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Abstract 

Subgroup analyses allow to examining the influence of a categorical moderator on the 

effect magnitude in meta-analysis. We conducted a simulation study using a 

dichotomous moderator, and compared the impact of pooled versus separate estimates 

of the residual between-studies variance on the statistical performance of the QB(P) and 

QB(S) tests for subgroup analyses assuming a mixed-effects model. Our results suggested 

that a similar performance can be expected as long as there are at least 20 studies and 

these are approximately balanced across categories. Conversely, when subgroups were 

unbalanced, the practical consequences of having heterogeneous residual between-

studies variances were more evident, with both tests leading to the wrong statistical 

conclusion more often than in the conditions with balanced subgroups. A pooled 

estimate should be preferred for most scenarios, unless the residual between-studies 

variances are clearly different and there are enough studies in each category to get 

precise separate estimates. 

 

Keywords: meta-analysis, mixed-effects model, subgroup analysis, between-studies 

variance. 
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Analysis of Categorical Moderators in Mixed-effects Meta-analysis: Consequences 

of Using Pooled vs. Separate Estimates of the Residual Between-studies Variances 

 

1. Introduction 

 Meta-analysis is a form of systematic review that allows integrating, through the 

application of statistical methods, the results of a set of primary studies focused on a 

common topic (Borenstein, Hedges, Higgins, & Rothstein, 2009). While primary studies 

typically use participants as the unit of analysis, in most meta-analyses the unit of 

analysis is the study. One of the steps in a meta-analysis consists of synthesising the 

results of the primary studies using effect sizes, which can then be statistically 

combined using meta-analytic techniques. One of the main purposes of meta-analysis is 

to examine whether the individual effect sizes are homogeneous around the average 

effect size. When there is more heterogeneity than expected from sampling error, the 

meta-analyst must search for study characteristics that can explain at least part of that 

variability. The moderators are considered as potential predictor variables and the effect 

sizes constitute the dependent variable (Borenstein et al., 2009).  If the moderator 

variable is categorical, an analysis of variance (ANOVA), or subgroup analysis, can be 

formulated, while the continuous moderators are analyzed using meta-analytic 

analogues to regression analysis.  

          There are two general statistical models for meta-analysis, the fixed-effect and the 

random-effects models. The fixed-effect model assumes that all included studies in the 

meta-analysis share a common population effect size, so the only source of variability is 

due to sampling error in the selection of the participants of each study (Konstantopoulos 

& Hedges, 2009). By contrast, the random-effects model assumes that the population 

effect size could vary from study to study due to differential characteristics of the 
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studies. Consequently, this model assumes a distribution of the population effect sizes 

and adds a second source of variability, the sampling error in the selection of the studies 

in the meta-analysis (Raudenbush, 2009).   Note that the random-effects model assumes 

the more realistic scenario of heterogeneity among the  population effect sizes, due to 

the differential characteristics of the studies in a meta-analysis.  

 

1.1 Subgroup Analysis 

 In meta-analysis, the analysis of categorical moderators is usually referred to as 

subgroup analysis, and is the process of comparing the mean effect sizes in different 

study subgroups (Borenstein & Higgins, 2013). 

 Several statistical models are available to examine the relationship between a 

categorical moderator and the effect sizes through a subgroup analysis. On the one 

hand, applying the logic of the general fixed-effect model to subgroup analyses, a fixed-

effects model can be assumed in which all studies within the same category of the 

moderator share a common effect size. In other words, if a fixed-effect model is 

assumed within each subgroup, such model is called a fixed-effects model.  

 On the other hand, the mixed-effects model consists of assuming a random-

effects model for each subgroup of studies. As a consequence, the mixed-effects model 

assumes that all studies within the same category of the moderator estimate a normal 

distribution of population effect sizes with a common mean effect size. The label 

‘mixed-effects model’ is used because: (a) the moderator is considered a fixed-effects 

component, as the categories of the moderator are not a random sample of a larger 

number of categories, and (b) the effect sizes (i.e., the studies) conform a random-

effects component because they are considered a random sample of study effects 
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pertaining to a population of studies in the same category (Borenstein et al., 2009; 

Viechtbauer, 2010). 

In this paper, we focused on the performance of the mixed-effects model, which is 

routinely applied nowadays in most meta-analytic studies.  

  

1.2 Mixed-effects model    

 Suppose that the k studies in a meta-analysis are grouped into m mutually 

exclusive categories of the moderator variable. Moreover, k1, k2, ..., km  denote the 

number of effect sizes of the categories 1, 2, ..., m, respectively, such that k1+ k2 + ... + 

km = k.  

 In a mixed-effects model the individual effect sizes, Tij, within the same category 

j are assumed to estimate a distribution of true effect sizes with mean µθj  and variance 

σij
2 + τj

2 , with σij
2 being the within-study variance for the ith study in the jth category of 

the moderator, and τj
2  the residual between-studies variance in that category.  

 We must assume a random-effects model within each category of the moderator 

variable, thus the statistical model applied in the jth category will be Tij = µθj + εij + eij, 

where εij and eij are the within-study and between-studies errors, respectively. It is very 

common to assume that these two errors are independent of each other and, therefore, 

the estimated effect sizes are normally distributed: Tij ~ N(µθj, σij
2 + τj

2), where τj
2 is the 

common between-studies variance in jth category of the moderator. In addition, the 

parametric effect sizes of the jth category, θij, follow a normal distribution with mean µθj 

and between-studies variance τj
2 : θij ~ N(µθj, τj

2). 

 Under a mixed-effects model, the main goal in a subgroup analysis is to compare 

the parametric mean effect sizes from each category of the moderator variable, µθj, in 

order to test if the moderator is statistically related to the effect sizes. Consequently, 
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first we need to estimate the mean parametric effect size of the jth category of the 

moderator, µθj, by means of  
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 The sampling variance of the mean effect size in the jth category is estimated as 
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1.3 Omnibus Test of Between-Groups Differences 

 It is possible to test the statistical significance of a categorical moderator by 

means of the between-groups heterogeneity statistic, obtained with (Borenstein et al., 

2009)  
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where j
w

+
ˆ  is the inverse of Equation 2 applied to the jth category of the moderator, j

T  is 

the mean effect size of the jth category calculated by Equation 1 and T represents the 

weighted grand mean of all effect sizes and is given by 
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where the total between-studies variance estimate, 2
τ̂ , is used to compute ij

ŵ . 

 Under the null hypothesis of no difference between the mean effect sizes for 

each of the m categories (H0: µθ1 = µθ2 = … = µθm), the QB statistic follows a Chi-square 

distribution with m – 1 degrees of freedom. Therefore, the null hypothesis will be 

rejected when QB exceeds the 100(1 - α) percentile point of the chi-square distribution. 

A statistically significant result for QB provides evidence that the moderator is 

statistically related to the effect sizes.  

 

1.4 Estimating the residual between-studies variance 

 Several methods have been proposed to estimate the total heterogeneity variance 

in the random-effects model. The most commonly used is that proposed by 

DerSimonian and Laird (1986), a heterogeneity variance estimator derived from the 

moment method.  

 At this point, it could be useful to make a distinction between the total between-

studies variance and the residual between-studies variance. On the one hand, when we 

apply the random-effects model to estimate the mean effect in a meta-analysis (i.e., 

without moderators being added to the model) there is an amount of heterogeneity due 
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to sampling error in the selection of the studies in the meta-analysis. This heterogeneity 

is estimated through the total between-studies variance, which represents the excess 

variation among the effects over that expected from within-study sampling error alone. 

On the other hand, in the mixed-effects model we include moderator variables aiming to 

explain at least part of the total heterogeneity in the effect sizes. Thus, after adding 

moderator variables the amount of heterogeneity that remains to be explained is the 

residual heterogeneity or the heterogeneity that cannot be explained by the moderators 

included in the model. 

 In the mixed-effects model, two approaches can be adopted to estimate the 

residual between-studies variance. One is to estimate the residual between-studies 

variance separately within each category of the moderator, and the other one is to 

calculate a pooled estimate across categories (Borenstein et al., 2009). 

 

1.5.1 Separate estimates of the residual between-studies variance 

 This procedure consists of estimating the residual between-studies variance 

within each category of the moderator. Thus, in a moderator variable with m categories, 

we need to calculate the residual between-studies variance estimates 2

1̂
τ , 2

2
τ̂ , …, and 2

ˆ
m
τ  

The residual between-studies variance for the jth category of the moderator, 2
ˆ
j
τ , can be 

computed applying the Dersimonian and Laird estimator with the expression 
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where kj is the number of studies of the jth category, Qwj is the within-group 

homogeneity statistic of the jth category computed through  
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 Therefore, Equation 5 allows obtaining a separate estimate of the between-

studies variance of each category, 2
ˆ
j
τ , and these are used to calculate the weights, ij

ŵ , 

for each category of the moderator. This implies that in each category a different 

between-studies variance is used to calculate the weights: 2

1̂
τ  for category 1, 2

2
τ̂  for 

category 2, and so on, that is, ( )22
ˆˆ1ˆ
jijij

w τσ += . Here we will name the QB statistic 

calculated with separate between-studies variances as QB(S).    

 

1.5.2 Pooled estimate of the residual between-studies variance 

 An alternative method to estimate the residual heterogeneity variance consists of 

averaging the residual between-studies variances of the m categories of the moderator 

variable, through the equation (Borenstein et al., 2009) 

 



 10

∑

∑ ∑ −−

=
+ m

j

j

m

j

m

j

jwj

c

kQ )1(

ˆ2τ  .                                                                                              (8) 

  

 Equation 8 provides a pooled estimate of the residual between-studies variance, 

so that the weights, ij
ŵ , are obtained using a common between-studies variance through 

the different categories of the moderator, that is, ( )22
ˆˆ1ˆ
+

+= τσ
ijij

w . Here we will use the 

term QB(P) to refer to the QB statistic calculated with a pooled estimate of the residual 

between-studies variance, 2
ˆ
+
τ .   

 

1.6 An example 

 To illustrate how the QB statistic is calculated with the two different methods to 

estimate the residual between-studies variance (pooled vs. separate estimates), an 

example extracted from a real meta-analysis is presented here. The data were obtained 

from a meta-analysis about the efficacy of psychological treatments for panic disorder 

with or without agoraphobia (Sánchez-Meca, Rosa-Alcázar, Marín-Martínez, & Gómez-

Conesa, 2010). The effect size index in this meta-analysis was the standardized mean 

difference (d) between two groups (treated vs. control groups) defined in Equation 10. 

Out of all the moderator variables analyzed in this meta-analysis, a dichotomous 

characteristic was selected to illustrate a subgroup meta-analysis: whether or not the 

assignment of the participants to the treated and control groups was at random. The 

database composed of 50 studies is presented in Appendix 1. 

 

INSERT TABLES 1 AND 2 
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 Tables 1 and 2 present the results yielded by the QB statistic with the two 

methods here compared, as well as the mean effects for each category of the moderator, 

the sampling variances, the residual between-studies variances and the 95% confidence 

intervals for each mean effect. Separate estimates of the residual between-studies 

variances for each category ( 2
ˆ
j
τ ) were calculated with Equation 5. As shown in Table 1, 

their values were 0.053 and 0.303 for non-random and random assignment, respectively. 

On the other hand, the pooled estimate of the residual between-studies variances 

calculated with Equation 8 was 2
ˆ
+
τ  = 0.270 (Table 2). When the QB statistic was 

calculated taking separate estimates of the residual between-studies variances, the 

estimated weights for each study were obtained by means of )ˆˆ(1ˆ 22

jijij
w τσ += . 

Conversely, when the QB statistic was calculated taking a pooled estimate of the 

residual between-studies variances ( 2
ˆ
+
τ ), the estimated study weights were 

)ˆˆ(1ˆ 22

+
+= τσ

ijij
w . This distinction affects the QB statistic, here referred as QB(S) and 

QB(P), respectively, as well as the mean effect from each category of the moderator, their 

sampling variances ( )( jdV ), and their confidence limits.  

 The mean effects for non-random and random assignment were 0.545 and 0.966, 

respectively (Table 1), when separate estimates of the residual between-studies 

variances were used ( 2
ˆ
j
τ ), and 0.559 and 0.961 when a pooled estimate ( 2

ˆ
+
τ ) was used 

(Table 2). The sampling variances and the confidence limits also varied depending on 

the residual between-studies variances used in the calculations. However, the most 

dramatic discrepancy among methods involved the two versions of the QB statistic: the 

QB(S) and QB(P) statistics. Namely, the null hypothesis of equal mean effect sizes was 

rejected when separate estimates of the between-studies variances were used (Table 1: 
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QB(S) = 5.165, p = .023), but not when a pooled estimate was considered (Table 2: QB(P) 

= 2.588, p = .108). 

 This example illustrates how results and their interpretation can be affected by 

the meta-analytic methods selected to undertake the statistical analyses. The choice of 

the meta-analyst will often be conditioned by the software used for the calculations and 

he/she will not be aware of which method was implemented. In fact, the most 

commonly used statistical programs for meta-analysis do not enable users to choose 

among the two methods to calculate the individual weights in a mixed-effects model. 

For instance, if the meta-analyst would use metafor (Viechtbauer, 2010), 

Comprehensive Meta-analysis 2.0 (Borenstein, Hedges, Higgins, & Rothstein, 2005) or 

the SPSS macros elaborated by David B. Wilson to replicate this example, the results 

that he/she will obtain should be those presented in Table 2, whereas if using RevMan 

5.3 (Review Manager, 2014), the results will be those presented in Table 1.  On the 

other hand, Comprehensive Meta-analysis 3.0 (Borenstein, Hedges, Higgins, & 

Rothstein, 2014) incorporates both methods so that the meta-analyst can use either to 

estimate the weights (in fact, the results in Tables 1 and 2 were obtained with this 

program).   

  

1.7 Purpose of the study 

It is not clear which of these two procedures (separate vs. pooled estimates) 

should be preferred in order to estimate the residual between-studies variance, which is 

involved in the subgroup analysis in a mixed-effects meta-analysis. At this point, it is 

useful to revise the analogy between the subgroup analysis in meta-analysis and the 

ANOVA for comparing means in a primary study. On the one hand, in the simplest case 

of a primary study with a two independent group design (e.g. experimental vs. control 
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groups), the means of two samples of subjects are compared performing a t-test or an 

ordinary least squared ANOVA. On the other hand, in a meta-analysis with two 

subgroups of studies, the mean effect sizes in each subgroup are compared performing a 

weighted least squared ANOVA, the weights being the inverse-variance of each effect 

size.  

The t-test or ANOVA for comparing the means of two or more independent 

groups of subjects assume homogeneity between variances in the two populations. The 

pooled variance is estimated through the mean squared error in the ANOVA. When the 

two population variances are heterogeneous, the so-called Behrens-Fisher problem 

arises, which requires an alternative procedure to the classic t-test or ANOVA. In 

practice, an usual solution to the Behrens-Fisher problem is to apply the Welch-

Satterthwaite approach to correct the classical t-test (Welch, 1947).  

In the meta-analytic arena, the picture is a little more complex, as we are 

working with aggregate scores (e.g. effect sizes summarising individual scores) instead 

of individual participants. While in a primary study each subject provides a score, in a 

meta-analysis, each study provides an effect size. The effect sizes of the studies in a 

meta-analysis will exhibit different precision depending of the sample size of the study.  

Effect sizes obtained from large samples will be more accurate (less variable) than those 

obtained from small ones. As a consequence, the appropriate mean of a set of effect 

sizes is a weighted average, the weights being the inverse-variance of each effect size. 

This weighting scheme affects all statistical calculations in a meta-analysis.  

The pooled estimation of the residual between-studies variance from two or 

more subgroups of studies in a meta-analysis is akin to the estimation of the mean 

squared error in the ANOVA in a primary study, as both procedures assume the 

variance between groups to be homogeneous. When this assumption is not tenable, a 
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similar problem to that of Behrens-Fisher emerges, which may lead to inaccurate 

estimation of the residual between-studies variance. To circumvent this problem, an 

alternative is the separate estimation of the residual between-studies variance for each 

subgroup of studies. However, this approach can also yield inaccurate estimates if the  

number of studies in the subgroups is small (which will often be the case).     

In a mixed-effects meta-analysis, the residual between-studies variance is 

included in the weighting scheme. Thus, the estimation procedure for the residual 

between-studies variance may have an impact on a wide range of meta-analytic outputs, 

such as: (a) the estimate of the average effect size for each category of the moderator 

(see Equation 1); (b) their sampling variances; (c) the confidence intervals and, relevant 

for the present work, (d) the computation of the between-groups heterogeneity statistic, 

QB  (see Equation 3).   

The large number of factors that can affect the performance of the QB(P) and 

QB(S) statistics lead to the need for simulation studies to determine which of them is a 

better option under different meta-analytic conditions. Previous simulation studies have 

examined the statistical performance of the t-test and ANOVA F-test in a primary 

study, assuming homogeneous and heterogeneous population variances. However, those 

studies do not address the more complex picture of subgroup analyses in meta-analysis, 

and therefore their findings might not be generalizable to the meta-analytic arena.    

The purpose of this work was to directly compare, by means of Monte Carlo 

simulation, the statistical performance of the QB statistic applied in meta-analysis, when 

two alternative procedures for estimating the residual between-studies variance 

(separate estimates and pooled estimate) are used. With that aim, the present work is the 

first simulation study where the QB(S) and QB(P) tests were compared, assessing their 

Type I error and statistical power in different meta-analytic scenarios.  
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The existence of previous simulation studies addressing the heteroscedasticity 

problem in primary studies, enables us to formulate some expectations (Glass & 

Hopkins, 1996; Glass, Peckham & Sanders, 1972; Hinkle, Wiersma & Jurs, 2003; Senn, 

2008). First, in scenarios with balanced sample sizes, we expect the QB(P) to provide an 

adequate adjustment of the Type I error, even with heterogeneous variances between 

subgroups. Second, in unbalanced scenarios with heterogeneous variances where the 

larger variance is associated with the bigger subgroup, the QB(P) test will be too 

conservative, and too liberal if the smaller variance is associated with the subgroup with 

the bigger subgroup instead.   

  

2. Method of the Simulation Study 

 A simulation study was carried out in R using the metafor package (Viechtbauer, 

2010) and the two procedures (pooled vs. separate) for estimating the residual between-

studies variance were programmed. Meta-analyses of k studies were simulated with the 

standardized mean difference as the effect size index. Each individual study included in 

a meta-analysis compared two groups (experimental and control) with respect to some 

continuous outcome. Both populations were normally distributed with homogeneous 

variances, [N(µE, σ2), N(µC, σ2)]. The population standardized mean difference, δ, was 

defined as (Hedges & Olkin, 1985) 
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,                                               (10) 

 

where 
E

y  and 
C

y  are the sample means of experimental and control groups, S is a 

pooled standard deviation computed through  
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nE and nC being the experimental and control sample sizes, respectively, 2

E
S  and 2

CS  

being the unbiased variances of the two groups, and c(m) is a correction factor for small 

sample sizes, given by  

 

,                                            (12) 

 

being N = nE + nC.  

 The estimated within-study variance of d, assuming equal variances and 

normality within each study, is given by  
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 We simulated a mixed-effects model involving a moderator variable with two 

categories. In each category of the moderator variable a population of parametric effect 

sizes was assumed, in addition to the within-group variability.  
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 The number of studies of each simulated meta-analysis was defined as k = k1 + 

k2, with k1 and k2 being the number of studies falling into the first and second categories 

of the moderator, respectively.  

 The manipulated conditions in the present study were intended to represent the 

most realistic scenarios found in meta-analysis. For the number of studies, k, we 

considered four values, namely 12, 20, 40, and 60. Furthermore, we manipulated how k 

was distributed within each category of the moderator, so that in some conditions there 

was a balanced distribution (e.g. k1 = k2), while in the remaining conditions there was an 

unbalanced distribution between the two categories with the second category containing 

three times as many studies as the first category.  

We also manipulated the residual between-studies variance of each category of the 

moderator in two different ways. First, we considered two values for this parameter, 

namely 0.08 and 0.16. Second, we simulated a set of scenarios with homogeneous 

residual between-studies variances for both categories (τ1
2 = τ2

2), and also another set of 

heterogeneous conditions, with values τ1
2 = 0.08 and τ2

2 = 0.16 or τ1
2 = 0.16 and τ2

2 = 

0.08.  

The average sample size of the k studies in a meta.analysis was set to 60. Note 

that, for each study, N = nE + nC, with nE = nC. The selection of the sample sizes for the 

individual studies in each meta-analysis was performed from the generation of skewed 

distributions, applying the Fleishman’s algorithm (1978) with an average value of 60, a 

skewness index of +1.386, a kurtosis index of +1.427 and a standard deviation of 5.62. 

The parameters of this distribution are similar to the distribution of sample sizes found 

in a recent review of 50 real meta-analyses on the effectiveness of psychological 

treatments (López-López, Rubio-Aparicio, Sánchez-Meca, & Marín-Martínez, 2013, 

September).  
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The parametric mean effect size of each category of the moderator was also 

manipulated. In some conditions the two parametric mean effects were equal to 0.5 (µδ1 

= µδ2 = 0.5), whereas for other conditions they were set to different values: µδ1 = 0.5 

and µδ2 = 0.3 or µδ1 = 0.5 and µδ2 = 0.1. Moreover, when the parametric mean effect 

sizes were different for each category, their position was also manipulated, and hence 

we also generated scenarios with µδ1 = 0.3 and µδ2 = 0.5 or µδ1 = 0.1 and µδ2 = 0.5. The 

conditions with equal parametric mean effect sizes across categories allowed us to study 

the Type I error rate of the QB(S) and QB(P) statistics, whereas the conditions with 

different parametric mean effect sizes enabled us to assess their statistical power.  

 To assess the Type I error rate, the total number of conditions was: 4(number of 

studies) x 2(balanced-unbalanced number of studies in the two categories) x 4(residual 

between-studies variance) = 32. With respect to the statistical power, the conditions 

were quadrupled regarding those of the Type I error by including two different 

parametric mean effect sizes and manipulating their position across categories, so that 

there were 32 x 4 = 128 conditions defined. To sum up, the total number of conditions 

was 160 and for each one 10,000 replications were generated. Thus, 1,600,000 meta-

analyses were simulated.  

 The QB(S) test (Equation 3) using separate estimates of τ2 for each subgroup 

(Equation 5) and the QB(P) test when using a pooled estimate of τ2 (Equation 8) were 

applied to each one of these replications. In each of the 160 conditions of our simulation 

study, the proportion of rejections of the null hypothesis of equality of the parametric 

mean effect sizes of the moderator enabled us to estimate the Type I error rate and the 

statistical power.  
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3. Results 

3.1 Type I error rate 

 Table 3 presents Type I error rates for the QB(S) and QB(P) statistics when using 

the two estimation procedures of the residual between-studies variance in the 

manipulated conditions. Table 4 summarizes the average Type I error rates as a function 

of the number of studies, balanced and unbalanced distribution of number of studies 

within each category of the moderator, and residual between-studies variance of each 

category of the moderator. Note that the nominal significance level was set to α = .05. 

 

INSERT TABLES 3 AND 4 

 

 First, in most conditions results showed the empirical rejection rates of both 

estimation procedures above the nominal significance level (Tables 3 and 4). As 

expected, as the number of studies increased, the proportion of rejections of the null 

hypothesis of equality for QB(S) and QB(P) converged to the nominal significance level 

(Table 4).  

 In general, when the number of studies was balanced across categories, both 

estimation procedures showed a good adjustment to the nominal level, with negligible 

differences among the empirical error rates. By contrast, under the conditions with an 

unbalanced distribution of studies between the two categories, the differences in error 

rates for both estimation procedures were most notable (Table 3).  

 As can be seen in Table 3, and focusing on unbalanced distribution of the 

number of studies within each category of the moderator, when the residual between-

studies variances of each category were homogeneous (τ1
2 = τ2

2 = 0.08 or τ1
2 = τ2

2 = 

0.16), QB(P) test presented a better control of the Type I error rate than QB(S). On the 
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contrary, when variances were heterogeneous, specifically under the condition where 

the value of the smallest residual between-studies variance, τ2 = 0.08, was associated 

with the category with the smallest number of studies (τ1
2 = 0.08; τ2

2 = 0.16), the QB(P) 

test showed Type I error rates below 0.05, whereas the QB(S) test yielded rates over 

nominal except for a large number of studies, k = 60 (k1 = 15 and k2 = 45). Under the 

condition where the value of the largest residual between-studies variance, τ2 = 0.16, 

was associated with the category with the smallest number of studies, (τ1
2 = 0.16; τ2

2 = 

0.08), the QB(P) test presented empirical rejection rates above the nominal significance 

level, while the QB(S) test only showed results close to the nominal level with k = 60 (k1 

= 15 and k2 = 45).  

 

3.2 Statistical Power 

 Table 5 shows the empirical power rates for QB(S) and QB(P) tests in the 

manipulated conditions. Table 6 summarizes the average power rates as a function of 

the magnitude of the difference between the parametric mean effect sizes of each 

category of the moderator, number of studies, balanced and unbalanced distribution of 

number of studies within each category of the moderator, and the residual between-

studies variance for each category of the moderator.  

 

INSERT TABLES 5 AND 6 

 

 In general, the influence of the different conditions manipulated was equivalent 

for the QB(S) and QB(P) tests and, in most conditions, both tests yielded statistical power 

rates far below 0.80 (Tables 5 and 6). 
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 Table 6 shows that, as expected, QB(S) and QB(P) tests increased their statistical 

power as the number of studies and the magnitude of the difference between the 

parametric effect size of each category increased. Furthermore, under the conditions 

with a balanced distribution of the studies across categories, QB(S) and QB(P) tests showed 

greater power than under the condition with an unbalanced distribution of the studies 

(see also Table 5). In relation to the conditions with homogeneous residual between-

studies variances, large amounts of residual τ2 values correspond to smaller rejection 

rates for both tests. Accordingly, the highest power rates, QB(S) = .9760 and QB(P) = 

.9759, were obtained under optimal scenarios, that is, maximum difference between the 

parametric mean effect size of each category (|µδ1 - µδ2| = 0.4), large number of studies 

(k = 60), balanced distribution of studies within each category and small and 

homogeneous values of the residual between-studies variance of each category (τ1
2 = 

0.08 and τ2
2 = 0.08) (Table 5).  

 As shown in Table 5, under a balanced distribution of the number of studies 

within each category of the moderator, QB(S) and QB(P) tests performed very similarly, 

even when the assumption of homogeneity variances was not fulfilled. By contrast, 

when the number of studies was distributed unequally within each category of the 

moderator and the residual between-studies variances of each category were 

homogeneous, the QB(S) test yielded a slightly higher power than QB(P) test.  

 

4. Discussion 

 This study compared the impact of two procedures for estimating the residual 

between-studies variance, separate estimates and pooled estimate, on the statistical 

performance of the QB test for subgroup analyses assuming a mixed-effects meta-

analysis. Our work is the first simulation study addressing the question of which 
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estimation procedure of the residual between-studies variance yields the most accurate 

results for the QB test under a set of realistic scenarios, and also allows exploring the 

practical consequences of using separate estimates or a pooled estimate. 

 Under a balanced distribution of the number of studies across categories, we 

expected a good performance of the QB(P) test even when the assumption of 

homogeneity of the residual between-studies variances was not fulfilled. This is a 

similar situation to that of the typical ANOVA F-test with equal sample sizes between 

groups of subjects, where the F-test is robust to violations of the homoscedasticity 

assumption (Glass & Hopkins, 1996; Senn, 2008). Our results showed similar Type I 

error rates for the QB(P) test in the conditions with homogeneous and heterogeneous 

residual between-studies variances. However, the empirical Type I error rates showed a 

good adjustment to the nominal level only in meta-analyses with a large number of 

studies (40 or more studies), the adjustment becoming slightly more liberal as the 

number of studies decreased.  

           Comparing the performance of the QB(S) and QB(P) tests, their Type I error and 

statistical power rates were similar through all the conditions of subgroups with equal 

number of studies. This suggests that when the studies are distributed equally within 

each category of the moderator the meta-analyst may apply any of the procedures in 

order to estimate the residual between-studies variance. Nevertheless, if the number of 

studies and the residual between-studies variances are roughly similar across categories, 

using a pooled estimate would be expected to provide more accurate results for most 

scenarios, as it takes into account a larger number of studies. This can be particularly 

important if the total number of studies is small (e.g. less than 20), which has been 

found to be the case for most Cochrane Reviews (Davey, Turner, Clarke, & Higgins, 

2011). 
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  When the number of studies was distributed unequally across categories, the 

practical consequences of having heterogeneous residual between-studies variances 

were more evident, with both tests leading to the wrong statistical conclusion more 

often than in the conditions with balanced subgroups. Specifically, under the condition 

of heterogeneity where the value of the smallest residual between-studies variance (τ2 = 

0.08) was associated with the category with the smallest number of studies, the QB(S) test 

showed an adequate control of the Type I error rate with at least 60 studies, whereas that 

the QB(P) test yielded overconservative Type I error rates and a poor performance in 

terms of statistical power regardless of the number of studies. Regarding conditions 

where the value of the largest residual between-studies variance (τ2 = 0.16) was 

associated with the category with the smallest number of studies, both tests provided 

inflated Type I error rates, with the QB(P) test showing a greater departure from the 

nominal significance level. Note that the performance of the QB(P) test was similar to 

that expected for the F-test in a typical ANOVA with unbalanced sample sizes, when 

the homoscedasticity assumption was not met (Glass et al., 1972; Hinkle et al., 2003). 

 Lastly, our results also reflect that the QB(P) test yielded a more accurate control 

of error rates when the residual between-studies variances homogeneity assumption was 

fulfilled. In practice, the QB test is usually calculated using a pooled estimate 

(Borenstein et al., 2009; Viechtbauer, 2010). Borenstein et al. (2009) and Viechtbauer 

(2010) suggested using a pooled estimate of the residual between-studies variance 

except when the meta-analyst suspects that the true value of the residual between-

studies may vary from one category to the next. 

 As pointed out in the introduction, the most popular statistical packages for 

meta-analysis estimate the residual between-studies variance implementing only one of 

the two procedures described and compared throughout this paper, so that choice of 
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software determines the method to be used. Our results showed some evidence that 

pooled or separate estimates might lead to a different performance of the QB test under 

some scenarios. Therefore, it would be helpful for the different meta-analysis software 

options to allow users to implement either method based on the characteristics of the 

database, as it is already the case for Comprehensive Meta-analysis 3.0 (Borenstein et 

al., 2014). That would also allow undertaking sensitivity analyses if the meta-analyst 

suspects that the choice of procedure may have an impact on the results. 

 Results from our simulation study also shed some light on the accuracy of 

hypothesis testing for categorical moderators in meta-analysis, beyond the choice of 

pooled or separate variance estimates. The overall picture suggests that statistical tests 

can be expected to perform close to the nominal significance level in terms of Type I 

error, although greater between-studies variances and unbalanced category sizes may 

lead to inflated rates. Conversely, statistical power rates can be lower than desirable 

unless the difference among category effects and the number of studies are large 

enough. While the former may vary widely, the number of studies is often below 40 

when the influence of a categorical moderator is statistically tested. Therefore, our 

results remark that most of those analyses might be underpowered.   

 In conclusion, results of our simulation study suggest that a similar performance 

can be expected when using a pooled estimate or separate estimates of the residual 

between-studies variance to test the statistical association of a dichotomous moderator 

with the effect sizes, as long as there are at least 20 studies and these are roughly 

balanced across categories. Our results stress the need for a relatively large number of 

studies for the methods to have enough power to detect small to moderate differences 

among effect sizes from different subgroups. A pooled estimate will be preferable for 

most scenarios, unless the residual between-studies variances are clearly different and 
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there are enough studies in each category to get precise separate estimates. Researchers 

are also encouraged to report the between-studies variance estimate/s alongside its/their 

confidence limits. 

 

4.1 Limitations and future research 

 This study presents some limitations. The results found can be generalized to the 

specific manipulated conditions. Although this study was focused on standardized mean 

differences as the effect size index, our findings may be generalized to other effect size 

measures which follow an approximately normal distribution. In future simulation 

studies, it would be advisable to extend the manipulated conditions, e.g, using other 

effect size indices, increasing the number of categories of the moderator and varying the 

average sample size of each meta-analysis.  

 In future research, other estimators of the residual between-studies variance 

could be applied, such as the restricted maximum likehood estimator (Viechtbauer, 

2005) and they may also consider alternatives to the normal distribution to generate 

parametric effects, in order to mimic realistic scenarios more closely. 

Finally, the Type I error and statistical power rates yielded by the methods 

considered in this study were suboptimal for many of the examined conditions. Previous 

simulation studies have demonstrated that the method proposed by Knapp and Hartung 

(2003) outperforms the standard method for testing the statistical significance of a 

continuous moderator (Viechtbauer, López-López, Sánchez-Meca, & Marín-Martínez, 

2015). It should be interesting to evaluate the performance of this method to test for 

categorical moderators.  
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Table 1. Results of the subgroup analysis for the moderator variable ‘random 

assignment’ in the Sánchez-Meca et al. (2010) meta-analysis by using separate 

estimates of the residual between-studies variance, 2
ˆ
j
τ . 

 

 

Random assignment 

 

kj 

 

jd  

 

)( jdV  

95%  CI 

dl        du 

 

2
ˆ
j
τ  

No 

Yes 

8 

42 

0.545 

0.966 

0.024 

0.011 

0.242     0.847 

0.765     1.167 

0.053 

0.303 

Separate estimates of 2
ˆ
j
τ : QB(S)(1) = 5.165, p = .023 

  

 

kj = number of studies in each category of the moderator. jd  = mean effect size for 

each category, obtained with Equation (1). )( jdV  = estimated sampling variance of the 

mean effect size for each category, obtained with Equation (2). dl and du = lower and 

upper confidence limits (for a 95% confidence level) for each mean effect size, obtained 

by means of )(96.1 jj dVd ×±  (1.96 being the 97.5% percentile of the standard 

normal distribution). 2
ˆ
j
τ  = residual between-studies variance for each category, 

estimated with Equation (5).  
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Table 2. Results of the subgroup analysis for the moderator variable ‘random 

assignment’ in the Sánchez-Meca et al. (2010) meta-analysis by using a pooled estimate 

of the residual between-studies variance, 2
ˆ
+
τ . 

 

 

Random assignment 

 

kj 

 

jd  

 

)( jdV  

95%  CI 

dl        du 

 

2
ˆ
+
τ  

No 

Yes 

8 

42 

0.559 

0.961 

0.053 

0.010 

0.109     1.009 

0.768     1.155 

0.270 

0.270 

Pooled estimate of 2
ˆ
j
τ : QB(P)(1) = 2.588, p = .108 

  

 

kj = number of studies in each category of the moderator. jd  = mean effect size for 

each category, obtained with Equation (1). )( jdV  = estimated sampling variance of the 

mean effect size for each category, obtained with Equation (2). dl and du = lower and 

upper confidence limits (for a 95% confidence level) for each mean effect size, obtained 

by means of )(96.1 jj dVd ×±  (1.96 being the 97.5% percentile of the standard 

normal distribution). 2
ˆ
+
τ  = pooled estimate of the residual between-studies variances of 

the two categories, calculated with Equation (8).  
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Table 3. Type I error for the two estimation procedures of the residual between studies 

variance 

Note. τ1
2 = residual between-studies variance of the first category of the moderator; τ2

2  

= residual between-studies variance of the second category of the moderator; k = 

number of studies; Balanced = balanced distribution of k within each category of the 

moderator; Unbalanced = unbalanced distribution of k within each category of the 

 Balanced Unbalanced 

τ1
2 : τ2

2 k QB(S) QB(P) QB(S) QB(P) 

 12 .0611 .0655 .0801 .0719 

       0.08 : 0.08 

20 

40 

60 

.0595 

.0584 

.0543 

.0609 

.0581 

.0548 

.0743 

.0639 

.0564 

.0672 

.0577 

.0527 

 12 .0737 .0761 .0950 .0976 

0.16 : 0.16 

20 

40 

60 

.0648 

.0554 

.0567 

.0650 

.0548 

.0566 

.0783 

.0696 

.0640 

.0652 

.0612 

.0579 

 12 .0705 .0733 .0758 .0524 

0.08 : 0.16 

20 

40 

60 

.0602 

.0584 

.0510 

.0611 

.0580 

.0505 

.0709 

.0623 

.0552 

.0456 

.0377 

.0349 

 12   .0956        .1013 

      0.16 : 0.08 

20 

40 

60 

  .0886 

.0716 

.0606 

  .0949 

.0890 

.0801 
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moderator, with fewer studies in the first category; QB(S) = QB test using separate 

estimates of τ2 for each subgroup; QB(P) = QB test using a pooled estimate of τ2.  

 

 

 

 

 



 33

Table 4. Average Type I rates by number of studies (k), by balanced and unbalanced 

distribution of k, and by the residual between-studies variance of each category of the 

moderator (τ1
2 : τ2

2) 

K QB(S) QB(P) 

12 .0788 .0738 

20 .0709 .0657 

40 .0628 .0595 

60 .0569 .0553 

Distribution of k QB(S) QB(P) 

Balanced .0577 .0577 

Unbalanced .0679 .0620 

τ1
2 : τ2

2 QB(S) QB(P) 

0.08 : 0.08 .0612 .0585 

0.16 : 0.16 .0648 .0601 

0.08 : 0.16 .0597 .0479 

0.16 : 0.08 .0736 .0880 

 

Note. QB(S) = QB test using separate estimates of τ2 for each subgroup; QB(P) = QB test 

using a pooled estimate of τ2.  
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Table 5. Statistical Power Rates for the two estimation procedures of the residual 

between-studies variance 
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  |µδ1 - µδ2| = 0.2 |µδ1 - µδ2| = 0.4 

  Balanced Unbalanced Balanced Unbalanced 

τ12  :  τ22 k QB(S) QB(P) QB(S) QB(P) QB(S) QB(P) QB(S) QB(P) 

 12 .161 .1701 .1599 .151 .4383 .4479 .3645 .3638 

 

0.08 : 0.08 

20 .2203 .2235 .1894 .1827 .6341 .6385 .5293 .5298 

40 .3796 .3783 .3028 .2953 .8988 .9000 .8028 .8068 

60 .5224 .5220 .4168 .4116 .9760 .9759 .9296 .9323 

 12 .1446 .1483 .1505 .1294 .3298 .3329 .3012 .2792 

 

0.16 : 0.16 

20 .1752 .1768 .1642 .1489 .4803 .4804 .4004 .3893 

40 .2756 .2753 .2269 .2175 .7501 .7502 .6305 .6285 

60 .3710 .3700 .3139 .3060 .8979 .8971 .7972 .7994 

 12 .1512 .1567 .1405 .1046 .3759 .3831 .3342 .2635 

 

0.08 : 0.16 

20 .1986 .2025 .1749 .1261 .5392 .5443 .4772 .4022 

40 .3136 .3198 .2802 .2130 .8275 .8299 .7542 .6905 

60 .4377 .4432 .3787 .3024 .9478 .9493 .9007 .8615 

 12 .1466 .1512 .3808 .1749 .3677 .3729 .3204 .3541 

 

0.16 : 0.08 

20 .1918 .1922 .1778 .2062 .5441 .5443 .4271 .4823 

40 .3146 .3098 .2489 .2960 .8241 .8213 .6763 .7373 

60 .4355 .4274 .3249 .3832 .9432 .9422 .8268 .8748 



 36

Note. µδ1 = parametric mean effect size of the first category of the moderator; µδ2 = parametric mean effect size of the second category of the 

moderator; τ1
2 = residual between-studies variance of the first category of the moderator; τ2

2  = residual between-studies variance of the second 

category of the moderator; k = number of studies; Balanced = balanced distribution of k within each category of the moderator; Unbalanced = 

unbalanced ditribution of k within each category of the moderator, where the number of studies in the first category is the lowest one; QB(S) = QB 

test using separate estimates of τ2 for each subgroup; QB(P) = QB test using a pooled estimate of τ2. 
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Table 6. Average power values rates by difference between the parametric mean effect 

size of each category of the moderator (|µδ1 - µδ2|), by number of studies (k), by 

balanced and unbalanced distribution of k, and by the residual between-studies variance 

of each category of the moderator (τ1
2 : τ2

2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

|µδ1 - µδ2| QB(S) QB(P) 

0.2 .2843 .2783 

0.4 .7102 .7095 

K QB(S) QB(P) 

12 .2674 .2418 

20 .3359 .3307 

40 .5179 .5148 

60 .6378 .6362 

Distribution of k QB(S) QB(P) 

Balanced .5458 .5464 

Unbalanced .4729 .4676 

τ1
2 : τ2

2 QB(S) QB(P) 

0.08 : 0.08 .5540 .5530 

0.16 : 0.16 .4453 .4405 

0.08 : 0.16 .5109 .4711 

0.16 : 0.08 .4787 .5109 
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Appendix 1 

 

Database for the example 

 

 

Study 

 

d 

 

Sd 

Random 

assignment 

1 1.341 0.369 1 

2 0.581 0.340 1 

3 0.757 0.351 1 

4 0.508 0.479 1 

5 -0.023 0.558 1 

6 0.044 0.277 1 

7 0.428 0.270 1 

8 0.819 0.521 1 

9 -0.086 0.245 2 

10 0.602 0.258 2 

11 1.282 0.447 2 

12 1.023 0.388 2 

13 0.927 0.378 2 

14 0.483 0.236 2 

15 0.807 0.246 2 

16 0.692 0.246 2 

17 0.594 0.330 2 

18 0.582 0.320 2 

19 0.697 0.291 2 

20 0.833 0.326 2 

21 2.651 0.485 2 

22 1.232 0.386 2 

23 1.896 0.455 2 

24 1.837 0.451 2 

25 0.281 0.361 2 

26 0.410 0.377 2 

27 0.797 0.402 2 

28 0.431 0.377 2 

29 0.623 0.394 2 

30 0.650 0.365 2 

31 1.702 0.498 2 

32 1.073 0.480 2 

33 0.403 0.404 2 

34 3.468 0.520 2 

35 3.263 0.496 2 

36 3.023 0.488 2 

37 1.040 0.389 2 

38 1.473 0.460 2 

39 1.164 0.441 2 

40 0.993 0.427 2 

41 -0.344 0.381 2 

42 -0.098 0.361 2 

43 0.905 0.276 2 

44 0.665 0.264 2 
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45 0.982 0.280 2 

46 0.727 0.252 2 

47 0.879 0.218 2 

48 0.681 0.439 2 

49 1.193 0.478 2 

50 1.131 0.466 2 

 

d: standardized mean difference for each study. Sd: standard error for the d index in each 

study. Random assignment = 1, No; 2, Yes (source: Sánchez-Meca et al., 2010). 

 

 

 

 


