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Abstract 14 

Eastern Mediterranean sediments over the past 12 Myr commonly show strongly 15 

developed precessional cyclicity, thought to be a biogeochemical response to insolation-16 

driven freshwater input from run-off. The Mediterranean’s dominant freshwater source today 17 

and in the past, is the Nile, which is fed by North African monsoon rain; other, smaller, circum-18 

Mediterranean rivers also contribute to Mediterranean hydrology. Crucially, run-off through 19 

all of these systems appears to vary with precession, but there is no direct evidence linking 20 
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individual water sources to the biogeochemical response recorded in Mediterranean 21 

sediments. Consequently, it is not clear whether the North African monsoon is entirely 22 

responsible for the Mediterranean’s sedimentary cyclicity, or whether other, precessional 23 

signals, such as Atlantic storm precipitation, drive it.  24 

Organic matter in sediments derives from both marine and terrestrial sources and 25 

biomarker analysis can be used to discriminate between the two, thereby providing insight 26 

into sedimentary and ecological processes. We analysed a wide range of lipids from the Late 27 

Miocene (6.6-5.9 Ma) Pissouri section, southern Cyprus, and reconstructed the vegetation 28 

supplied to this region by measuring the carbon isotopes of the terrestrial component to 29 

identify its geographic source. BIT (Branched-Isoprenoidal-Tetraether) indices reflect changes 30 

in the relative abundance of marine vs terrestrial (soil) organic matter inputs, and with the 31 

exception of records from the last deglaciation, this work is the first application of the BIT 32 

approach to the reconstruction of orbital impacts on sedimentological processes. BIT indices 33 

show that the organic matter supplied to Cyprus changed over the course of each precession 34 

cycle and was dominantly terrestrial during insolation maxima when North African run-off was 35 

enhanced. The δ13C values from these intervals are compatible with tropical North African 36 

vegetation. However, the δ13C record indicates that during insolation minima, organic material 37 

supplied to southern Cyprus derives from a more arid source region. This is likely to have been 38 

aeolian-transported organic matter from the Anatolian Plateau demonstrating that even in 39 

Mediterranean sedimentary systems influenced by Nile run-off, there is more than one 40 

independent precessional organic matter contribution to the sedimentary cyclicity. Pissouri’s 41 

organic geochemistry also illustrates a long-term trend towards more saline Mediterranean 42 

conditions during the 600 kyr leading up to the Messinian Salinity Crisis. 43 



 

 

Highlights 44 

• BIT index shows major precessional changes in run-off to the Mediterranean.  45 

• δ13C record of higher plant waxes also varies with precession  46 

• Cyprus receives organic matter input from both North Africa and Turkey 47 

• New SST record leading up to the Messinian Salinity Crisis 48 

• Long-term biomarker trends indicate the looming Messinian Salinity Crisis 49 

Keywords: 50 

Mediterranean; BIT index; carbon isotopes; Messinian Salinity Crisis; terrestrial higher 51 

plant waxes; TEX86 52 

1 Introduction 53 

Mediterranean sedimentary successions over the last 12 million years (Ma) are 54 

commonly dominated by strong cyclicity (Kidd et al., 1978; Rohling et al., 2015). These regular 55 

lithological alternations, comprising some combination of marls, limestones, diatomites and 56 

organic-rich sapropelic layers, are demonstrably precessional (Hilgen et al., 1997; Sierro et al., 57 

2001) and are thought to be the Mediterranean’s biogeochemical response to orbitally-driven 58 

variations in freshwater input (Rossignol-Strick, 1985). The largest source of this freshwater 59 

variation is derived from the North African monsoon (Rohling et al., 2015 and references 60 

therein). Precessional changes shift the position of the Intertropical Convergence Zone (ITCZ) 61 

northward during times of insolation maxima (July 65N; Laskar et al., 2004) and increase the 62 

intensity of the monsoon in the catchment of northward draining rivers that flow into the 63 

Mediterranean (Marzocchi et al., 2015). These insolation-driven changes also affect the 64 

vegetation across North Africa (Larrasoaña et al., 2013), although model simulations fail to 65 



 

 

capture the full greening of the Sahara indicated by terrestrial data (Larrasoaña et al., 2013 66 

and references therein). Precessional changes in the location and intensity of North Atlantic 67 

storm tracks also impact Mediterranean precipitation patterns, principally in the west and 68 

along the north Mediterranean margin (Kutzbach et al., 2014; Toucanne et al., 2015). 69 

In the Late Miocene Mediterranean salinity rose significantly and thick, basin-wide 70 

evaporites were deposited during the Messinian Salinity Crisis (MSC, 5.971-5.33 Ma; Manzi et 71 

al., 2013 and references therein). While deep basinal evaporites have yet to be recovered, 72 

those preserved on the Mediterranean margins also show strong cyclicity which is thought to 73 

reflect an on-going precessional signal (Flecker et al., 2015), despite extreme environmental 74 

conditions. Although the transition to evaporite precipitation in the Mediterranean is 75 

synchronous and abrupt at 5.97 Ma (Manzi et al., 2013), geochemical evidence (Flecker et al., 76 

2015 and references therein) as well as water column oxygenation and faunal data 77 

(Kouwenhoven et al., 2003; Sierro et al., 2001) indicate that the first environmental precursors 78 

of the MSC occurred several million years earlier. 79 

The evidence of precessional-pacing of Mediterranean sedimentation is clear. However, 80 

the specific processes that generated the recorded biogeochemical response remain 81 

controversial. Debates over the role of freshwater driven productivity versus water column 82 

stratification in the generation of organic-rich sapropelic layers (Kidd et al., 1978) endure, 83 

while the question of whether deep-sea anoxia, promoted by enhanced export productivity, 84 

a freshwater cap, or a combination of both, can transfer the precessional run-off signal from 85 

the Eastern to Western Basins as advocated by Rohling et al. (2015), remains untested. One 86 

alternative possibility is that the North Atlantic storm-track generates the precessional 87 

biogeochemical response in the Western Mediterranean independent of, but in phase with 88 

precessional run-off to the Eastern Mediterranean (Toucanne at al. 2015). However, it is not 89 



 

 

clear whether the storm track precipitation is volumetrically sufficient to generate the 90 

biogeochemical response observed.  91 

All of these controversies relate, in part, to the difficulty in identifying the fresh water 92 

sources responsible for driving the biogeochemical sedimentary product observed in the 93 

Mediterranean Basin. This study uses biomarkers preserved within the sedimentary record as 94 

tracers of the freshwater from which they were derived in order to explore and provide new 95 

insight into the underlying dynamics of the Mediterranean’s sedimentary cyclicity. 96 

Lipid biomarkers have been used to explore changes in the hydrological cycle in a variety 97 

of ways. Leaf wax δ13C values differ between C3-and C4-plants where C3-plants have lower δ13C 98 

values than C4-plants (O'Leary, 1981) as a result of their different morphology and carbon 99 

assimilation biochemistry (Edwards et al., 2010 and references therein). Because the 100 

distribution of C3- and C4-plants is governed by a combination of environmental factors, 101 

including temperature and aridity (Yang et al., 2014), leaf wax δ13C values provide insight into 102 

both past vegetation and climatic conditions. Biomarkers can also provide insight into changes 103 

in marine versus terrestrial organic matter (OM) fluxes (Hopmans et al., 2004), from which 104 

changes in the OM source can be inferred. Other lipid biomarkers, including isoprenoidal and 105 

branched glycerol dialkyl glycerol tetraether (GDGT) lipids can be used to determine sea-106 

surface temperatures (TEX86, [TetraEther indeX]; Schouten et al., 2013 and references therein) 107 

and land surface temperatures (MBT’ [Methylation of Branched Tetraether]/CBT [Cyclisation 108 

of Branched Tetraethers]; Weijers et al., 2007; Peterse et al., 2012), providing additional 109 

insights into environmental changes. This approach constrains the relative control of 110 

temperature versus aridity on C3/C4 plant abundances.  111 

We have applied these approaches to the Late Miocene Pissouri section on Cyprus 112 

(5.98-6.51 Ma), which lies to the north of the Nile delta (Fig. 1). Today, the majority of the 113 



 

 

monsoon-derived North African run-off reaches the Mediterranean via the Nile which is its 114 

largest fluvial system. We extracted and characterised biomarkers from the strongly cyclic 115 

Pissouri succession and have used them to reconstruct the influence of Nile water and the 116 

precipitation in its catchment. In particular, we use the proportions branched-GDGTs 117 

(brGDGTs) to crenarchaeol (BIT index), distributions of n-alkyl lipids, and the δ13C values of 118 

high molecular weight n-alkanes of terrestrial plant origin, to establish the nature of organic 119 

matter supplied to this central eastern Mediterranean region. The ~600 kyr interval preceding 120 

the MSC was targeted in order to evaluate the climatic changes that occur during the leading 121 

up to the MSC. 122 

2 Methods 123 

2.1 Site description and sampling strategy 124 

The Pissouri basin on southern Cyprus (Fig. 1) is filled with Neogene sediments 125 

extending back to the Middle Miocene (Krijgsman et al., 2002). The Messinian succession of 126 

the basin comprises regular alternations of limestones and marls (Fig. 2; Krijgsman et al., 127 

2002) where carbonate content (Krijgsman et al., 2002) has been used to distinguish them 128 

(e.g. limestone >75%; marl <75%; Sugden and McKerrow, 1962). The cyclicity of the succession 129 

has been used to astronomically tune the Pissouri section to orbital solutions (Laskar et al., 130 

2004) using both bio- and magnetostratigraphic tie-points (Fig. 2; Krijgsman et al., 2002). At 131 

Pissouri, three biostratigraphic events occur in the 30 m of limestone-marl alternations that 132 

directly underlie the gypsum and are studied here (Fig. 2). These biostratigraphic tie points 133 

consistently link marl deposition to the area of the orbital curve that includes the insolation 134 

maxima (Fig. 2). In addition, three magnetostratigraphic boundaries also occur in this part of 135 

the section (Fig. 2) and these are consistent with the tuning based on biostratigraphic tie-136 



 

 

points and confirm the lithological phase relationship with the orbital curve (Krijgsman et al., 137 

2002). The marls have been correlated with sapropelic horizons (Krijgsman et al., 2002) that 138 

are observed in other Mediterranean successions (e.g. Sorbas; Sierro et al., 2001). In line with 139 

standard practice for astronomically tuned Mediterranean successions and consistent with 140 

the biostratigraphic and magnetostratigraphic tie points, the middle of each marl (or sapropel) 141 

layer is linked to the extremes of the 65N summer insolation curve (Sierro et al., 2001; Fig 2.). 142 

Forty-eight samples were collected in 1998 from the Pissouri section road cut 143 

(Kouwenhoven et al., 2006; Krijgsman et al., 2002) before it was sprayed with concrete. Where 144 

possible, one sample for every limestone and one for every marl was analysed throughout the 145 

section, starting at ~32 m below the gypsum and representing the 600 kyr preceding the MSC 146 

(6.519- 5.983; Ma Krijgsman et al., 2002). While this approach does not necessarily show the 147 

full range of values in relation to precession, it does allow us to compare data generated 148 

during two distinct phases of multiple orbital cycles. The slump layer (7-10 m Fig. 2) towards 149 

the top of the section was not sampled because its age and orbital phasing is uncertain.  150 

2.2 Extraction and Separation 151 

The sediments (~40g) were homogenised and extracted via Soxhlet apparatus for 24 152 

hours using dichloromethane (DCM): methanol (MeOH) (2:1 vol/vol). An aliquot of the total 153 

lipid extract (TLE) was separated into two fractions using alumina flash column 154 

chromatography: an apolar fraction eluted with 4 ml hexane (Hex)/DCM (9:1 v/v) and a polar 155 

fraction eluted with 3 ml DCM:MeOH (1:2 vol/vol). An internal standard (IS) was added to the 156 

apolar (androstane 5µl of 200 ng/µl) and polar (hexadecan-2-ol, 5 µl, 207.5 mg/µl solution) 157 

fractions. The polar fraction was derivatised for 1 hour at 70°C using 50µl of BSTFA+TMCS 99:1 158 

(N,O-bis(trimethylsilyl) trifluoroacetamide and trimethylchlorosilane). 159 



 

 

2.3 GC-MS 160 

Both fractions were analysed using a Thermo Scientific ISQ Single Quadrupole gas 161 

chromatography-mass spectrometer (GC-MS). The GC was equipped with a 50 m x 0.32 mm 162 

i.d. fused silica capillary column with an Rtx-1 stationary phase (100% dimethylpolysiloxane, 163 

0.17 μm film thickness; Restek) and programmed from 70 °C (held for 1 minute) to 130 °C at 164 

20 °C/minute, then to 300 °C (held for 24 minutes) at 4 °C/minute. The MS continuously 165 

scanned between mass to charge ratios m/z 50 and 650 Daltons. The n-alkanes, n-alkanols 166 

and n-alkanoic acids were identified by their spectra and quantified in the total ion current.  167 

2.3.1 GC-C-IRMS 168 

The n-alkane δ13C values were determined using an Isoprime 100 GC-combustion-169 

isotope ratio MS (GC-C-IRMS). Apolar fractions were analysed in duplicate, injected via a 170 

splitless injector onto a 50 m x 0.32 i.d. fused silica capillary column with an HP 1 stationary 171 

phase (100% dimethylpolysiloxane, 0.17 film thickness, Agilent). The temperature programme 172 

was the same as for GC-MS analysis. The combustion reactor was maintained at a temperature 173 

of 850 °C. Standard notation relative to the Vienna Pee Dee Belemnite (VPDB) was achieved 174 

by comparison against a calibrated reference CO2 gas. Two thirds of samples had sufficient n-175 

alkane abundances for δ13C determination.  176 

2.3.2 HPLC-APCI-MS 177 

The second aliquot of the TLE was dissolved in A (A=hexane:iso-propanol (IPA) (99:1 178 

v/v)) and passed through a 0.45 µm PTFE filter. High performance liquid chromatography-179 

atmospheric pressure chemical ionisation-MS (HPLC-APCI-MS) was performed using a 180 

ThermoFisher Scientific Accela Quantum Access triple quadrupole MS to analyse the iGDGTs 181 

and brGDGTs. Separation was achieved with an Alltech Prevail Cyao column (150 mm; 2.1 mm; 182 



 

 

3µm i.d.) with a flow rate of 0.2 ml/minute. The initial solvent mix A was eluted isocratically 183 

for 5 minute, followed by a change in solvent polarity via a gradient to 1.8% IPA over 45 184 

minutes (Hopmans et al., 2000). After separation, ionisation was performed at atmospheric 185 

pressure, and select m/z: 1302, 1300, 1298, 1296, 1294, 1292, 1050, 1048, 1046, 1036, 1034, 186 

1032, 1022, 1020, 1018, 744, 659 (Fig.3; Schouten et al., 2013) were scanned to increase 187 

sensitivity and reproducibility. GDGT ratios were calculated from the respective M+-ions 188 

chromatograms, and abundances were determined by comparing with a known C46-GDGT 189 

standard (Huguet et al., 2006). The relative response of the standard and the GDGTs was not 190 

determined, such that reported concentrations are strictly semi-quantitative. 191 

2.3.3 Proxies 192 

Long-chain n-alkanes are synthesised by terrestrial vascular plants (Eglinton and 193 

Hamilton, 1967). The carbon preference index (CPI) is the ratio of odd-to-even chain lengths 194 

of the n-alkanes and is calculated as follows: 195 

CPI = 0.5 ∗ �C�� + C�� + C�� + C�� + C�� + C��

C�� + C�� + C�	 + C�
 + C�� + C��
+
C�� + C�� + C�� + C�� + C�� + C��

C�� + C�� + C�� + C�	 + C�
 + C��
� 196 

Equation 1: CPI (Bray and Evans, 1961) 

The components of Equation 1 refer to the relative concentrations of C22 to C32 n-197 

alkanes. During biosynthesis, higher plants produce high-molecular-weight (HMW) odd-198 

numbered n-alkanes (Eglinton and Hamilton, 1967), but subsequent diagenesis (and 199 

catagenesis) causes homogenisation of the distribution (Bray and Evans, 1961). Consequently, 200 

lower CPI values can indicate increased degradation of these terrestrial inputs or a change in 201 

their source, whereas values >2 indicate good preservation. 202 

The terrestrial aquatic ratio (TARn-alkanes) for the n-alkanes is calculated as: 203 

TAR��
��
��� =
C�� + C�� + C��

C�� + C�� + C��
 204 



 

 

Equation 2: TAR (Bourbonniere and Meyers, 1996) 

This can be used to evaluate sources of OM, because HMW n-alkanes are generally 205 

produced by terrestrial vascular plants (Eglinton and Hamilton, 1967), and low-molecular-206 

weight (LMW) n-alkanes generally derive from aquatic organisms (Meyers and Arnaboldi, 207 

2008 and references therein). Similar ratios can be calculated using n-alkanoic acids 208 

(Bourbonniere and Meyers, 1996): 209 

TAR��
��
����	
���� =
C�� + C�	

C�� + C�� + C�	
 210 

Equation 3: TARn-alkanoic acids (Bourbonniere and Meyers, 1996) 

The BIT index is a ratio of the three major brGDGTs to crenarchaeol:  211 

BIT =
�GDGT − Ia� + �GDGT − IIa� + �GDGT − IIIa�

�Crenarcheaol�+ �GDGT − Ia� + �GDGT − IIa� + �GDGT − IIIa� 212 

Equation 4: BIT Index (Hopmans et al., 2004) 

Crenarchaeol is derived from Thaumarchaeota (Sinninghe Damsté et al., 2002), which 213 

represents ~20% of the picoplankton in the ocean, although it also occurs in subordinate 214 

abundances in soils (Weijers et al., 2007). BrGDGTs occur in high abundances in terrestrial 215 

settings, including soils and peats (Hopmans et al., 2004; Peterse et al., 2012). Therefore, BIT 216 

indices close to 1 represent OM originating from a predominantly terrigenous source, whereas 217 

low indices represent a Thaumarchaeotal source of GDGTs and by extension a strong aquatic 218 

source of OM (Schouten et al., 2013).  219 

For the sea-surface temperature reconstructions, the TEX86 proxy is defined as: 220 

TEX	� =
GDGT − 2 + GDGT − 3 + Crenarcheaol′

GDGT − 1 + GDGT − 2 + GDGT − 3 + Crenarcheaol′
 221 

Equation 5: TEX86-proxy (Schouten et al., 2013) 

Various calibrations have been proposed to transform TEX86 values to sea-surface 222 



 

 

temperature (SST), including both the original linear (Schouten et al., 2013) and subsequent 223 

logarithmic (Kim et al., 2010) relationships. Here, we use the BAYSPAR-calibration, which 224 

enables an increased accuracy and precision of reconstructions, due to the inclusion of a 225 

spatial element in the calibration (Tierney and Tingley, 2015), as well as more robust Bayesian-226 

derived error estimates. It applies the modern core-top data and searches for modern 227 

analogue locations based on the TEX86 index (Tierney and Tingley, 2015). Biomarker data (i.e. 228 

hopane distributions) indicate that Pissouri OM is thermally immature, justifying the 229 

application of this core-top approach to these uplifted marine sediments. 230 

For the land-based temperature reconstructions the MBT’/CBT index is used: 231 

CBT = log
GDGTIb + GDGTIIb

GDGTIa + GDGTIIa
 232 

MBT� =
GDGTIa + GDGTIb + GDGTIc

GDGTIa + GDGTIb + GDGTIc + GDGTIIa + GDGTIIb + GDGTIIc + GDGTIIIa
 233 

Equation 6: MBT’/CBT proxy (Peterse et al., 2012) 

In soils, the degree of cyclisation of branched GDGTs (reflected in the CBT index) is 234 

correlated with pH, whereas the degree of methylation (MBT’) is correlated with both pH and 235 

Mean Annual Air Temperature (MAAT), resulting in the MBT(‘)/CBT soil temperature proxy 236 

(Weijers et al., 2007, Peterse et al., 2012). This proxy is commonly applied to marginal marine 237 

sediments to reconstruct the terrestrial climate of the catchment area (e.g. Peterse et al., 238 

2012). Since these analysis were completed, a new methodology has been proposed by De 239 

Jonge et al. (2014) to include 6-methyl brGDGTs as well as the 5-methyl brGDGTs in the CBT 240 

and MBT’ proxies. GDGT abundances are low in these Pissouri samples, so there was 241 

insufficient material to enable reanalysis and the application of this new method. 242 



 

 

3 Results 243 

All samples contained a variety of biomarkers, including both branched (brGDGT) and 244 

isoprenoidal (iGDGT) GDGTs (Fig. 3) and a homologous series of n-alkanes and n-alkanoic 245 

acids. Also present was an unusual nonacosan-10-ol which can be derived from conifers (Jetter 246 

and Riederer, 1995).  247 

3.1 GDGTs  248 

The Pissouri sediments contain a wide range of br- and iGDGTs (Fig. 3; data table; 249 

Schouten et al., 2013). BIT indices are highly variable in the Pissouri sediments (Fig. 4c), 250 

ranging from below 0.1 to 0.85, indicating more than one OM source. These variations are 251 

strongly related to lithology, where the marls have significantly higher (Student’s paired t-test 252 

between BIT values of marls vs limestones p<0.0001) BIT indices (0.3 to 0.9) than the 253 

limestones (0.1 to 0.6; Fig. 4c). There is a general decline in the limestone BIT indices from 0.6 254 

to 0.05, up section (Fig. 4c). BIT indices from the marls have a more complex pattern, with 255 

high BIT indices (0.67-0.90) in sediments older than 6.26 Ma and in those overlying the slump 256 

(0.67-0.88) and lower indices in the intervening interval (0.17-0.65). Consequently, the 257 

difference in marl-limestone BIT indices is most pronounced at the top and bottom of the 258 

section, with a smaller marl-limestone contrast in BIT indices between 6.3 Ma and the slump 259 

(Fig. 4c), mainly due to lower values in the marls.  260 

The low BIT-contrast interval immediately below the slump is also characterised by 261 

variable i- and brGDGTs abundances (Fig. 4d), with some values approximately two orders of 262 

magnitude higher than in the rest of the section.  263 

Br- and iGDGTs can also be used to determine terrestrial and sea-surface temperatures 264 

(see Section 2.3.3). However, TEX86 should not be applied to sediments with high BIT indices 265 

(>0.4; Schouten et al., 2013 and references therein), and terrestrial temperatures should be 266 



 

 

treated with caution in samples with low (<0.3, Weijers et al., 2007) BIT indices. In the Pissouri 267 

section, 24 samples had BIT indices lower than 0.4, indicating the dominance of marine GDGTs 268 

(Hopmans et al., 2004); in these, the TEX86-derived SSTs range from 22°-30°C (data table) using 269 

the BAYSPAR calibration (Tierney and Tingley, 2015). The 32 samples with BIT indices > 0.3, 270 

yield MBT’/CBT-derived MAAT for the adjacent land ranging from 15° to 28° C (data table) 271 

based on the calibration of (Peterse et al., 2012).  272 

3.2 N-alkyl biomarkers 273 

The overall distribution of the n-alkanoic acids in the Pissouri samples is bimodal, with 274 

a peak at n-C16 and a second peak at n-C28. In most cases the n-C28 n-alkanoic acid is most 275 

abundant. The TARn-alkanoic acid values vary from 0.7 to 2.2 (Fig. 5e). Commonly the limestones 276 

have lower TARs than the marl layers (Fig. 5e), but this difference is less consistent than in the 277 

BIT indices (Fig. 4c).  278 

The n-alkane distribution is similar to the bimodal n-alkanoic acid distribution with one 279 

short-chain peak (C19 although C15 and C17 homologues are also abundant) and another long-280 

chain maximum (C31). The concentrations of the HMW n-alkanes range between 0.6 and 12 281 

ng/g sediment (Fig. 5a), and is generally lower in the limestones. Between 6.35 and 6.15 Ma 282 

the offset between the two lithologies is particularly clear, with higher n-alkane 283 

concentrations occurring in the marls (Fig. 5a). The TARn-alkanes ratio (data table) varies from 284 

0.05 to 3.16 with an average of 0.36, but unlike the BIT indices, the TARn-alkanes (Fig. 5b) show 285 

no systematic relationship with lithology, potentially due to the complex range of biological 286 

sources for the LMW components or a diverse range of higher plant inputs (i.e. aeolian vs 287 

fluvial inputs) for the HMW components.  At the top of the section, the TARn-alkanes shift to 288 

higher indices, i.e. higher concentrations of long chain n-alkanes indicating stronger terrestrial 289 



 

 

inputs (Fig. 5b). 290 

With one exception, all sediments have a CPI >1 (Fig. 5d; data table) with an average 291 

value of 6 and a range from 2 to 8. This indicates a strong predominance of odd-over-even 292 

HMW n-alkanes, compatible with a leaf wax source and good preservation (Bray and Evans, 293 

1961). We have excluded the sample at 6.11 Ma (R.F.-7013f; data table) from further 294 

discussion, because of its anomalously low CPI and position close to the slump interval.  295 

Nonacosan-10-ol, which is derived from specific conifers (Jetter and Riederer, 1995), is 296 

found throughout the section (Fig. 5c). Concentrations do not vary systematically with 297 

lithology, but, with the exception of one highly concentrated sample at 6.2 Ma, the relatively 298 

constant Nonacosan-10-ol concentration that characterises the lower part of the succession 299 

up to 6.1 Ma is followed by a trend towards higher concentrations (6.08 - 5.98 Ma). 300 

3.3 Carbon isotopes of the long-chain n-alkanes 301 

In the Pissouri section, δ13C values for the HMW C29, C31 and C33 n-alkanes (Fig. 6) range 302 

between -35‰ and -26‰. This range is more negative than the δ13C values typically 303 

associated with leaf waxes from C4-plants (Kohn, 2016 and references therein), but is 304 

consistent both with δ13C values measured on C3 plants or a mixture of C4 and C3 plants (Fig. 305 

6). In the upper part of the section (younger than 6.22 Ma), δ13C values for all three long-chain 306 

n-alkanes are consistently lower by 2-3‰ in the limestones, than in the marls with which they 307 

are interbedded (Fig. 6). In the lower part of the section low n-alkane abundances prevented 308 

δ13C analysis in 10 samples (~21% of dataset). However, where measured, n-alkanes in 309 

limestones have lower δ13C values than those in the adjacent marls. 310 



 

 

4 Discussion 311 

4.1 Temperature proxies 312 

As discussed above, GDGTs are used to reconstruct both land and marine palaeo-313 

temperatures. The high variability of marine versus terrestrial source inputs (Fig. 7a) at 314 

Pissouri allows both the marine and the terrestrial temperatures to be evaluated but only for 315 

specific horizons. Where BIT indices are <0.4 (Fig. 7b; Schouten et al., 2013 and references 316 

therein), TEX86-derived SSTs are in good agreement with alkenone-derived SST records from 317 

Monte dei Corvi, Italy (Tzanova et al., 2015; Fig. 7a). The combined datasets indicate a cooling 318 

of the Eastern Mediterranean prior to the onset of the MSC (Fig. 7), consistent with a global 319 

Late Miocene cooling (Herbert et al, 2016). The average temperature of the Eastern 320 

Mediterranean today is 20-22°C, several degrees cooler than that indicated by the average 321 

SST for these Late Miocene samples (25.5°C; Fig. 7a) even when including the TEX86 322 

uncertainty of 2-3° (Tierney and Tingley, 2015). The long-term temperature change is 323 

overprinted by shorter-term variability of 6°C (Fig. 7). The 12-13 kyr resolution of both our 324 

TEX86 and the alkenone (Tzanova et al., 2015) datasets means that we cannot be sure that this 325 

reflects the full range of precessional temperature variability. 326 

The terrestrial MBT’/CBT-derived MAAT records appear to suggest an average 327 

temperature of 18°C with large temperature variations of up to 14°C (Fig. 7c); much larger 328 

than those seen in the SST reconstruction (Fig. 7a). However, the average is lower than that 329 

observed today (20°C) and the large variability is unexpected, even given the large standard 330 

error on MBT’/CBT-derived MAAT reconstructions of +/- 5°C (Peterse et al., 2012). There are 331 

several likely reasons for the pronounced variations.  332 

1. New analytical methods have been developed (De Jonge et al., 2014), and these could 333 

affect both determination of MBT indices and the application of appropriate calibrations. 334 



 

 

We consider this factor to be minor given that much previous work based on the original 335 

methods and calibrations still exhibited clear temporal trends. 336 

2. The dataset includes samples with low BIT indices, which could be problematic (Weijers 337 

et al., 2007); however, removing those data with BIT below 0.3 yields an average MAAT 338 

of 18°C and a range of 15° to 28°C, still much larger than expected.  339 

3. Recent work has repeatedly shown that MBT’/CBT indices yield relatively low MAATs in 340 

arid settings (Peterse et al., 2012; Yang et al., 2014). Using a recently developed aridity 341 

calibration, shifts the temperatures to higher values by ~ 2°C (Yang et al., 2014), and given 342 

the fact that aridity is likely to have varied in the source region, this could be another 343 

source of variability.  344 

Overall, it appears that GDGT-based proxies confirm that the Eastern Mediterranean 345 

was warmer during the Lateiocene than it is today, consistent with globally higher 346 

temperatures (e.g. Tzanova et al., 2015) and model simulations using elevated pCO2 347 

(Marzocchi et al., 2015). Elevated MAATs are less clear, given the profound variability in 348 

brGDGT indices, but we attribute this to complex changes in sources of brGDGTs and the 349 

additional impact of highly variable hydrology (Yang et al., 2014). 350 

4.2 Differences in limestone and marl OM inputs 351 

There is a statistically significant difference between the BIT indices of the limestones 352 

and those of the marls (P>0.001; students t-test; Fig. 4c), probably as a result of varying OM 353 

sources and preservation controls. The BIT index can be affected by OM degradation, with 354 

preferential degradation of marine OM over terrestrial OM shifting BIT indices higher (Huguet 355 

et al, 2009). Indeed, enhanced preservation beneath the slump is suggested by the higher 356 

GDGT concentrations (Fig. 4d) and this may account for the abrupt shift to lower BIT indices 357 



 

 

in the marls from this interval (Fig. 4c). In other intervals, however, the GDGT concentrations 358 

exhibit much less variability and no systematic change with lithology suggesting that 359 

differential OM degradation is not the primary driver of cyclic BIT variations. This is consistent 360 

with previous work where Huguet et al. (2009) showed that extreme changes in redox 361 

conditions, between oxic and anoxic sediments with the same OM input, can result in changes 362 

in the BIT index preserved, but  only by up to 0.4. The BIT variations we see here are >0.4 and 363 

therefore cannot be entirely attributable to oxic degradation. In addition, the presence of 364 

benthic foraminifera in both limestones and marls (Kouwenhoven et al., 2006) suggests that 365 

oxygen fluctuations were never extreme enough to induce total anoxia. Elevated proportions 366 

of the benthic foraminifera, Bolivina spathulata (70-90%), however, indicate that, as early as 367 

7.167 Ma the sediments were also never fully oxic , and changes in redox conditions from less 368 

to more severe dysoxia on a precessional time scale are apparent from repeated shifts in 369 

benthic foraminifer assemblages after 6.4 Ma (Kouwenhoven et al., 2006 and references 370 

therein). Consequently, the redox-driven preservational impact on BIT indices is likely to be 371 

small. 372 

Instead, we suggest that variability in the BIT indices reflects changes in the source of 373 

OM. The consistently higher indices in the marls (Fig. 4c) can either be produced by greater 374 

terrestrial input of brGDGTs, or by a decrease of marine crenarchaeol production. If the 375 

accumulation rate is constant, the concentration of the brGDGTs can be used to distinguish 376 

between a terrestrial and marine driver of BIT indices (Smith et al., 2012), i.e. more brGDGTs 377 

reflect increased terrestrial input. Here, however, not only is there considerable uncertainty 378 

in the accumulation rates through the lithological cycle (Nijenhuis and de Lange, 2000), but 379 

also, increased fluvially-derived nutrients could both supply additional terrestrial OM 380 

(additional brGDGTs) and also stimulate primary productivity, yielding higher concentrations 381 



 

 

of crenarchaeol (Zell et al., 2015). GDGT concentrations, therefore, cannot be used to 382 

distinguish between these two explanations, because accumulation rates cannot be 383 

considered constant (variable brGDGT concentrations before the slump; Fig. 4d). However, 384 

increased run-off can explain the increased BIT indices in marls due to increased terrestrial 385 

OM input (Fig. 4c), while there is no obvious mechanism for an increase in crenarchaeol 386 

production during limestone deposition. Therefore, we argue that, the higher marl BIT indices 387 

are indicative of elevated terrigenous OM inputs (e.g. Hopmans et al., 2004).  388 

Other OM proxies e.g. TARn-alkanoic acid (Fig. 4c and Fig. 5e) and n-alkane concentrations 389 

have similar but less consistent relationships with lithology (Fig. 5a and Fig. 6). One 390 

explanation for these more ambiguous records is that they are more sensitive to changes in 391 

relative preservation and within-cycle sedimentation rate changes than BIT indices. 392 

Furthermore, these ratios are comprised of end-members (especially the aquatic end-393 

member) with a broad range of terrestrial and marine sources (Meyers and Arnaboldi, 2008). 394 

Finally, it appears that n-alkyl lipids derive from both fluvial inputs, which would be expected 395 

to track other hydrological indicators, and aeolian inputs (see section 4.3) and this mixture of 396 

controls further complicates the interpretation of these data. We therefore suggest that BIT 397 

indices best record the changes in OM source (i.e. Strong et al., 2012), but that other 398 

biomarkers (e.g. TARn-alkanes; HMW n-alkane abundances), also show similar relationships. 399 

As a consequence of the insolation control on lithology (Krijgsman et al., 2002), the BIT 400 

indices also vary with insolation and are commonly higher during times of high insolation (Fig. 401 

4c) when the marls were deposited. Numerical simulations with an ocean-atmosphere-402 

vegetation general circulation model (GCM; Marzocchi et al., 2015 and see supplementary 403 

material) show a large increase in run-off from North Africa during the precession minimum 404 

(insolation maximum; Fig. 8b), which is consistent with elevated terrigenous OM inputs during 405 



 

 

marl deposition. A substantial component of this North African fluvial input is delivered to the 406 

Eastern Mediterranean via the Nile, which could therefore have exerted a strong control on 407 

sedimentary processes at Pissouri (Fig. 1). Given the proximity of Cyprus to the Nile cone, the 408 

systematic changes in BIT indices with lithology, record the variability of fluvial input to the 409 

Eastern Mediterranean. 410 

The relationship between insolation and BIT indices explains only half of its variability 411 

(R2=0.5) and the relationships are weaker within the individual marl and limestone datasets 412 

(R2=0.24, R2=0.26 respectively). These low regression coefficients suggest that insolation does 413 

not generate a systematic gradational change in BIT indices, but instead describes a bi-modal 414 

shift in the BIT-insolation relationship between the extremes of the insolation curve.  Samples 415 

with >0.6 BIT indices derive from parts  of the precession cycles associated with insolation 416 

>500 W/m2 (these are all marls) while those with <0.3 BIT indices are associated with 417 

insolation of <480 Wm2 (all but one of these are limestones). 418 

4.3 Insolation-driven changes in plant inputs inferred from n-alkane isotopes 419 

The correlation between BIT indices and astronomically-controlled lithology suggests 420 

that both the quantity and the nature of the terrestrial organic matter being supplied from 421 

North Africa could change as the ITCZ shifts position, reflecting changes in the aridity/humidity 422 

of the North African catchment. One mechanism for monitoring this is through n-alkane δ13C 423 

values, which increase in response to the proportion of aridity-adapted C4 plants in the 424 

depositional system (Schwab et al., 2015). There is clear evidence of a global expansion of C4 425 

plants from 8 Ma onwards although this appears to have been delayed by ~2 Myr in the 426 

Eastern Mediterranean region (Edwards et al., 2010), post-dating the Pissouri section. These 427 

observations dictate caution in the interpretation of even cyclic variations in leaf wax δ13C 428 



 

 

values. If the expansion exclusively post-dated the deposition of the study interval, we would 429 

expect little leaf wax δ13C sensitivity. However, this is not the case (Fig. 6). The observed 430 

variation in δ13C could therefore result from two interrelated factors: i) superimposed on this 431 

long-term C3-C4transition are localised, shorter-term variations, perhaps amplified during the 432 

global ecological transition and reflecting regional changes in precipitation and the advantage 433 

C4-plants have over C3-plants in semi-arid regions (Rommerskirchen et al., 2006); or ii) changes 434 

in precipitation driving similar carbon isotopic variation, although of smaller magnitude, in C3 435 

plants (Diefendorf et al., 2015). Consequently, δ13C values of n-alkanes are expected to be less 436 

negative during insolation minima, i.e. limestone deposition, when the ITCZ shifts further 437 

south, due either to more enriched C3 plants and/or a higher proportion of C4 plants (Fig. 9). 438 

However, this is not what we observe in the Pissouri section (Fig. 6), where the δ13C values for 439 

the n-alkanes of the limestones are consistently more negative than most (~80%) of the marls 440 

(Fig. 6). 441 

It is possible that rather than recording C3/C4 vegetation change driven by humidity, the 442 

n-alkane δ13C values of the Pissouri samples are responding to other factors, such as 443 

temperature (Yamori et al., 2014) or pCO2 variations (Bolton et al., 2016; Freeman and 444 

Colarusso, 2001). However, while we cannot be sure that these low resolution records capture 445 

the full range of precessional temperature variation, there is little evidence for pronounced 446 

temperature fluctuations with insolation (Fig. 7) that could account for the pattern of n-alkane 447 

δ13C observed (Fig. 6). Equally, although there is evidence of pCO2 decline during the Late 448 

Miocene to Early Pliocene (Bolton et al., 2016), the resolution of this record is far too low (4 449 

samples covering 6-8 Myr) to provide any indication that precessional fluctuations in pCO2 450 

could account for the n-alkane δ13C record at Pissouri. 451 

To explore this further, we have compared our data with inferred insolation assuming 452 



 

 

little pCO2 variations, and this reveals δ13C variations within and between the two lithologies. 453 

Within the limestone dataset, there is a clear positive relationship between insolation and the 454 

carbon isotopic composition of the long-chain n-alkanes, especially n-C29 and n-C31 (Fig. 10). 455 

It appears that at higher insolation (between 480 and 500 W/m2), δ13C values become 456 

relatively stable, such that figure 10 shows two possible linear regressions for the relationship 457 

between insolation and n-alkane δ13C values based on either all or a subset of the limestone 458 

data. The carbon isotopic compositions of the marls do not lie on the same insolation-δ13C 459 

regression line as the limestones, but deviate from it towards more negative values (Fig. 10) 460 

and show no systematic relationship with insolation. 461 

As discussed above, the positive relationship between insolation and n-alkane δ13C 462 

values in the limestones is unexpected, differing with model simulations of decreased rainfall 463 

and expansion of C4 plants during insolation minima (Fig. 9). By extension, it is apparently 464 

inconsistent with our BIT indices which indicated decreased terrestrial OM inputs (i.e. 465 

decreased run-off) during insolation minima. Instead, the insolation-δ13C relationship during 466 

the limestone deposition interval of each precessional cycle (e.g. during precession maxima 467 

and insolation minima), can be explained by enhanced aeolian transport of n-alkanes from 468 

the northern margin of the Mediterranean which experienced more arid conditions during 469 

insolation maxima (Fig. 9; Marzocchi et al., 2015 and see supplementary material). Such an 470 

interpretation is reflected in the vegetation changes seen in the GCM simulations in the 471 

Anatolian Plateau (Fig.9); therefore, it appears that the n-alkane δ13C records in the limestones 472 

document a persistent source from the north that experienced changing vegetation, where, 473 

in contrast with North Africa, there was more precipitation during insolation minima than 474 

insolation maxima.  475 

This relationship, however, only holds during the extreme part of the precession cycle 476 



 

 

that includes the insolation minima. We suggest that during this interval, when run-off from 477 

North Africa was presumably lower (Fig. 4), Pissouri was largely unaffected by North African 478 

run-off and aeolian input dominated the terrestrially-derived organic matter incorporated into 479 

the sediment. During insolation maxima, by contrast, the n-alkanes from the tropical rain 480 

forests of North Africa (Holtvoeth et al., 2003) supplied the Pissouri depositional system via 481 

enhanced Nile River input (Fig.9). This drove the n-alkane δ13C values lower (Fig. 10) 482 

overprinting the signal from the Anatolian Plateau. 483 

4.4 Long-term trends 484 

Continuous dry environments have been postulated for the lead up to the MSC 485 

(Fauquette et al., 2006), inferred from Eastern Mediterranean pollen records. These show an 486 

increase in Pinus and Cthaya and a decrease in tropical and sub-tropical taxa, which Faquette 487 

et al. (2006) attribute to sea-level change and associated coastline variations. The increase of 488 

nonacosan-10-ol concentrations which are thought to derive from pine trees (Jetter and 489 

Riederer, 1995) at the top of the section could also therefore indicate a sea-level fall (Fig. 5c).  490 

The dry conditions inferred from the pollen data are consistent with the small increase 491 

in n-alkane δ13C values above the slump layer (Fig. 6), especially in the longest n-alkanes (C33), 492 

that may indicate an increase in the proportion of C4-plants due to increasing aridity or an 493 

increase in CO2; both are favourable for a C4 plant expansion (Freeman and Colarusso, 2001; 494 

Bolton et al., 2016; Huang et al., 2007). It is also consistent with the long-term decrease in 495 

limestone BIT indices (Fig. 4c), perhaps suggesting a decrease in run-off during the dry 496 

extreme of the precession cycle.  497 

However, the BIT record exhibits additional complexity, with three major trends/shifts 498 

in the 600 kyr preceding the MSC: first, the decrease in limestone BIT indices; second, the 499 



 

 

sharp decrease in marl BIT directly underneath the slump interval; and third, the increase in 500 

marl BIT above the slump interval (Fig. 4c). The long-term decrease in BIT indices probably 501 

reflects a gradual decrease of terrestrial OM inputs associated with increasing aridity during 502 

the 500 kyr before the onset of the MSC, but an increase in crenarchaeol input cannot be 503 

excluded (Fig. 4c). The concentrations of n-alkanes also exhibit a long-term decline, but reach 504 

their lowest values below the slump layer (Fig. 5b) before increasing in the upper part of the 505 

section; TARn-alkanoic-acids exhibit similar trends.  Therefore, in the final ~100 kyr before the MSC, 506 

there appears to be divergence in the behaviour of different terrigenous OM inputs.  507 

Marine faunal and floral data from Pissouri provides some insights as to the causes of 508 

these long-term changes and the environmental conditions that influenced Pissouri. 509 

Kouwenhoven et al. (2006) document a collapse in nannoflora at about 20 m (e.g. 6.25 Ma, 510 

where the marl BIT indices decline; Fig. 5e) and a recovery just above the slump. Those 511 

authors suggest that the abrupt decline in nannoflora may have been caused by a salinity 512 

increase. The decline is associated with a sharp increase in the abundance of the calcareous 513 

dinocyst: Thoracosphaera (Fig. 5e; Kouwenhoven et al., 2006). This dinocyst has been 514 

described from the K/T boundary where its abundance immediately after the boundary has 515 

suggested that it survived and then exploited a stressful environment as a result of either 516 

considerable warming, fluctuation in salinity and pH, or higher CO2 (Kouwenhoven et al., 2006 517 

and references thierein). Of these possible causes, the occurrence of Thoracosphaera at 518 

Pissouri probably implies higher and more fluctuating salinity conditions from 6.25 Ma 519 

onwards, in line with Mediterranean-wide indicators of rising salinity in the lead up to the 520 

MSC (e.g. Sierro et al., 2001). An increase in salinity, if driven by decreased freshwater inputs, 521 

would be consistent with the decline in BIT indices, TARn-alkanes and nonacosan-10-ol 522 

abundances from 6.5 Ma to near the top of the slump at ~6.1 Ma (Fig. 4 and Fig. 5).  523 



 

 

Immediately above the slump, Thoracosphaera abundance drops and the nannoflora 524 

diversity and abundance recovers, suggesting a less extreme environment (Kouwenhoven et 525 

al., 2006). Less saline conditions are consistent with the sharp increase in marl BIT indices, an 526 

increase in TARn-alkanes indices and the return to pre-6.25 Ma levels of brGDGT abundance 527 

above the slump. The high variability in GDGTs and the sharp drop in marl BIT indices at 6.25 528 

Ma (Fig. 4c) are also consistent with fluctuating salinity conditions in the Mediterranean 529 

before the onset of the MSC at 5.971 Ma. Thoracosphera exhibits a similar increase 530 

immediately before the MSC, again indicating increasing salinity. 531 

Our new data are consistent with a long-term drying in the surrounding catchment, an 532 

associated change in vegetation, a decrease in run-off and an associated increase in 533 

Mediterranean salinity.  However, the expression of these changes varies between proxy 534 

records, perhaps suggesting decoupling of simple rainfall, runoff and salinity relationships.  Of 535 

course, this is to be expected as the MSC is not thought to have been caused solely by climate 536 

change but also tectonic changes impacting the Mediterranean Sea’s connection to the 537 

Atlantic Ocean (Flecker et al., 2015; Achalhi et al., 2016). It appears that a combination of 538 

these processes, strongly modulated by orbital forcing, dictated the evolution of 539 

Mediterranean climate in the 600 kyr interval leading up to the MSC.  540 

5 Conclusions 541 

The analysis of biomarker distributions and carbon isotopic compositions in the Pissouri 542 

section reveals a strong relationship with lithology and, therefore, they are also inferred to 543 

respond to precession-driven insolation variation during the 600 kyr preceding the MSC. The 544 

sediments deposited during inferred insolation maxima (marls) contain a greater proportion 545 

of terrestrially-derived organic matter than those deposited during insolation minima 546 



 

 

(limestones). BIT indices support the hypothesis that the Eastern Mediterranean experienced 547 

large changes in run-off from Northern African catchments during each precessional cycle. 548 

Leaf wax δ13C values indicate that North Africa is not the only source of terrestrially-derived 549 

organic matter and that Pissouri also received material from the northern margin of the 550 

Mediterranean, probably the Anatolian Plateau in Turkey via aeolian inputs. The δ13C data 551 

suggest that this area was characterised by more arid vegetation, which also varied with 552 

precession such that more arid conditions prevailed during periods of higher insolation, in line 553 

with climate models. This arid material was supplied to Pissouri throughout the succession, 554 

but it only dominates the carbon isotope signature of leaf waxes during low insolation when 555 

the influence of the Nile was reduced as a result of lower discharge. The long-term trends in 556 

the data indicate that the increasing salinity of the looming Messinian Salinity Crisis was 557 

already apparent in the Pissouri section in the biomarker data more than 600 kyr before the 558 

first gypsum precipitated and was especially clear and influential during the last 100 kyr. 559 
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8 Figures  727 

 728 

Figure 1: Map showing the inflow of the Nile into the Mediterranean and the location 729 

of the Pissouri Section on Cyprus (34°40'01.9"N; 32°38'48.8"E). A photograph of the section 730 

before it was sprayed with concrete is given on the right. 731 
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 733 

Figure 2: Schematic log of the Pissouri section (a) with alternating harder (grey and 734 

softer (brown)layers  alongside (b) the insolation curve (Laskar et al., 2004)  and (c) the calcium 735 

carbonate content of the sediment which was used for astronomical tuning of the section 736 

(Krijgsman et al., 2002). The biostratigraphic tie points (blue triangles) shown from Krijgsman 737 

et al. (2002) are: (8) the LO of the G. miotumida group (6.506 Ma); (9) the sinistral/dextral 738 

coiling change of Neogloboquadrina acostaensis (6.337 Ma); and (10) the first infux (>80%) of 739 

sinistral neogloboquadrinids (6.126 Ma). The palaeomagnetic tie points (blue triangles) are 740 

C3r-C3An.1n (6.03 Ma) C3An.1n-C3An.1r (6.25 Ma) C3An.1r-C3An.2n (6.44 Ma; Krijgsman et 741 

al., 2002). The vertical grey bar reflects >75% carbonate content, the formal definition of a 742 



 

 

limestone (Sugden and McKerrow, 1962). A slump layer (brown bar) interrupts the cyclic 743 

limestone-marl alternations between 7 and 10 m depth (Krijgsman et al., 2002).  744 
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 746 

Figure 3: Representative HPLC-APCI-MS chromatogram of a Pissouri limestone (RF-7018; 747 

data table) showing both br- and iGDGTs with their respective m/z. Note that the brGDGT 748 

peak in this particular total ion content trace is dominated by GDGT-Ia  749 
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 751 

Figure 4: A schematic log (a) of the Pissouri section (Krijgsman et al., 2002) showing 752 

sampled levels:  limestones (red squares) and marls (black squares). Aligned with the log are 753 

(b) the 65N insolation curve (Laskar et al., 2004) with the specific cycle used for the General 754 

Circulation Model simulations indicated in blue (Marzocchi et al., 2015), (c) BIT indices, 755 

including the long-term trend through the limestone data, (d) brGDGT abundances and (e) 756 

counts for the calcareous dinocyst Thoracosphaera sp. (Kouwenhoven et al., 2006).  757 
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 759 

Figure 5: Alkyl biomarker records through the Pissouri section including (a) HMW n-760 

alkane (C29+C31+C33) concentrations; (b) the TARn-alkanes with a three point running average; the 761 

(c) nonacosan-10-ol concentrations; (d) the CPI of the n-alkanes with the excluded sample 762 

R.F.713f highlighted; and (e) the TARn-alkanoic acid. Grey shading indicates higher marl values 763 

relative to limestones, whereas magenta indicates higher values for limestones than adjacent 764 

marls. 765 
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 767 

Figure 6: Age profiles of the (a) C29, (b) C31, and (c) C33 n-alkane δ13C values as well as 768 

that of (d) the combined abundances of those three n-alkanes. The stable carbon isotopic 769 

composition of leaf waxes are dependent on the biosynthetic pathway of the source plant 770 

(O'Leary, 1981). A typical distribution for δ13C values of C29-C31 n-alkanes from leaf waxes of 771 

C3 and C4 plants is given as green shading (modified after Rommerskirchen et al., 2006).  772 



 

 

 773 

Figure 7: The SST profile (a) derived from GDGTs (TEX86, this study) at Pissouri and 774 

alkenones (UK’37, Tzanova et al., 2015) from Monte dei Corvi, Italy. TEX86 data are limited to 775 

those samples with BIT < 0.4 from Pissouri. Also shown are limestone and marl BIT indices (b; 776 

with BIT <0.4 shaded in turquoise) and (c) limestone and marl MBT’/CBT-derived MAT (Peterse 777 

et al., 2012) for samples with BIT>0.3. The shaded area in grey marks the decrease in marl BIT 778 

area. 779 
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 781 

Figure 8: Climate Model-derived run-off into the Mediterranean as a whole (black line) 782 

and Eastern Mediterranean (red line) and its relationship with precession-forced insolation 783 

over one precession cycle (Marzocchi et al., 2015 and see supplementary material). The bar 784 

chart shows the average and standard deviation of the BIT indices in the limestones and the 785 

marls throughout the entire section.  786 



 

 

 787 

Figure 9: Precipitation differences between precession minima (insolation maxima) and 788 

precession maxima (insolation minima) across N. Africa and the Mediterranean, simulated 789 

using HadCM3L with coupled ocean, atmosphere and vegetation (Marzocchi et al., 2015). The 790 

four smaller panels show vegetation changes between precession minima and precession 791 

maxima for broadleaf trees, needle leaf trees, C3-plants and C4-plants (Marzocchi et al., 2015 792 

and see supplementary material).  793 
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 795 

Figure 10: Cross-plot of insolation versus leaf wax δ13C values, showing the different 796 

relationships for the marls (black) and the limestones (red) for a) C29 and b) C31 n-alkanes. The 797 

linear regressions of the limestones are indicated (red for all limestones and black for 798 

limestones beneath 480 W/m2, above which the relationship appears to break down). Both 799 

regressions are extrapolated to higher insolation by dashed lines. The offset of the leaf wax 800 

δ13C values to lower values in the marls is indicated with the grey arrow. The absolute 801 

insolation is derived from astronomical tuning of the Pissouri Section (Krijgsman et al., 2002).  802 


