “the random assortment of genes from parents to 
offspring that occurs during gamete formation and conception” [77]. Using genetic variants as instrumental variable 
was advocated as a potentially more robust approach to causal inference in the kind of situation exemplified by HDL 
cholesterol, triglyceride and CHD [78]. At this time common genetic variants with robust association with HDL 
cholesterol were not available. 

     However, as the relevant genetic variants were identified (largely through genome wide association studies), MR 
studies suggested - against the substantial and largely consistent naïve observational data analyses - that HDL levels 
per se were not protective against CHD [79-81]. This finding was in agreement with an ever-increasing list of large-
scale RCTs of several different pharmacological approaches to raising HDL cholesterol [71,72,82]. This is not a 
unique situation: several other cases have appeared in which observational epidemiological and other data 
suggested there would be a protective effect of pharmacologically manipulating a biomarker, but MR studies and 
RCTs agreed in their null findings (to the cost of yet more hundreds of millions of dollars)[83]. A rapidly growing 
array of MR studies are appearing [84], including ones in which MR analyses have been reported before the RCTs 
testing the same causal process [85], and it is doubtful that the HDL debacle would be repeated in an age when such 
MR studies can be done.   

     Thus, contrary to the commentaries’ claims that “extensions of the potential outcomes or causal diagram 
framework” are key for “what little progress has been made” in tough epidemiological problems [13], yielding 
robust inference “unavailable by other techniques” [15], critically improved understanding has come from advances 
in material understandings of how the world is, and ways of harnessing the power of perturbations to the material 
world, not idealized diagrams. The text by Lenin that Robins and Weissman should perhaps have instead mentioned 
in this regard is not “What is to be done” [36] but rather “Materialism and empirio-criticism” [86], where the 
advantages of a materialist understanding over the then prevalent idealism is (in somewhat blunt terms) advocated. 
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TEXT BOX 2. Meaningless “causal estimands”: the case of C-reactive protein and cardiovascular disease 

     A study published in Epidemiology, in some ways the house-journal of the FACE movement, and acknowledging 
the help of Tyler VanderWeele, presents a DAG-encoded analysis of which factors mediate the effect of higher body 
mass index (BMI) on coronary heart disease (CHD) [87]. The analysis identifies the acute phase reactant C-Reactive 
Protein (CRP) as a mediator. However, “deep subject matter” knowledge of the field would strongly question the 
role of CRP as a mediator, since to be a mediator a factor must causally influence the outcome. Yet, a substantial 
body of evidence makes clear that CRP is not causal with respect to CHD [88-90]. Epidemiologic analyses that have 
wrongly inferred CRP is a causal factor have been plagued by the unsurprising set of problems that are always 
threats to valid causal inference in epidemiology [91], including: (a) measurement error; (b), the strong and 
essentially statistically entirely intractable effect of reverse causality (in this case, atherosclerosis, an inflammatory 
process, and CRP levels co-evolve over time, with atherosclerosis strongly influencing CHD risk); and (c) 
confounding, from a myriad of factors.  

     There is, however, no discussion of these problems in the paper at all. Instead, per the quantitative emphasis of 
“the Formal Approach to quantitative Causal inference in Epidemiology” (FACE) [16], the article avers that CRP 
accounts for 6-8% of the effect of BMI on CHD [87]. Granted, this is a nicely quantitative causal estimand. It is, 
however, meaningless, if CRP cannot, biologically, be a mediator. Failure to detect this fundamental causal problem 
was likely abetted by the lack of use of either triangulation or inference to the best explanation (IBE), contrary to 
the suggestion, by several of the commentators on our paper [15,16], that both triangulation and IBE are merely the 
common-sense that epidemiologists already utilize near universally. Despite these problems, a commentary on the 
paper celebrated its use of DAGs and FACE with the title “Beyond vague causal effect estimation of obesity on 
health outcomes” [92] – but is it really an advance to have precise but meaningless estimands? As with the HDL 
cholesterol example discussed in Textbox 1, other approaches to mediation analysis that use causal anchors rather 
than statistical manipulation can produce more reliable evidence on mediation [93,94], as demonstrated by an 
analysis of the same question as addressed in the paper under discussion [95].   
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Textbox 3. Diabetes, education, and DAGitty: algorithms are not a substitute for subject-matter expertise. 

In a chapter promoting the use of causal diagrams in social epidemiology Maria Glymour presented a DAG 
representing the causal null for the hypothesis that education has no effect on diabetes, [96], as follows: 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
She imagines the situation where we have measures of mother’s diabetes status, but do not have measures of 
family income when the individuals were growing up, or if the individual’s mother had elevated genetic risk for 
diabetes.  She asks the question whether we should adjust are analyses from mother’s diabetes status, following 
the “graphical criteria” for whether a factor is a confounder (e.g. see introduction to these in Shrier and Platt [97]).  
The conclusion is that adjusting for mother’s diabetes would introduce a spurious statistical association between 
low education and diabetes, as this would be conditioning on a collider, and therefore “under the graphical 
criteria, one should not include mother’s diabetes status as a covariate”.   
 
However an equally plausible hypothesis is that maternal diabetes – which would be reflected in hyperglycaemia 
and other within-pregnancy factors that could influence fetal brain development – could influence cognitive 
development and this attainment of low educational status of her offspring (a suggestion for which there is a body 
of evidence [98]).  This would be classical confounding, and in this situation not adjusting for maternal diabetes 
would leave potentially substantial confounding, as clearly maternal diabetes would be a confounder for the 
association between low education of the offspring and the offspring risk of diabetes (as maternal diabetes will 
influence offspring diabetes through both germline genetic transmission and potentially through intrauterine 
influences). Glymour does not mention this alternative possibility. 
 
How then, does the “central role played by subject-matter knowledge” that Daniel et al mention [16] play out in 
this situation, and influence the potentially vast number of DAGS that could be drawn for this question?  Should a 
form of sensitivity analysis be performed which include carrying out an analyses for every possible DAG?  And for 
the DAGs that haven’t been thought of?  And for the DAGs containing measures for which you have no data? We 
recognise that these are central issues for epidemiology, and that the statement that everything should be done in 
the spirit of sensitivity analysis is a reasonable one (although such sensitivity analyses are dependent on subject-
area knowledge and will not be implementable for the last two of the above options). However what will happen 
in practice? 
 
We consider it likely that the automatic use of DAGs will not enhance “the central role played by subject matter 
knowledge” [16], nor is the notion that DAGs currently serve as a help-mate to triangulation how we read the 
current literature. Instead, DAGs are often constructed that conveniently require precisely the data the authors 
have to hand (and not data they cannot access), that are vitiated by measurement error and obvious unmeasured 
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confounders, that do not feed their analyses into any attempt at triangulation or inference to the best 
explanation, and that produce the same tired examples of “this week’s random medical news” as has damaged 
the reputation of epidemiology for years [91]. As one case in point, a cross-sectional analysis of periodontal 
infection and glucose intolerance was centered around alternative DAGs [99], and produced the same likely 
residually confounded associations as would be expected from such data [91,100,101], yet concluded that if 
replicated the “public health implications would be substantial”, with the presence of and discussion of the DAGs 
somehow shoring up very weak evidence [99]. 
 
Our skepticism in regard to Daniel et al’s notion that FACE approaches are “always guided by what [Krieger and 
Davey Smith] call IBE (inference the best explanation)” [16] is increased by observing how convenient and useful 
programs for constructing DAGs, such as DAGitty [65,102] are used. The program has an automated approach to 
finding so-called “minimally sufficient adjustment sets” [65, 103] and many papers now contain a version of the 
statement “we used the software DAGitty to find a minimally sufficient adjustment set”(e.g. [104-107]). We invite 
readers to examine these and many other such papers (that can be located through following up the 200+ papers 
that cite DAGitty publications) to determine their own view as to the application of subject matter knowledge and 
triangulation to causal inference, and evaluate whether Daniel et al’s statements in this regard match reality. 
Selection of the covariates will of course be driven by data availability, together with measurement characteristics 
of the variables that are available, and sample size (that will influence the apparent conditional independencies 
that contribute to such selection). Unsurprisingly, implementation of one of these DAGitty selected models 
suggests that CRP is a mediator between BMI and cognitive function [106] (just as with the suggestion CRP 
mediates between BMI and CHD, discussed in Textbox 2), with no acknowledgement of the evidence not 
supporting CRP causally influencing cognitive function [108].  
 
DAGitty also offers automation with respect to both: (1) mediation analysis (with all the problems inherent in this, 
see Textbox 2) and (2) the selection of instrumental variables from the data provided, i.e., selecting a variable 
with an open path to the exposure of interest X, and for which all paths between it and the outcome are closed by 
{X} [65]. It will also locate instruments that only meet these criteria when conditioned on a set of covariates. The 
use of instruments that are data-derived, rather than from subject-specific knowledge, is likely to lead to highly 
misleading findings, given the impact of measurement characteristics on such selection. The fact that such 
selection of instruments has been previously advocated [110] does not render it reliable. The semi-automation of 
these analyses will not, in our view, improve the practice of causal inference in epidemiology. 
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