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KEY POINTS: 

 In conscious humans, excitation of peripheral chemoreceptors with systemic hypoxia 

causes hyperventilation, hypertension and tachycardia. However, the contribution of 

particular chemosensory areas (carotid vs. aortic bodies) to this response is unclear. 

 We showed that direct and selective unilateral stimulation of carotid bodies with close 

arterial injection of adenosine causes dose-dependent increase in minute ventilation 

and blood pressure with a concomitant decrease in heart rate in conscious humans. 

The ventilatory response was abolished following carotid body ablation but the 

hemodynamic response partially remained. 

 We found that the magnitude of adenosine evoked responses in minute ventilation and 

blood pressure was analogous to the responses evoked by hypoxia. In contrast, 

opposing heart rate responses were evoked by adenosine (bradycardia) versus hypoxia 

(tachycardia). 

 Intra-carotid adenosine administration may provide a novel method for perioperative 

assessment of the effectiveness of transcutaneous carotid body ablation, which has 

been recently proposed as a novel treatment strategy for various sympathetically 

mediated diseases.  

Word count: 148  
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ABSTRACT 

Stimulation of peripheral chemoreceptors by acute hypoxia causes an increase in minute 

ventilation (MV), heart rate (HR) and blood pressure (BP). However, the contribution of 

particular chemosensory areas - carotid (CB) vs. aortic bodies - to this response in humans is 

unknown. We performed a blinded, randomized and placebo controlled study in 11 conscious 

patients (9 men, 2 women) undergoing common carotid artery angiography. Doses of 

adenosine ranging from 4 to 512 g or placebo solution of matching volume were 

administered in randomized order via a diagnostic catheter located in a common carotid 

artery. Separately, ventilatory and hemodynamic responses to systemic hypoxia were also 

assessed. Direct excitation of a CB with intra-arterial adenosine increased MV, systolic BP, 

mean BP and decreased HR. No responses in these variables were seen after injections of 

placebo. The magnitude of the ventilatory and hemodynamic responses depended on both the 

dose of adenosine used and on the level of chemosensitivity as determined by the ventilatory 

response to hypoxia. Percutaneous radio-frequency ablation of the CB abolished the 

adenosine evoked respiratory response and partially depressed the cardiovascular responses in 

one participant. Our study confirms the contribution of purinergic signaling to 

chemoreception in humans and suggests that adenosine may be used for selective stimulation 

and assessment of CB activity. The trial is registered at ClinicalTrials.gov NCT01939912.  

Word count: 205 

 

 

 

 

Abbreviations AB - aortic bodies; BP - blood pressure; BR - breathing rate; CA - carotid 

angiography; CAS - carotid artery stenting; CB - carotid body; DBP - diastolic blood 

pressure; HR - heart rate; HVR - ventilatory response to hypoxia; IQR - interquartile range; 

MAP - mean arterial pressure; MV - minute ventilation; R2 - coefficient of determination; 

PCh - peripheral chemoreceptors; SBP - systolic blood pressure; SpO2 - blood oxygen 

saturation; TIA - transient ischemic attack; TV - tidal volume  
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INTRODUCTION  

Transient hypoxia is known to cause increases in ventilation, blood pressure and heart rate in 

both human and animal models (O'Regan & Majcherczyk, 1982). This pattern of response is 

mediated by excitation of peripheral chemoreceptors (PCh), which excites a medullary 

cardiorespiratory reflex circuit driving autonomic and respiratory motor outputs (Timmers et 

al., 2003). The primary PCh response to hypoxia consisting of hyperpnoea, bradycardia and a 

pressor response is modulated by secondary activation of other autonomic reflexes such as the 

Hering-Breuer reflex, arterial baroreflex and by a direct action of hypoxia on the vasculature 

(Daly & Scott, 1963; Heistad & Abboud, 1980; Marshall, 1994) and includes hypopnoea, 

tachycardia and a reduction in vascular resistance. 

PCh in humans are located mainly in the carotid (CBs) and aortic bodies (ABs). 

Although the contribution of the isolated carotid body to the cardiovascular-respiratory 

response evoked by systemic hypoxia is well described in animals (Daly & Scott, 1958, 

1963), not much is known about its function in humans. Previously, we showed that bilateral 

excision of the CBs, performed as a treatment for congestive heart failure, almost abolished 

the ventilatory response and reduced the pressor response to systemic hypoxia but the 

tachycardia persisted (Niewinski et al., 2014a). These data suggest that in humans excitation 

of various chemosensory areas evoke contrasting primary physiological responses. 

Recent studies suggest that overactive PCh play a major role in the pathogenesis of 

sympathetically mediated diseases. Unilateral or bilateral CB inactivation was proposed as a 

treatment of human hypertension, heart failure or diabetes (Niewinski et al., 2013b; Paton et 

al., 2013). While the physiological effect of CB excision in humans with heart failure has 

been reported, the response to its selective activation in conscious humans with less severe 

comorbidities is unknown. Evoking such a response would have important clinical 

implications for patients under consideration for CB modulation therapy as it would: (1) 

provide a pre-procedural assessment of the functional integrity of either the left or right CB in 

isolation from the other CB and the ABs (Niewinski, 2014b). (2) indicate whether there is a 

dominant CB on one side. (3). demonstrate procedural efficacy of unilateral CB ablation post-

operatively through an assessment of the magnitude of CB evoked reflex responses.  

Recently, it has been reported that experimental blockade of adenosine receptors 

inhibited CB activity as measured by a reduction in carotid sinus nerve activity in response to 

hypoxia (Sacramento et al., 2015). Furthermore, adenosine mediated signaling has an 

excitatory impact on CB sensitivity to hypercapnia (Holmes et al., 2015), thus placing 

adenosine as a key player in chemotransduction. In terms of an experimental tool for use as a 
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CB stimulant in humans, adenosine administration is safe and widely used in cardiology. The 

molecule has an ultra-short plasma half-time (Sollevi, 1986) and is unable to cross the blood-

brain barrier (Isakovic et al., 2004). These characteristics make it an ideal stimulatory 

molecule for transient, selective activation of the CB in humans. Thus, to reveal the 

ventilatory and hemodynamic effects of unilateral, selective CB stimulation in conscious 

humans, we performed a single-blinded, randomized study using adenosine injected directly 

into a common carotid artery. 
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METHODS 

Studied population 

After obtaining approval from our local Ethics Committee (Komisja Bioetyczna, Wroclaw 

Medical University) consecutive patients with significant unilateral internal carotid artery 

stenosis, referred for carotid artery angiography (CA) or carotid artery stenting (CAS) were 

invited to enter the study. Subjects excluded included those with significant bilateral lesions 

of common/internal carotid arteries, impaired left ventricular ejection fraction, suffering from 

symptomatic pulmonary disease, post stroke/transient ischemic attack (TIA) in last 6 months 

or acute coronary syndrome in last 3 months and all those presenting contraindications for 

adenosine administration were excluded. From 107 patients screened the study group 

consisted of 11 subjects (9 men, 2 women), mean age 66 (±5) years. Within that group 10 

patients had hypertension, 2 had diabetes and 8 had coronary artery disease. All subjects gave 

an informed consent. The study was performed in accordance with the latest review of the 

Helsinki Declaration.  

Study Protocol 

Twenty-four hours preceding the study participants were asked to discontinue all 

cardiovascular drugs including antihypertensives and β-blockers and to avoid caffeine intake. 

On the first study day, all subjects underwent standard peripheral chemosensitivity testing 

using a transient hypoxia method (Chua & Coats, 1995). Unilateral, direct CB stimulation 

with adenosine was performed during CA/CAS procedure on the next day. All patients were 

fasted for 6 hours prior to testing. 

 Measurements 

The same procedures and equipment were used during both hypoxic chemosensitivity testing 

and direct unilateral CB stimulation with adenosine. Subjects were examined in the supine 

position using a one-way open breathing circuit (Hans Rudolph, Inc., Shawnee, KS, USA). 

The inspiratory arm of the circuit was connected to a high pressure electric valve, which 

allowed switching between 100% nitrogen and room air in a silent manner. The expiratory 

arm was connected via a 1000 L/min flowhead (MLT3000L, ADInstruments) to a differential 

pressure transducer (FE141 Spirometer, ADInstruments, Sydney, Australia) for the 

measurement of breathing rate (BR), tidal volume (TV) and minute ventilation (MV). 

Hemodynamic parameters measured included: heart rate (HR) and blood pressure (BP) that 

were monitored non-invasively, beat-by-beat using a Nexfin device (BMEYE B.V., 

Amsterdam, Netherlands). Blood oxygen saturation (SpO2) was evaluated using a pulse 
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oximeter (Radical-7, Masimo Corporation Irvine, CA, USA) with an ear clip. All data were 

collected at a sampling rate of 1 kHz (16-bit resolution) using PowerLab 16/30 

(ADInstruments, Dunedin, New Zealand) and recorded on a laptop computer (Dell Inc., 

Round Rock, TX, USA).  

 Assessment of individual peripheral chemosensitivity to hypoxia (HVR)  

We employed an established method for assessing the sensitivity of PCh to intermittent 

hypoxia using pulses of 100% nitrogen gas to induce episodes of hypoxia (termed: the 

hypoxic ventilatory response, HVR; Niewinski et al., 2013a). The HVR was expressed as the 

slope of the linear regression between the single MV responses and corresponding SpO2 

nadirs. Slopes with coefficient of determination (R2) <0.75 were considered inaccurate and 

excluded from further analysis. 

Assessment of individual hemodynamic response to hypoxia 

The HR and SBP responses to acute hypoxia were assessed simultaneously with the HVR. 

Briefly, the slopes of regression functions were calculated from the peak HR and peak SBP 

following a hypoxic challenge and corresponding SpO2 nadirs. Linear regression of HR and 

SBP slopes reflected the magnitude of the hemodynamic responses to acute hypoxia 

(Niewinski et al., 2013a). 

Evaluation of the effects of direct unilateral carotid body stimulation with adenosine  

Direct unilateral CB stimulation with adenosine was performed under normoxic conditions 

during CA/CAS. Before the procedure all subjects underwent carotid ultrasound, which 

allowed for pre-procedural selection of the investigated side. Adenosine was injected only 

into non-stenosed common carotid arteries. After carotid arteries angiography, which 

confirmed lack of significant atheromas (and before stenting, in patients qualified for CAS), 

the tip of angiographic catheter was positioned 2 cm below the bifurcation of the common 

carotid artery. For safety reasons, the total duration of the study did not exceed 30 minutes. 

After 5-minute baseline control period, bolus injections containing various doses of adenosine 

or placebo (0,9% normal saline solution) were administered via the catheter in a single-

blinded order. All injections had the same volume of 5 ml and the same temperature of 36o C. 

Adenosine boluses (Adenocor, Sanofi-Aventis diluted with 0,9% normal saline solution) were 

prepared prior to the experiment in sterile conditions and contained the following doses: 4, 8, 

16, 32, 64, 128, 256, 384 and 512 g. After each bolus, subjects were allowed to rest until the 

measured parameters returned to baseline levels. To determine the effects of bolus injections 

of adenosine or placebo MV, TV, BR, HR, systolic BP (SBP), diastolic BP (DBP) and mean 
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arterial pressure (MAP) were averaged from a 80s-period prior to each administration 

(termed: baseline values). The response to adenosine was defined in two ways as the absolute 

change in measured parameters between baseline values and: (1) the mean values from a 20s 

period following the adenosine injection (this is twice the half-life time of adenosine in 

humans;  and (2)  the maximal or minimal values from 20s period following the adenosine 

administration. Additionally, due to the biphasic character of the BP response (Biaggioni et 

al., 1987), we also analyzed a subsequent 20s epoch for mean changes in measured 

parameters. 

 In one subject undergoing unilateral carotid body ablation performed using an 

investigational catheter system (CIBIEM, Los Altos, CA, USA; NCT02099851) adenosine (in 

doses of 384 and 512 g) was administered 5 to 10 minutes before and after the ablation.  

Assessment of individual peripheral chemosensitivity to adenosine  

In each subject, 3-7 doses of adenosine were administered; the exact number administered 

depended on individual tolerability and total duration of the responses and recovery. The 

ventilatory response to adenosine was calculated as the average of the 3 largest consecutive 

breaths following the adenosine administration. A ventilatory response to adenosine (AVR) 

was calculated as the slope of the linear regression between the doses of adenosine and the 

evoked MV responses. Only recordings with at least three successful adenosine 

administrations and coefficient of determination (R2) >0.75 were incorporated into further 

analysis. 

Data and Statistical Analysis 

Statistica 12 (StatSoft Inc., Tulsa, USA), LabChart 7 Pro (ADInstruments, Dunedin, New 

Zealand) and MATLAB (MathWorks, Natick, MA, USA) were used to analyze the data. The 

distribution of the variables was tested using Shapiro-Wilk's W-test. Data are mean and 

standard deviation, or median and interquartile range (IQR) where appropriate. The statistical 

comparisons were evaluated using Wilcoxon Matched Pairs Test for non-normally distributed 

variables and Student's t-test for normally distributed variables. The correlations were 

calculated with Spearman rank. P value < 0.05 was considered statistically significant.  
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RESULTS 

Ventilatory and hemodynamic responses to hypoxia 

Assessment of ventilatory (HVR) and hemodynamic responses to hypoxia was performed in 

all individuals but one, in which R2 was less than 0.75, was excluded from the analysis. In the 

studied group the median HVR was 0.61 l/min/SpO2 [IQR 0.49], median HR response to 

hypoxia was 0.24 bpm/SpO2 [IQR 0.58] and median SBP response to hypoxia was 1.03 

mmHg/SpO2 [IQR 0.76]. Detailed information about the hypoxic responses in individual 

subjects is shown in Table S1 in Supplementary Appendix. 

Effects of intra-common carotid artery adenosine bolus injection 

In total, 56 bolus injections containing placebo (n=8) or adenosine (n=48) in fixed doses of: 4, 

8, 16, 32, 64, 128, 256 or 512 g were administered. Six administrations were excluded from 

the analysis due to artefacts (caused by cough, speaking or Nexfin cuff oscillations) during 

pre- or post-injection period. A typical response to intra-common carotid artery (i.c.) 

adenosine bolus-injection is shown in Figure 1. 

Figure 2 illustrates the mean values from a 20s post-administration period. 

Administration of adenosine induced significant increases in MV (+6.3 l/min [IQR 5.6]; 

p<0.01) relative to the baseline, which was not seen with placebo (+0.2 l/min [IQR 0.5]; 

p=0.33). Augmented MV was the result of raised TV (+0.4 l [IQR 0.41]; p<0.01) with a, 

paradoxically, diminished BR (-0.96 breaths/min [±2.2]; p<0.01). Concomitantly, there was a 

transient decrease in HR after adenosine injection (-2.03 bpm [±2.7]; p<0.01) which was not 

seen following placebo (+0.64 bpm [±1]; p=0.13). The administration of adenosine also 

caused an increase in mean (+2.68 mmHg [±6.3]; p=0.01) and systolic (+2.72 mmHg [IQR 7]; 

p<0.01) BP. Such an effect was not observed after placebo (-0.24 mmHg [±2.8]; p=0.72 and 

+0.89 mmHg [IQR 4.3]; p=0.78 for MAP and SBP respectively). DBP was influenced neither 

by adenosine (+1.07 mmHg [±4.2]; p=0.13) nor placebo (-1.55 mmHg [±4.6]; p=0.37).  

When peak responses were analysed (Fig. 3.), adenosine administration increased MV 

(+10.2 l/min [IQR 10.1]; p<0.01), MAP (+7.4 mmHg [IQR 9.2]; p<0.01), SBP (+11.4 mmHg 

[IQR 9.6]; p<0.01) and decreased HR (-8.3 bpm [±5.2]; p<0.01) compared to baseline. 

Minimal and maximal values of measured parameters following adenosine injections were 

significantly different from the placebo evoked responses (Fig 3; P<0.05).  

Fig 2 shows the mean values from the time period between 20 and 40 s after adenosine 

injection. A small but significant fall in MAP (-2.17 mmHg [±6.22]; p=0.04) with 
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insignificant changes in SBP (-3.69 mmHg [IQR 11.17]; p=0.27) and DBP (-1.09 mmHg 

[±4.6]; p=0.16) were observed compared to baseline values. HR was slightly lower (-0.78 

bpm [±1.81]; p=0.01) but no change in MV (+0.07 l/min [±4.1]; p=0.81) was found compared 

to baseline.  

 Latency of onset of the response to adenosine stimulation of a carotid body 

The onset of the ventilatory response to adenosine, defined as the time from the bolus 

injection to the first deep breath (as defined by >25% higher TV comparedto the previous 

breath) was 5.69±1.89s. The onset of the hemodynamic response, defined as the time from the 

injection to a point at the timeline when the trend to rise or fall in measured parameters 

appears (as assessed independently by two researchers) was recorded on average at 

7.15±2.84s and 4.15s [IQR 1.95] for SBP and HR, respectively.  

 Dose-dependence of the response to adenosine 

Figure 4 shows the magnitude of MV and HR responses correlated linearly with the dose of 

adenosine used (R=0.7; p<0.01 and R=0.58; p<0.01 for mean and maximal MV, respectively; 

R=-0.41; p<0.01 and R=-0.41; p<0.01 for mean and minimal HR, respectively). SBP and 

MAP responses were also dose-dependent. These responses reached statistical significance 

only for maximal BP values but not for mean BP values (R=0.26; p=0.09 and R=0.39; p=0.01 

for mean and maximal SBP respectively, R=0.2; p=0.18 and R=0.33; p=0.03 for mean and 

maximal MAP respectively).. At all doses the pattern of the respiratory (TV and BR) and 

haemodynamic (HR and SBP) responses were similar qualitatively.   

 Individual variability of the response to adenosine and its correlation to baseline 

variables 

The magnitude of the response to particular doses of adenosine differed between patients and 

depended on the individuals’ sensitivity to hypoxia. Generally, the mean increase in MV 

following adenosine administration was more exaggerated in individuals with higher HVR 

(R=0.47; p<0.01). Similarly, higher hypoxic SBP response predicted greater mean increase in 

SBP following adenosine boluses (R=0.34; p=0.04). Interestingly, in subjects with high 

hypoxic HR response (more exaggerated increase in HR following hypoxic exposure), the 

mean decrease in HR following adenosine injections was less pronounced - (R=0.39; p=0.02). 

There was no correlation between HVR and HR / SBP responses to adenosine (R=-0.22; 

p=0.19 and R=0.11; p=0.5 respectively). 
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 HVR and adenosine induced mean increases in MV correlated with baseline MV 

(R=0.4; p=0.01 and R=0.7; p<0.01, respectively). There was no relationship between 

hypoxia/adenosine induced HR and SBP responses and baseline HR and SBP values.  

Individual peripheral chemosensitivity to adenosine was calculated in 8 of 11 subjects. 

In two cases, the assessment was not possible due to a low number of successful adenosine 

administrations and when R2 was less than 0.75. Individual peripheral chemosensitivity to 

adenosine was 0.046 l/min/g [IQR 0.057] and correlated linearly with HVR (R=0.81; 

p=0.01). Detailed information about the ventilatory response to adenosine in individual 

subjects is shown in Table1. 

 Response to adenosine after carotid body ablation 

CB ablation (n=1), abolished the ventilatory response to adenosine. Adenosine injected i.c. 

prior to the procedure caused an averaged increase in mean MV of +7.5 l/min (+54.6% of 

baseline ventilation), which was suppressed dramatically after the procedure (+0.72 l/min or 

+6.3% of baseline ventilation; Fig. 5). Changes in hemodynamic parameters were also 

diminished following CB ablation (mean change in: MAP +5.71 mmHg vs. +0.37 mmHg; 

SBP +3.82 mmHg vs. -0.74 mmHg; HR +3.16 bpm vs. +1.3 bpm, for pre- and post-

procedural administrations, respectively). However, a relatively low number of adenosine 

injections were made and periprocedural usage of propofol and fentanyl should be taken into 

account when hemodynamic data are considered.  

 Adverse effects of adenosine injections 

No serious adverse events were observed with intra-common carotid artery injections of 

adenosine. One subject with high AVR and HVR reported dyspnoea after a dose of 128 g 

(no higher doses were administered), which resolved within 30s. Another patient reported a 

headache, which was not time-related with the injection of adenosine and abated 

spontaneously after the end of the procedure; it remains equivocal as to whether this was 

related to the adenosine injections. 

 

DISCUSSION 

We have, for the first time, described the respiratory and cardiovascular responses to selective 

unilateral CB stimulation in conscious humans. There are three novel findings of the present 

study. We found that: (1) selective stimulation of CB in conscious humans leads to increase in 

MV, SBP, MAP and a decrease in HR; (2) the response to adenosine is dose-dependent; (3) 
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the magnitude of individual sensitivity to adenosine is directly related to the level of 

sensitivity to hypoxia. Moreover, we show that the respiratory and hemodynamic effect of 

intra-common carotid arterial injections of adenosine are mediated by the CB as its removal 

abolishes the responses. 

 Adenosine as a carotid body stimulant in humans 

In animals, adenosine is a neurotransmitter released from type I cells of PCh in response to 

hypoxia (Prabhakar, 2000). Exogenous adenosine has been shown to stimulate CBs in animals 

(McQueen & Ribeiro, 1983; Monteiro & Ribeiro, 1987). Biaggioni et al. (1987) and Watt et 

al. (1987) suggested a similar role for adenosine in PCh physiology in humans . They infused 

adenosine directly into the aorta and observed various ventilatory and hemodynamic changes, 

the direction of which were dependent on the location of the tip of the catheter. When the 

catheter tip was placed in the ascending aorta, proximally to the branches of the aortic arch, 

adenosine injections caused hyperventilation, but when it was located in the descending aorta, 

distally to carotid arteries, no change in MV was recorded. Our study confirms the excitatory 

effect of adenosine on the CB in several ways: first, the effects of CB stimulation were dose-

dependent; second, the response occurred a few seconds after the injection, while the onset of 

the response to intravenous injection is observed after 20-30s (Watt & Routledge, 1985; 

Biaggioni et al., 1987); third, the individual peripheral chemosensitivity to adenosine 

correlated with the HVR; finally, the reflex responses to adenosine were abolished following 

ipsilateral CB ablation in one patient.  

In conscious humans, adenosine administered intravenously or into the ascending 

aorta causes hyperventilation, however the changes in hemodynamics are not clear. Watt and 

colleagues reported bradycardia when adenosine was administered intravenously and 

tachycardia with no change in BP during intra-aortic administration (Watt & Routledge, 1985; 

Watt et al., 1987). On the contrary, Biaggioni at al. (1987) showed increases in HR and BP in 

both cases . The differences in these cardiovascular responses may result from the direct 

vasodilatatory (Collis, 1989) and/or direct negative chronotropic effects of adenosine 

(Belardinelli et al., 1989) when administered systematically or from activation of modulatory 

mechanism secondary to hyperventilation e.g. the Hering-Breuer reflex (Daly & Scott, 1963). 

Also, aortic body co-activation should be taken into consideration with systemic 

administrations, as adenosine was found to increase activity of these PCh in the cat (Runold et 

al., 1990).  

To evaluate the response of the CB selectively we injected low-doses of adenosine 

directly into the common carotid artery, using the angiographic catheter located 2 cm below 
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its bifurcation to prevent potential backflow of the chemical into the aortic arch. This, 

together with ultra-short plasma halftime of adenosine (reported to be less than 10s) 

(Klabunde, 1983; Sollevi, 1986), suggest that concurrent AB stimulation and direct 

cardiovascular actions are unlikely. Central nervous effects of adenosine are also unlikely 

because it does not cross brain-blood barrier (BBB) (Isakovic et al., 2004). It was also shown 

that enzymes located within endothelial cells that form an enzymatic BBB metabolize nearly 

90% of adenosine infused into the internal carotid artery; this would further prohibit potential 

central nervous system actions of adenosine injected into a common carotid artery (Pardridge 

et al., 1994). Moreover, at least 50% of drugs administered into the common carotid artery 

will flow into the external carotid artery and never reach the cerebral circulation.  

 Selective carotid body stimulation - heart rate response 

The cardiovascular response to hypoxia or adenosine depends on an interplay between the: (1) 

primary response of PCh excitation; (2) secondary modulatory mechanisms (recruited by the 

primary response) of pulmonary stretch receptors and the arterial baroreflex, which can 

diminish or even reverse the primary response (Daly & Scott, 1963; Heistad & Abboud, 1980; 

O'Regan & Majcherczyk, 1982; Marshall, 1994); and (3) direct actions of the stimuli on the 

vasculature, heart and central nervous system (pressor effect of hypoxia).  

To our knowledge there is no published data regarding the effects of selective CB 

stimulation in humans, however, such an experiment has been performed in animals. Isolated 

stimulation of CB employing perfusion of carotid arteries with hypoxic blood in anesthetized, 

artificially ventilated dogs resulted in an increase in BP and a decrease in HR (Daly & Scott, 

1958, 1963). Artificial ventilation under conditions of neuromuscular blockade has allowed 

investigators to disentangle one of the secondary mechanisms – the pulmonary stretch 

receptor reflex, which decreases vascular resistance (Daly & Scott, 1963) and increases HR 

via central vagal inhibition in response to increased TV (Paintal, 1973) thereby reducing the 

primary PCh reflex haemodynamic responses. In spontaneously breathing dogs, 

hyperventilation was observed, however HR and BP responses varied between animals and 

most likely depended on the degree of pulmonary stretch receptor activation and thus the 

magnitude of the hyperventilation (Daly & Scott, 1958, 1963). 

In our study in conscious, spontaneously breathing humans, a significant decrease in 

HR was observed after selective CB stimulation with adenosine. Nevertheless, the magnitude 

of the HR response may be underestimated due to concurrent activation of the secondary 

modulatory mechanisms described above. Consistent with opposing effects of the pulmonary 

stretch receptors on the bradycardia evoked by selective CB stimulation, we observed a lower 
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nadir HR response that was associated with higher MV responses to adenosine (R=-0.34; 

p=0.04). This association was for peak TV (R=-0.35; p=0.03), but not for peak BR (R=-0.06; 

p=0.7) consistent with the increase in TV but not BR during unilateral CB stimulation. The 

negative chronotropic effect of selective CB stimulation predominated over any positive 

chronotropic effect evoked from pulmonary stretch receptors; based on their HVR this was 

most likely assisted by the CB hyperreflexia observed in these patients .  

In contrast to the effects of selective CB activation, systemic hypoxia or intravenous 

adenosine infusion causes increase in HR, which may not be attributed to Heurig-Breuer 

reflex activation only. As we reported previously, bilateral excision of CBs almost abolished 

MV and BP responses to hypoxia, however, despite a lack of pulmonary stretch receptor 

stimulation (secondary to the CB evoked hyperventilation), the increase in HR following 

hypoxic exposure remained unchanged (Niewinski et al., 2014a). Thus, we suggest that this 

tachycardic  response is related to activation of other primary chemosensory areas e.g. ABs. 

Moreover, the current study revealed a low magnitude bradycardia to selective CB stimulation 

in subjects with enhanced hypoxia-induced tachycardia. This observation may be explained 

by a predominating AB evoked tachycardia during simultaneous CB and AB stimulation with 

hypoxia. It also suggests the existence of a central interaction between CBs and ABs. The 

differences in HR response to CB and AB activation might be explained from an evolutionary 

point of view. In lower vertebrates, chemoreceptors located mainly on the first gill arch 

(which evolve to form mammalian CBs) are responsible for sensing environmental oxygen 

partial pressure rather than blood oxygen levels. Responses mediated by these receptors 

serves to minimize the effects of environmental hypoxia by hyperventilation (increased 

oxygen uptake) and by bradycardia (improved oxygen-conservation). On the other hand, 

arterial chemoreceptors (located on other gill arches), which evolve to form the ABs, monitor 

blood oxygen content (SpO2) and respond functionally to ensure adequate oxygen delivery to 

the tissues, which may explainthe tachycardia following their stimulation (Milsom & 

Burleson, 2007). 

 Selective carotid body stimulation - blood pressure response 

The analysis of BP curves during bolus injections of adenosine revealed a significant increase 

in SBP and MAP during the first 20s and a decrease in MAP compared to baseline levels 

during the subsequent 20s. This biphasic BP response was commonly observed in our 

previous studies during HVR testing (Niewinski P, Tubek S - unpublished data) and by 

Biaggioni et al. (1987) after intravenous adenosine bolus-injections . The first phase of the BP 

response is associated with the primary PCh evoked sympathoexcitation (Lugliani et al., 
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1973; Guyenet, 2000; Niewinski et al., 2014a), the genesis of the second phase is unclear. We 

hypothesize that this phase may be attributed to activation of arterial baroreceptors. This 

hypothesis is further supported by a decrease in HR that is observed during second phase of 

MAP response.  

 Selective carotid body stimulation - minute ventilation response 

Stimulation of PCh leads to hyperventilation, which in humans is mainly dependent on the 

increase in TV, rather than BR (Caruana-Montaldo et al., 2000). The contribution of 

particular chemosensory areas to the magnitude of the ventilatory response in mammals is 

estimated to be 90% for CBs and 10% for ABs (Caruana-Montaldo et al., 2000); this ratio 

was also found in in our previous humans studies (Niewinski et al., 2014a). Whether there is 

any difference between CBs and ABs in the pattern of the response (rise in TV vs.  BR) is not 

known. However, a recent study suggested that CBs are mostly drive an increase in TV 

whereas ABs increase BR (Smith & Mills, 1980)..  

  Among previous studies in humans employing adenosine (given intravenously) as a 

stimulant of PCh, variability in the pattern of the ventilatory response was found. Biaggioni et 

al. (1987) reported an increase in TV with no change in BR following administration of 

adenosine i.v., while others observed an increase in both TV and BR (Watt & Routledge, 

1985). This difference, may reflect contribution from the ABs (increasing BR) and CBs 

responsible for increase in TV. According to our results, selective CB stimulation led to 

hyperventilation caused by an increase in TV with paradoxically a decrease in BR.  This 

suggests that in humans CBs are predominantly responsible for regulation of TV but we 

cannot rule out that the pattern of response may change in humans with PCh hyperreflexia and 

cardiovascular disease.  

 The magnitude of the ventilatory response to selective carotid body stimulation 

expressed as individual ventilatory response to adenosine depends on the HVR assessed with 

our transient hypoxia method. Our data confirms the role of adenosine in chemotransduction 

in conscious humans.  Further, we propose that intra-common carotid artery injections of 

adenosine may be used as a test for the assessment of CB function such as before and after 

CB ablation as a procedural efficacy test; however this method needs further validation.  

 Endovascular carotid body ablation 

The ventilatory response to intra-common carotid artery injection of adenosine was lower in 

the subject that under went subsequent CB ablation compared to other subjects. This 
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difference may be explained by the need to use anaesthetic medications (fentanyl and 

propofol) during the procedure. Both drugs are known to blunt ventilatory and hemodynamic 

responses to CB stimulation (Weil et al., 1975; Mayer et al., 1989; Jonsson et al., 2005). 

However, the changes in MV and BP responses to adenosine following the ablation were 

evident despite sedation. Similarly, the lack of a bradycardia in the pre-procedural assessment 

may be attributed to drug-related inhibition of parasympathetic cardiac tone (Sato et al., 2005) 

and the tachycardia, secondary to hyperpnoea, becoming dominant. . 

 Study limitations 

Despite selective stimulation of CBs, we were unable to deactivate all secondary modulatory 

mechanisms recruited by the primary response such as reflexes mediated by pulmonary 

stretch receptors and baroreceptors. Thus, the magnitude of changes in recorded parameters 

may be underestimated. Also, there is some data suggesting vasodilatatory influence of 

systematically infused adenosine on brain vasculature (Sollevi et al., 1987), which may lead 

to increased CO2 wash out and a rise in local pH and a desensitization of central 

chemoreceptors. However, such a side effect of adenosine, if it exists, would not affect the 

initial response. Finally, we did not record sympathetic activity, which would provide a more 

comprehensive explanation for the observed hemodynamic changes. 

CONCLUSION 

In the present study, we present novel insights into the physiology of selective unilateral CB 

stimulation in conscious humans. We found that bolus administration of adenosine given in 

close proximity to a CB leads to a decrease in HR, which is different from systemic activation 

of PCh (e.g. when hypoxia is used) most likely due to an elimination of the concurrent 

stimulation of Abs and secondary recruitment of pulmonary stretch receptors. Moreover, we 

noted that the ventilatory response to hypoxia is closely related to the response evoked by 

adenosine injection into the common carotid artery, which further confirms a functional role 

of adenosinergic signalling in physiological chemotransduction in humans. Adenosine given 

into the common carotid artery constitutes a novel approach for the study of the physiology 

and sensitivity of an isolated CB.  
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Fig. 1. Typical ventilatory and hemodynamic responses to intracarotid adenosine injection. 
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Fig. 2. Mean ventilatory and hemodynamic responses to intracarotid adenosine injections. 

Open columns - mean baseline parameters, light-gray columns - mean values from 20s period 

following the administration of adenosine, dark-gray columns - mean values from the time 

period between 20 and 40 second after adenosine injection. Data are presented as mean ± 

standard error of the mean. *p<0.05 vs. baseline.  
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Fig. 3. Comparison of the peak absolute changes between baseline recording and maximal / 

minimal values from 20 s period following adenosine (open columns) and placebo (shaded 

columns) injections. Data are presented as mean ± standard error of the mean. *p<0.05 vs. 

placebo. 
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Fig. 4. Dose dependence of the ventilatory and hemodynamic responses evoked by adenosine 

injections injected into a common carotid artery. Left column displays changes in measured 

parameters between baseline recordings and mean values from 20s period following 

adenosine injection in relation to the adenosine doses (A-C). Right column shows changes in 

measured parameters between baseline recordings and maximal / minimal values from 20s 

period following adenosine injection in relation to the adenosine doses (D-F). Data are 

presented as mean ± standard error of the mean.  
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Fig. 5. Ventilatory response to intracarotid injection of adenosine before (A) and after (B) 

carotid body ablation in the same patient. 
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Supplementary Appendix 

Tab. S1. Individual responses to hypoxia and to intra-carotid adenosine administration.  

Subject 

No. 

peripheral 

chemosensitivity 

to hypoxia (HVR) 

l/min/SpO2 

heart rate 

response to 

hypoxia 

bpm/SpO2 

systolic blood 

pressure response 

to hypoxia 

mmHg/SpO2 

peripheral 

chemosensitivity to 

adenosine 

l/min/μg 

01 0.470 0.170 1.699 0.021 
02 0.312 0.038 0.779 -† 
03 0.760 1.781 0.663 0.045 
04 0.572 0.620 0.397 0.029 
05 0.655 0.171 0.879 0.107 
06 2.329 0.317 1.502 0.276 
07 -* -* -* -† 

08 0.478 0.480 0.641 0.030 
09 0.943 0.712 2.302 0.067 
10 0.963 0.007 1.182 0.047 
11 1.249 0.736 1.537 -* 

 

* not calculated due to low R2 (<0.75) 

† not calculated due to low number of successful administrations of adenosine 


