
                          Khorashadi Zadeh, F., Nossent, J., Sarrazin, F., Pianosi, F., Van Griensven,
A., Wagener, T., & Bauwens, W. (2017). Comparison of variance-based and
moment-independent global sensitivity analysis approaches by application to
the SWAT model. Environmental Modelling and Software, 91, 210-222.
https://doi.org/10.1016/j.envsoft.2017.02.001

Peer reviewed version

License (if available):
CC BY-NC-ND

Link to published version (if available):
10.1016/j.envsoft.2017.02.001

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via Elsevier at http://www.sciencedirect.com/science/article/pii/S1364815217301159. Please refer to any
applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/96780666?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.envsoft.2017.02.001
https://doi.org/10.1016/j.envsoft.2017.02.001
https://research-information.bris.ac.uk/en/publications/comparison-of-variancebased-and-momentindependent-global-sensitivity-analysis-approaches-by-application-to-the-swat-model(f098695e-53f1-4b1f-b74c-4749e662934f).html
https://research-information.bris.ac.uk/en/publications/comparison-of-variancebased-and-momentindependent-global-sensitivity-analysis-approaches-by-application-to-the-swat-model(f098695e-53f1-4b1f-b74c-4749e662934f).html


1 
 

Comparison of variance-based and moment-independent global sensitivity analysis 

approaches by application to the SWAT model 

 

FARKHONDEH KHORASHADI ZADEH (1)*, JIRI NOSSENT (1,2), FANNY SARRAZIN (3), FRANCESCA PIANOSI (3), 

ANN VAN GRIENSVEN (1,4), THORSTEN WAGENER (3,5) & WILLY BAUWENS (1) 

(1)Vrije Universiteit Brussel (VUB), Department of Hydrology and Hydraulic Engineering, Pleinlaan 2, 1050 Brussel, Belgium,  

(2)Flanders Hydraulics Research, Department of Mobility and Public Works, Flemish Government, Antwerp, Belgium 

(3) Department of Civil Engineering, University of Bristol, University Walk, BS81TR, Bristol, UK 

(4)UNESCO-IHE Institute for Water Education, Core of Hydrology and Water Resources, The Netherlands 

(5)Cabot Institute, Royal Fort House, University of Bristol, Bristol, BS8 1UJ, UK 

* Corresponding author: F. Khorashadi Zadeh, e-mail: Farkhondeh.Khorashadi.Zadeh@vub.ac.be  

 

Abstract 

Global Sensitivity Analysis (GSA) is an essential technique to support the calibration of environmental models by 

identifying the influential parameters (screening) and ranking them. 

In this paper, the widely-used variance-based method (Sobol’) and the recently proposed moment-independent 

PAWN method for GSA are applied to the Soil and Water Assessment Tool (SWAT), and compared in terms of 

ranking and screening results of 26 SWAT parameters. In order to set a threshold for parameter screening, we 

propose the use of a “dummy parameter”, which has no influence on the model output. The sensitivity index of the 

dummy parameter is calculated from sampled data, without changing the model equations. We find that Sobol’ and 

PAWN identify the same 12 influential parameters but rank them differently, and discuss how this result may be 

related to the limitations of the Sobol’ method when the output distribution is asymmetric. 

Keywords: Global sensitivity analysis, Moment-independent method, Variance-based method, PAWN, Sobol’, SWAT  
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Software /data availability 

The PAWN method is implemented in the SAFE Matlab/Octave Toolbox for GSA (Pianosi et al., 2015). SAFE is freely 

available for non commercial purposes at www.bristol.ac.uk/cabot/-resources/safe-toolbox/.  

The Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) is a public domain environmental simulator. The 

SWAT model as developed by Leta (Leta, 2013; Leta et al., 2015) for the River Zenne (Belgium) is used in this study.  
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1. Introduction 

Due to advancements in the understanding of natural processes and their interactions, and due to the advancements 

in software engineering and the increased computational power, environmental modelling tools have become more 

complex over the past decades (e.g. Arnold et al., 1998; Rossman, 2009; DHI, 2011). In general, such complex 

simulators contain many parameters, most of which cannot be measured directly and can only be inferred by 

calibration to observed system responses (Yapo et al., 1998; Vrugt et al., 2002). Consequently, parameter estimation 

has become a major issue, which may limit the applicability of complex simulators (van Griensven et al., 2006). A 

manual calibration of a model with a large number of parameters is very tedious and time consuming (Vrugt et al., 

2003). On the other hand, the efficiency of automatic calibration algorithms is reduced when the number of 

parameters is large (Duan et al., 1992). In fact, it is not feasible to include all the model parameters in the calibration 

process (Bekele and Nicklow, 2007; Nossent et al., 2011). In order to support the choice of which model parameters 

should be the focus of calibration, and which ones could be instead excluded from calibration (and set to ‘default’ 

values), Global Sensitivity Analysis (GSA) is becoming popular in environmental modeling practices (e.g. Muleta and 

Nicklow, 2005; Van Werkhoven et al., 2009; Norton, 2015; Pianosi et al., 2016). GSA indeed allows for the 

identification of the parameters that have the largest influence on a set of model performance metrics (so called 

‘factor prioritization’) and the identification of non-influential parameters (‘factor fixing’) (Saltelli et al., 2008; Nossent et 

al., 2011). Other uses of GSA include the understanding and the interpretation of the model behavior, the 

prioritization of efforts for uncertainty reduction and the model simplification (Nossent et al., 2011; Pianosi et al., 

2016).   

The Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) is a particular example of a relatively complex 

environmental simulator, which has been widely applied all over the world for watershed management purposes (e.g. 

Gassman et al., 2010; van Griensven et al., 2012; Bressiani et al., 2015). In SWAT, different watershed processes, 

including surface runoff, groundwater flow, plant growth, and pesticide and nutrient conversion and transport, are 

controlled by a large number of parameters (more than 100). Even when some of these parameters can be fixed a 

priori, calibration of SWAT remains quite challenging given the relatively large number of parameters (26 in our case) 

that are typically left to be varied simultaneously. Therefore, GSA is often applied prior to the calibration process to 

identify the most influential parameters and the non-influential ones (Cibin et al., 2010; Nossent et al., 2011; Leta et 

al., 2015).    

Many different GSA methods have been developed (Sobol’, 1990; Saltelli et al., 2000; van Griensven et al., 2006; 

Borgonovo, 2007; Pianosi and Wagener, 2015). Among them, the most  well-established and widely-applied one is 
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probably the variance-based method of Sobol’ (Sobol’, 1990; applications to environmental models include 

Pappenberger al., 2008; van Werkhoven et al., 2008; Nossent et al., 2011; Rosolem et al., 2012;; Gan et al., 2014). 

In general, variance-based methods seek to measure sensitivity to an uncertain input (parameter) using the 

contribution of that input to the total variance of the model output (a metric of model performance, in the context of 

model calibration). A well-known merit of variance-based methods is their ability to quantify the individual parameter 

contribution and the contribution resulting from parameter interactions, independently from assumptions on the form 

of the input-output relation (e.g. linearity and additivity). Moreover, variance-based sensitivity indices are easy to 

interpret, as they represent the fraction of the output variance caused by the variation of an input (Saltelli, 2002b). 

Variance-based GSA methods use the variance - i.c. the second moment- as a measure of the output uncertainty, 

and as Saltelli (2002b) underlined, “implicitly assume that this moment is sufficient to describe the output variability”. 

However, it has been recognized that the variance does not adequately represent output uncertainty when the model 

output is highly-skewed or multi-modal (Liu et al., 2006; Borgonovo et al., 2011; Pianosi and Wagener, 2015). To 

overcome this limitation, moment-independent GSA measures have been developed (Liu et al., 2006; Borgonovo 

2007; Pianosi and Wagener, 2015). These methods -also known as density-based methods- use the entire output 

distribution to fully characterize the output uncertainty and to quantify the relative influence of the uncertain 

parameters. The main advantage of these methods, as compared to variance-based ones, is that they do not use a 

specific moment of the output distribution to measure the output variability and, therefore, are applicable regardless of 

its shape (e.g. symmetric or highly-skewed).  

Pianosi and Wagener (2015) have proposed a moment-independent GSA method, called PAWN. It measures 

sensitivity based on the difference between the unconditional output distribution, obtained when all the parameters 

are free to vary, and the conditional output distribution, obtained when one of the parameters is fixed. Hereby, a 

Cumulative Distribution Function (CDF) is used to characterize the output distribution, whereas other density-based 

methods (e.g. the entropy-based method (Liu et al., 2006) and the δ-sensitivity measure (Borgonovo, 2007)) used the 

Probability Density Function (PDF). The main advantage of the PAWN method is that approximating CDFs by using 

empirical distributions of the data sample is much easier than approximating PDFs, because, it does not require any 

parameter tuning. This facilitates the analysis of the robustness and the convergence of the estimated sensitivity 

indices (Pianosi and Wagener, 2015). 

In Pianosi and Wagener (2015), the PAWN method was tested on a simple conceptual hydrological model with only 5 

parameters. To further investigate its effectiveness and efficiency, it is necessary to apply it to a more complex 

simulator with a higher number of parameters, such as SWAT, and to compare its results with those of another GSA 
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method. The main objective of this paper is therefore to evaluate and compare the application of the Sobol’ and 

PAWN methods to a SWAT model. In particular, the two methods will be compared in terms of the rate of 

convergence of the respective sensitivity indices, and their results for parameter ranking and screening. To this end, 

26 parameters of a SWAT model of the upstream sub-catchment of the River Zenne (Belgium) are analysed. As 

model outputs for sensitivity analysis, we consider two performance metrics for simulating daily river flows at the 

catchment outlet: the Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) and the mean error (ME). In 

performing parameter screening, we propose to calculate the sensitivity index of a “dummy parameter”, which has no 

influence on the model output. The sensitivity index of this dummy parameter is used as a threshold to identify non-

influential parameters. It is calculated numerically using sample data, without adding the dummy parameter explicitly 

to the model. The “dummy parameter approach” provides a practical way to sensibly define a threshold for screening, 

which is an unresolved issue increasingly discussed in recent GSA literature for both Sobol’ and PAWN (e.g. Fanny 

et al., 2016). However, for the PAWN method, in particular, its effectiveness can be demonstrated by validating the 

screening results using the two-sample Kolmogorov-Smirnov statistical test (Smirnov, 1948).  

2. Materials and methods 

2.1. The variance-based Sobol’ method  

Sobol’ (Sobol', 1990) is a “global, quantitative and model free” GSA method (Saltelli, 2002b), which also works 

properly for non-linear and non-monotonic models. In this method, the contributions of each parameter to the total 

model output variance, either by variation of the parameter itself or by interactions with other parameters, are 

quantified and expressed as Sobol’ sensitivity indices. These indices provide a quantitative measure of the 

importance of the parameters and can be used for both factor fixing and factor prioritization (Saltelli et al., 2008).  

To further describe the Sobol’ method, the following generic model description is used: 

𝑌 = 𝑓(𝑋) = 𝑓(𝑋1, … , 𝑋𝑝 ) (1) 

where  𝑋 = (𝑋1, … , 𝑋𝑝 ) is the set of 𝑝 model parameters and 𝑌 is a scalar model output. For dynamic models, like the 

SWAT simulator used in this paper, the term “model output” does not refer to the entire simulated time series, but 

rather to a scalar variable summarizing those time series. In our application, for example, model outputs are two 

performance metrics measuring the distance between the simulated variable (river flow) and the observations. 

The Sobol’ method is based on the total variance decomposition (Sobol’, 2001), i.e. 



6 
 

𝑉(𝑌) =∑𝑉𝑖 +∑ ∑ 𝑉𝑖𝑗 +⋯+ 𝑉1,…,𝑝

𝑝

𝑗=𝑖+1

𝑝−1

𝑖=1

𝑝

𝑖=1

 (2) 

where 𝑉𝑖 is the variance contribution of individual parameter 𝑋𝑖 to the total variance, 𝑉𝑖𝑗 is a part of the total variance 

caused by the interaction between 𝑋𝑖 and 𝑋𝑗 and 𝑉1,…,𝑝 is the variance due to the interaction between all parameters. 

The partial variance 𝑉𝑖 is called the first-order or main effect of 𝑋𝑖 on 𝑌. In the Sobol’ method, the first-order sensitivity 

index 𝑆𝑖 is obtained by normalizing the main effect 𝑉𝑖 by the total variance 𝑉(𝑌): 

𝑆𝑖 =
𝑉𝑖
𝑉(𝑌)

 (3) 

The first-order sensitivity index 𝑆𝑖 can be described as the reduction of the total model output variance that would be 

obtained on average when the uncertainty about 𝑋𝑖 would be removed by setting 𝑋𝑖 to a fixed value (Tarantola et al., 

2002). 

Similarly, the higher order sensitivity indices, which characterize the interactions between the parameters, are 

calculated using the higher order partial variances (Sobol’, 2001). Homma and Saltelli (1996) explicitly introduced the 

concept of total effect of the parameter 𝑋𝑖 on 𝑌, which accounts for the total contribution of parameter 𝑋𝑖 to the output 

variance. Therefore, the total sensitivity index 𝑆𝑇𝑖 is the sum of the main effect of 𝑋𝑖 and all its interactions with the 

other parameters up to the 𝑝𝑡ℎ order. To calculate the total sensitivity index 𝑆𝑇𝑖, the variance 𝑉~𝑖, which is the total 

contribution of all parameters, except 𝑋𝑖,  is used (Homma and Saltelli, 1996): 

𝑆𝑇𝑖 = 1 −
𝑉~𝑖
𝑉(𝑌)

 (4) 

The total sensitivity index 𝑆𝑇𝑖 represents the fraction of the total output variance that would remain on average as long 

as 𝑋𝑖 stays unknown (Tarantola et al., 2002).    

For an additive model and under the assumption of independent model parameters, 𝑆𝑇𝑖 and 𝑆𝑖 are equal and the sum 

of all 𝑆𝑖 (and all 𝑆𝑇𝑖) is 1. For a non-additive model, where parameter interaction exists, 𝑆𝑇𝑖 is greater than 𝑆𝑖 and the 

sum of all 𝑆𝑖 is less than 1, while the sum of all 𝑆𝑇𝑖 is greater than 1. Therefore, the difference between 𝑆𝑇𝑖 and 𝑆𝑖 

represents the interaction between parameter 𝑋𝑖  and the other parameters (Saltelli, 2002b). Obviously, the same 

information could be obtained by calculating all partial variances in Equation (2). However, for a large number of 

parameters, this leads to a high computational cost (Rabits and Alis, 2000). For this reason, in the applications of 

variance-based methods, it is very common to only compute the set of all 𝑆𝑖 and 𝑆𝑇𝑖, which provides a quite good  

representation of  the model sensitivities at a more reasonable cost (Saltelli, 2002b).   
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In practice, for complex and non-linear models, calculating the variances using analytical integrals is usually 

impossible. The main breakthrough in the Sobol’ method was the computation algorithm that allows the direct 

estimation of the variance-based sensitivity indices from a set of values of 𝑓(𝑋) only, rather than the analytical 

solution (Sobol’, 2001). The algorithm was further extended by Homma and Saltelli (1996) and Saltelli (2002a). It 

uses Monte Carlo integration, which is a numerical integration based on repeated random samples of the model 

output. Evidently, Monte Carlo integrals are closer to their converged value when more samples are used (Gan et al., 

2014).  

To estimate the sensitivity indices using Monte Carlo integrals, two independent parameter sample matrices are 

generated. These matrices are denoted as 𝑀1, the “sample” matrix, and 𝑀2, the “re-sample” matrix (Saltelli, 2002a): 

𝑀1 =

(

 
 

𝑋11    𝑋12    …    𝑋1𝑝
𝑋21    𝑋22    …    𝑋2𝑝
…     𝑋22    …    𝑋2𝑝
𝑋𝑁1    𝑋𝑁2    …    𝑋𝑁𝑝)

 
 
 ,           𝑀2 =

(

 
 

𝑋11
,      𝑋12

,     …    𝑋1𝑝
,

𝑋21
,      𝑋22

,     …    𝑋2𝑝
,

…     𝑋22    …    𝑋2𝑝
𝑋𝑁1
,      𝑋𝑁2

,     …    𝑋𝑁𝑝
,

)

 
 

 (5) 

where 𝑁 is the sample size and 𝑝 is the number of parameters. 

The total model output variance 𝑉(𝑌) is estimated using 𝑀1and 𝑀2, as: 

�̂�(𝑌) =
1

2𝑁 − 1
∑{𝑓2(𝑋𝑟1,  𝑋𝑟2,  … , 𝑋𝑟𝑝

𝑁

𝑟=1

) + 𝑓2(𝑋𝑟1
, ,  𝑋𝑟2

, , … , 𝑋𝑟𝑝
, )} − 𝑓0

2 (6) 

where …̂ stands for the estimate, 𝑓(𝑋𝑟1,  𝑋𝑟2,  … , 𝑋𝑟𝑝) and 𝑓(𝑋𝑟1
, ,  𝑋𝑟2

, , … , 𝑋𝑟𝑝
, ) are the model output evaluated against 

the parameter combinations in the sample matrix 𝑀1  and the re-sample matrix 𝑀2 , respectively, and 𝑓0̂  is the  

expected value of the model output, estimated using the following equation ( Homma and Saltelli, 1996). 

𝑓0
2 =

1

𝑁
∑𝑓(𝑋𝑟1,  𝑋𝑟2,  … , 𝑋𝑟𝑝

𝑁

𝑟=1

) × 𝑓(𝑋𝑟1
, ,  𝑋𝑟2

, , … , 𝑋𝑟𝑝
, ) (7) 

The partial variance 𝑉𝑖, representing that part of the total variance 𝑉(𝑌) that is caused by 𝑋𝑖 individually, is estimated 

by: 

�̂�𝑖 =
1

𝑁 − 1
∑{𝑓(𝑋𝑟1,  𝑋𝑟2,  … , 𝑋𝑟𝑝

𝑁

𝑟=1

) × 𝑓(𝑋𝑟1
, ,  𝑋𝑟2

, , … ,  𝑋𝑟(𝑖−1)
, ,  𝑋𝑟𝑖 ,  𝑋𝑟(𝑖+1)

, , … , 𝑋𝑟𝑝
, )} − 𝑓0

2 (8) 

where 𝑓(𝑋𝑟1
, ,  𝑋𝑟2

, , … ,  𝑋𝑟(𝑖−1)
, ,  𝑋𝑟𝑖 ,  𝑋𝑟(𝑖+1)

, , … , 𝑋𝑟𝑝
, ) is the model output computed from a matrix where all parameters are 

from M2, except 𝑋𝑖 , which comes from M1. Therefore, to calculate �̂�𝑖  for all 𝑝 parameters, 𝑝 sets of new 𝑁 model 

evaluations are needed. 

In order to calculate the total sensitivity index, the variance 𝑉~𝑖 (see Equation (4)), is estimated by: 
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�̂�~𝑖 =
1

𝑁 − 1
∑{𝑓(𝑋𝑟1

, ,  𝑋𝑟2
, , … , 𝑋𝑟𝑝

, )

𝑁

𝑟=1

× 𝑓(𝑋𝑟1
, ,  𝑋𝑟2

, , … ,  𝑋𝑟(𝑖−1)
, ,  𝑋𝑟𝑖 ,  𝑋𝑟(𝑖+1)

, , … , 𝑋𝑟𝑝
, )} − 𝑓0

2 (9) 

As shown by Equation (9), no further model evaluations are required to calculate the total sensitivity index, once all 

the model evaluations needed for the first-order sensitivity index are available (see Equation (8)). 

Finally, the first order indices 𝑆𝑖  and the total sensitivity indices 𝑆𝑇𝑖  are estimated using Equations (3) and (4). 

According to the method explained above, the computational cost for obtaining the full sets of first-order and total 

sensitivity indices is 𝑁(𝑝 + 2) (Saltelli, 2002a). In fact, 2 sets of 𝑁 evaluations are needed to compute the model 

output against the sample matrix 𝑀1 and the re-sample matrix 𝑀2, and 𝑝 sets of 𝑁 model evaluations are needed  for 

implementing Equations (8) and (9). 

2.2. The density-based PAWN method 

In contrast to the Sobol’ method, PAWN (Pianosi and Wagener, 2015) is a density-based GSA method, where the 

entire model output distribution, rather than only its variance, is used to quantify the relative influence of the 

parameters on the model output. Therefore, by definition, the PAWN method is a moment-independent GSA 

approach. In general, density-based sensitivity indices measure the sensitivity to parameter 𝑋𝑖  by the distance 

between the unconditional PDF of 𝑌, which is obtained by varying all parameters simultaneously, and the conditional 

PDFs of 𝑌, which are obtained by varying all parameters but 𝑋𝑖 (i.e. 𝑋𝑖 is fixed at a nominal value 𝑋�̅�) (Liu et al., 2006; 

Borgonovo, 2007 ). In practice, PDFs are generally unknown and must be approximated using a data sample. 

However, Pianosi and Wagener (2015) pointed out the difficulties and limitations of deriving empirical PDFs, and 

suggested using CDFs, instead of PDFs, as the computation of the empirical CDF from a data sample does not 

require any parameter tuning and is much easier than the approximation of the PDF. Consequently, PAWN is very 

easy to implement and the analysis of the robustness and convergence of PAWN sensitivity indices is 

computationally very efficient. Other advantages and limitations of PAWN are discussed in Pianosi and Wagener 

(2015).   

In introducing the PAWN method, Pianosi and Wagener (2015) propose to measure the distance between the 

conditional and unconditional CDFs by the Kolmogorov-Smirnov statistic (KS) (Kolmogorov, 1933; Smirnov, 1933), as 

below. 

𝐾𝑆(𝑋𝑖) = max|𝐹𝑌(𝑌) − 𝐹𝑌|𝑋𝑖(𝑌)| (10) 

where 𝐹𝑌(𝑌) is the unconditional CDF of the output 𝑌 and 𝐹𝑌|𝑋𝑖(𝑌) is the conditional CDF when 𝑋𝑖 is fixed. As 𝐹𝑌|𝑋𝑖(𝑌) 

characterizes the output distribution when the variability due to 𝑋𝑖 is removed, its distance from 𝐹𝑌(𝑌) indicates the 

𝑌 
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effect of 𝑋𝑖 on 𝑌. When 𝐹𝑌|𝑋𝑖(𝑌) overlaps with 𝐹𝑌(𝑌) completely, 𝐾𝑆(𝑋𝑖) is equal to zero,  which means that removing 

the uncertainty about 𝑋𝑖 does not affect the output distribution, i.e. 𝑋𝑖 has no influence on 𝑌. A large distance, instead, 

indicates a high influence of the parameter.  

Since KS depends on the conditioning value of 𝑋𝑖, the PAWN sensitivity index 𝑇𝑖 considers a statistic (e.g. maximum 

or median) over all possible value of 𝑋𝑖: 

𝑇𝑖 = stat[𝐾𝑆(𝑋𝑖)] (11) 

The PAWN index 𝑇𝑖 is a global, quantitative and model-independent sensitivity index, which varies between 0 and 1 

(the higher the value, the more influential 𝑋𝑖). It is worth nothing that both variance-based and moment-independent 

global sensitivity measures are part of a common rationale in which a global sensitivity measure can be seen as 

written in two pieces: an external statistic over the values of 𝑋𝑖 and an inner statistic that measures the distance 

between the conditional and unconditional distributions (Borgonovo et al, 2016). Similar to the Sobol’ indices, for 

complex and non-linear models, the analytical computation of the PAWN index 𝑇𝑖 is usually impossible. Pianosi and 

Wagener (2015), therefore, suggested the following approximate numerical procedure. First, the KS statistic in 

Equation (10) is approximated by using empirical unconditional and conditional distributions. The empirical 

unconditional distribution is computed using 𝑁𝑢 model evaluations from sampling the entire parameter space. The 

empirical conditional distributions are computed using 𝑁𝑐 model evaluations from sampling all parameters except 𝑋𝑖, 

which is  kept to a fixed value. Second, in Equation (11), the statistic with respect to the conditioning value of 𝑋𝑖 is 

approximated using 𝑛 randomly sampled values for the fixed parameter 𝑋𝑖 . Therefore, the total number of model 

evaluations required to calculate the PAWN index 𝑇𝑖 for all the 𝑝 parameters is 𝑁𝑢 + 𝑛 × 𝑁𝑐 × 𝑝.  

A technical question that was left unaddressed in Pianosi and Wagener (2015) is whether the choice of the KS 

statistic for measuring the distance between the unconditional and conditional CDFs would affect the PAWN 

sensitivity results. In this study we thus investigate the use of the Anderson-Darling (AD) statistic (Anderson and 

Darling, 1952) instead of the KS statistic. Interestingly, the results of comparison (reported in Section A of the 

Supplementary Materials) show that these two statistics provide very similar parameter rankings for our SWAT 

model. This result increases the reliability of the conclusions drawn from the application of the PAWN method. 

Another advantage of using CDFs when defining the PAWN sensitivity indices is that the two-sample Kolmogorov-

Smirnov (KS) (Smirnov, 1948) can be applied to statistically determine non-influential parameters (Pianosi and 

Wagener, 2015; Sarrazin et al., 2016). Here, the null hypothesis is that the conditional and unconditional CDFs are 

the same, i.e. the considered parameter is non-influential. The null hypothesis is rejected (i.e. the parameter is 

𝑋𝑖  
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influential) if the p-value is equal to or smaller than the selected significance level α (typically set to 5%). The details 

of calculating p-values are described in Massey (1951) and Marsaglia et al. (2003). The significance level is the 

probability of rejecting the null hypothesis while it is true, i.e. Type I error rate. Therefore, when applying the test, we 

reject the null hypotheses (and consider parameters influential) with the guarantee that the Type I error rate is no 

greater than α. In our study, we will use this statistical test for screening parameters when using the PAWN method. 

We also compare such approach to another screening approach, which applies to both PAWN and Sobol’, and is 

described in the next section. 

2.3. Identifying non-influential parameters by using a dummy parameter 

In theory, the sensitivity index of a non-influential parameter has a value of zero. The value of zero for the PAWN 

sensitivity index means that the unconditional CDF coincides with the conditional one, i.e. fixing parameter 𝑋𝑖, has no 

influence on the model output distribution. The value of zero for the Sobol’ total sensitivity index indicates a zero 

contribution of 𝑋𝑖 to the total variance. However, since numerical approximations, rather than analytical solutions, are 

utilized to calculate the sensitivity indices, small but non-zero indices may be obtained also for the non-influential 

parameters. For example, in the PAWN method, different samples are used to estimate the unconditional and the 

conditional CDFs. Since the sample size is limited, there can be small differences between these two estimated 

distributions, which lead to non-zero sensitivity indices for non-influential parameters. To set a threshold to identify 

non-influential parameters (i.e. parameter screening), in this paper, we propose to calculate the sensitivity index of a 

“dummy parameter”, which has no influence on the model output. The sensitivity index of this dummy parameter 

provides an indication of the approximation error of the sensitivity analysis. 

The operational way to use the sensitivity index of the dummy parameter for parameter screening is as follows: 

parameters whose index is above the dummy sensitivity index can therefore reliably be classified as influential; 

parameters whose index is below the dummy index are non-influential, because the detected contribution to the 

variance or the difference in conditional and unconditional CDFs is less than the approximation error. 

It should be noted that no change in the model equations is needed to account for the dummy parameter, in other 

words, the dummy parameter is not added to the model. The sensitivity index of the dummy parameter is calculated 

by using the sampled data. In the following, the procedure and the algebraic equations to calculate the sensitivity 

index of the dummy parameter in the Sobol’ and PAWN methods are explained. 

Computation of the Sobol’ indices of the dummy parameter: 

http://en.wikipedia.org/wiki/Type_I_error_rate
http://en.wikipedia.org/wiki/Type_I_error_rate
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The first-order and total order Sobol’ sensitivity indices of the dummy parameter are calculated according to 

Equations (8) and (9). In these equations, the only difference between parameter sets of 

𝑓(𝑋𝑟1
, ,  𝑋𝑟2

, , … ,  𝑋𝑟(𝑖−1)
, ,  𝑋𝑟𝑖 ,  𝑋𝑟(𝑖+1)

, , … , 𝑋𝑟𝑝
, ) and 𝑓(𝑋𝑟1

, ,  𝑋𝑟2
, , … , 𝑋𝑟𝑝

, ) is in the ith component. When i corresponds to the 

dummy parameter, the model parameters of the vectors (𝑋𝑟1
, ,  𝑋𝑟2

, , … ,  𝑋𝑟(𝑖−1)
, ,  𝑋𝑟𝑖 ,  𝑋𝑟(𝑖+1)

, , … , 𝑋𝑟𝑝
, )  and 

(𝑋𝑟1
, ,  𝑋𝑟2

, , … , 𝑋𝑟𝑝
, ) are identical, and consequently, the model results evaluated against these two vectors are the 

same. Therefore, for the dummy parameter, 𝑓(𝑋𝑟1
, ,  𝑋𝑟2

, , … , 𝑋𝑟𝑝
, )  replaces with 

𝑓(𝑋𝑟1
, ,  𝑋𝑟2

, , … ,  𝑋𝑟(𝑖−1)
, ,  𝑋𝑟𝑖 ,  𝑋𝑟(𝑖+1)

, , … , 𝑋𝑟𝑝
, ) in Equations (8) and (9), as below.   

�̂�𝑑𝑢𝑚𝑚𝑦 =
1

𝑁 − 1
∑{𝑓(𝑋𝑟1,  𝑋𝑟2,  … , 𝑋𝑟𝑝

𝑁

𝑟=1

) × 𝑓(𝑋𝑟1
, ,  𝑋𝑟2

, , … , 𝑋𝑟𝑝
, )} −  𝑓0

2 (12) 

�̂�~𝑑𝑢𝑚𝑚𝑦 =
1

𝑁 − 1
∑{𝑓(𝑋𝑟1

, ,  𝑋𝑟2
, , … , 𝑋𝑟𝑝

, )

𝑁

𝑟=1

× 𝑓(𝑋𝑟1
, ,  𝑋𝑟2

, , … , 𝑋𝑟𝑝
, )} − 𝑓0

2 (13) 

where �̂�𝑑𝑢𝑚𝑚𝑦 is the variance contribution of individual dummy parameter and �̂�~𝑑𝑢𝑚𝑚𝑦 is the total contribution of all 

parameters, except the dummy one. 

The total model output variance 𝑉(𝑌) is estimated using Equation (6), just as for any other parameter. Finally, the 

first-order index 𝑆𝑖 and the total sensitivity index 𝑆𝑇𝑖 for the dummy parameter are calculated using Equations (3) and 

(4).  

 From Equations (12) and (13), it can be noticed that the computation of the first-order and the total order sensitivity 

indices of the dummy parameter does not require any additional model evaluations beyond those against the sample 

matrix 𝑀1  (𝑓(𝑋𝑟1,  𝑋𝑟2,  … , 𝑋𝑟𝑝)) and the re-sample matrix 𝑀2 (𝑓(𝑋𝑟1
, ,  𝑋𝑟2

, , … , 𝑋𝑟𝑝
, )), which were already obtained to 

estimate the sensitivity indices of the other parameters. The dummy sensitivity values can be interpreted as 

measuring the accuracy with which the (unknown) partial variances are approximated by the sample variances 

computed on matrices 𝑀1 and 𝑀2. As such, they provide an estimate of the approximation accuracy for the case 

under study. In theory, the Sobol’ sensitivity indices of the dummy parameter are zero. However, in practice, their 

values depend on the (finite size) samples 𝑀1 and 𝑀2. Consequently, the estimates of the sensitivity indices of the 

dummy parameter are random and will change from one Sobol’ application to another. 

Computation of the PAWN index of the Dummy parameter: 

Similarly to Sobol’, the PAWN sensitivity index of the dummy parameter is calculated using the output samples. In 

this case, if the ith parameter is the dummy one, the conditional output distribution 𝐹𝑌|𝑋𝑖(𝑌) coincides by definition with 

the unconditional one, which is obtained by the simultaneous variation of all the model parameters. It should be noted 
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that for the model parameters, the value of the considered parameter remains unchanged for the conditional 

distribution. Therefore, for the dummy parameter, the unconditional and conditional random samples are from the 

same distribution. In theory, for infinite sample size, the distance between the CDFs of these two random samples is 

zero (i.e. KS=0). However, since in the numerical approximation of PAWN indices, all CDFs are empirically 

approximated using a limited sample size, the KS statistic for the dummy parameter is not zero. It represents the 

distance between the empirical distributions of two different samples generated from the same distribution. Therefore, 

it can be interpreted as a measure of the accuracy in approximating CDFs by the limited sample size and hence of 

the accuracy of the estimated PAWN indices. In operational terms, the PAWN index for the dummy parameter can be 

computed from at least two independent samples of unconditional output values, i.e. model evaluations against two 

independent samples where all model parameters are varied simultaneously. In this study however we decided to 

use 10 independent samples - and take a statistic of the KS value across those samples - so to obtain an estimate of 

the PAWN sensitivity for the dummy parameter completely consistent with the estimates obtained for the other model 

parameters. Just as for the Sobol’ method, the estimated PAWN index for the dummy parameter is random and 

changes from one application to another.  

2.4. Assessing robustness of sensitivity indices using bootstrapping 

In order to assess the robustness of all the sensitivity indices estimated in this study, we computed 95% confidence 

intervals of the Sobol’ and PAWN indices using the bootstrap technique (Efron and Tibshirani, 1994). Bootstrapping 

has been widely applied to assess the uncertainty of sensitivity indices and to derive their confidence bounds (e.g. 

Archer et al., 1997; Pappenberger et al., 2008; Yang, 2011; Nossent et al., 2011; Pianosi and Wagener, 2015).  

For the Sobol’ method, output samples are resampled 𝐵 times, and for each bootstrap resample, the Sobol’ indices 

are calculated. The obtained distributions of the Sobol’ indices are used to derive the upper and lower bounds of the 

95% confidence intervals. Using a high number of resamples (i.e. high value for 𝐵) leads to a symmetric and median 

centered sampling distribution, providing an accurate estimation of the confidence intervals (Nossent et al., 2011). 

Archer et al. (1997) suggested bootstrapping using 1000 or 2000 resamples (𝐵 =1000 or 2000) for the Sobol’ 

method. Similarly, for the PAWN method, the 95% confidence intervals are estimated by repeating the calculation of 

the PAWN indices for 𝐵′ bootstrap resamples of the unconditional and conditional output samples. Pianosi and 

Wagener (2015) estimated the 95% confidence intervals for the PAWN indices using 1000 bootstrap resamples 

( 𝐵′ = 1000). However, as opposed to previous PAWN applications by Pianosi 

and Wagener (2015), we use resampling without replacement, since the latter approach proved to provide more 

reliable confidence bounds. Further details are given in Section B of the Supplementary Materials. 
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2.5. The Soil and Water Assessment Tool (SWAT) 

SWAT (Arnold et al., 1998) is a physically-based, semi-distributed environmental simulator that operates on a daily or 

sub-daily time step. The tool was originally developed to assess the impact of different watershed management 

practices on water quantity and quality in large river basins. To build up a SWAT model, the main input data includes 

weather data (e.g. precipitation, temperature, solar radiation and potential evapotranspiration), topographic features, 

a land use map and a soil type map. SWAT spatially divides a basin into sub-basins based on topographic conditions. 

Sub-basins are further divided into hydrological response units (HRUs), characterized by a given combination of land 

use, soil type and slope. The hydrological processes taken into account by SWAT include surface runoff, interception, 

evapotranspiration, infiltration, lateral flow, groundwater flow and percolation. Furthermore, SWAT can simulate the 

plant growth and the fate and transport of sediment, nutrients and pesticides. The main outputs are the water flow 

and the crop, sediment, nutrients and pesticide yields at sub-basin level. The computation of these processes and 

their outputs is governed by hundreds of parameters, defined at HRU, sub-basin or catchment level.  

2.6. The case study 

A daily time step SWAT model of the upstream sub-catchment of the River Zenne (Belgium) (Leta, 2013; Leta et al., 

2015), is selected as a case study. The River Zenne drains an area of 1162 km2, located in the central part of 

Belgium. The upstream sub-catchment, with an area of about 747 km2, is dominated by agricultural land (56%), 

followed by pasture and mixed forest. The watershed has a temperate maritime climate and is usually wet during 

most of the year. The predominant precipitation type is rainfall, ranging from 700 mm/y to 1200 mm/y for the 

simulation period (1998-2005). Daily precipitation data is obtained from 6 stations. To calibrate and validate the 

model, daily stream flow data at two stations is used. More details about the data and the model can be found in 

(Leta, 2013; Leta et al., 2015). In this study, the first three years (1998-2000) are used for warming up the model. 

GSA is performed using the period 2001-2005, which includes wet, normal and dry years (Leta et al., 2015). The 

annual precipitation and the mean flow at the outlet of the catchment are given in Table 1.  

Table 1. The annual precipitation and the mean flow at the outlet of the study area 

 2001 2002 2003 2004 2005 

Annual precipitation (mm/yr) 1100 1200 700 900 800 
Mean flow (m3/s) 5.96 5.77 3.5 3.19 3.22 

2.7. Setting-up numerical experiments for the Sobol’ and PAWN application to the SWAT model 

In this study, the results of applying the Sobol’ and PAWN methods to the SWAT model are compared, in terms of 

convergence rate, parameter screening and ranking. For this purpose, 26 parameters (𝑝 = 26) that affect the 

hydrological cycle of the SWAT model are selected to be analyzed (see list in Table 2). The flow at the outlet of the 
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basin is considered as SWAT output. The parameters selection is based on expert knowledge and on the fact that 

these parameters are commonly considered in sensitivity analysis and calibrations of SWAT models (Cibin et al. 

2010; Nossent and Bauwens, 2012; Leta et al., 2015). Moreover, these parameters are used by the sensitivity 

analysis algorithm (i.e. Latin-hypercube-One-factor-at-a-time (LH-OAT)) incorporated in the SWAT simulator (van 

Griensven et al., 2006). Therefore, our selection reflects the set of parameters that SWAT model users would 

typically consider for calibration and/or for applying the simpler LH-OAT sensitivity analysis method. 

In this research, a change of a given parameter is applied to the all HRU’s in the basin, resulting in one sensitivity 

index per parameter for the whole basin. Spatial variability for the impact of the model parameters at the HRU level, 

according to different land uses, soil and slope types, is therefore not considered. However, sensitivity indices can, in 

principle, be computed at the HRU level, at the price of increasing the total number of parameters incorporated in the 

GSA (it is multiplied by the number of HRU’s) (Nossent et al., 2011). The ranges of variations of our selected 26 

parameters (reported in Table 2) are determined based on the SWAT manual (Arnold et al., 2011) and on the results 

of previous applications of SWAT to this and similar catchments (Leta, 2013; Leta et al., 2015; Nossent and 

Bauwens, 2012). Since there is no prior information on parameter distributions, parameter values are sampled from a 

uniform distribution within these ranges. 

The Sobol’ quasi-random sampling technique (Sobol’, 1976) is used to create the parameter samples for both the 

Sobol’ and PAWN methods. According to Sobol’ (1976), quasi-random numbers enhance the convergence rate as 

compared to regular Monte Carlo random numbers.  

AS mentioned in Section 2.1, the effects of the uncertain parameters are assessed relative to a scalar variable that 

summarizes the simulated time series. Typically, in the sensitivity analysis literature, a performance measure is used 

as a scalar variable when the objective is to inform the calibration procedure (e.g. van Griensven et al., 2006; 

Pappenberger et al., 2008; Nossent et al., 2011). Obviously, the definition of the performance measure affects the 

sensitivity analysis results, because different performance measures may have different sensitivity to the model 

parameters (Pianosi et al., 2016). In this study, the comparison of the Sobol’ and PAWN methods is performed twice: 

once using the Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) as performance metric, and once using the 

mean error (ME), i.e.  

𝑁𝑆𝐸 = 1 −
∑ (𝑦𝑡

𝑜 − 𝑦𝑡
𝑠)2𝑀

𝑡=1

∑ (𝑦𝑡
𝑜 − 𝑦𝑜̅̅ ̅)2𝑀

𝑡=1

 (14) 

𝑀𝐸 =
∑ (𝑦𝑡

𝑜 − 𝑦𝑡
𝑠)𝑀

𝑡=1

𝑀
 (15) 
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where 𝑦𝑡
𝑜 is the observed flow on day 𝑡, 𝑦𝑡

𝑠 is the simulated flow on day 𝑡, 𝑦𝑜̅̅ ̅ is the average of the observations and 

𝑀 is the total number of days. 

In order to analyze and compare the convergence rate of both methods, the sensitivity indices are calculated for 

increasing sample sizes. For the Sobol’ method, the maximum sample size considered is 9000 (𝑁=9000), resulting in 

252,000 (= 𝑁(𝑝 + 2) ) model evaluations. For the PAWN method, sensitivity indices are calculated using 10 

conditioning values (𝑛 = 10) for each parameter and up to 1000 random samples for approximating the unconditional 

and conditional CDFs (𝑁𝑢 = 𝑁𝑐 = 1000 ), requiring 261,000 model runs (= 𝑁𝑢 + 𝑛 × 𝑁𝑐 × 𝑝). The maximum KS value, 

estimated for each parameter, is considered as a PAWN sensitivity index. The maximum sample sizes are selected 

based on the recommended values in the literature (Sobol’, 1967; Tang et al., 2007; Saltelli et al., 2008; Nossent et 

al., 2011; Pianosi and Wagener, 2015). The 95% confidence intervals for the sensitivity indices are calculated using 

1000 bootstrap resamples, as mentioned in Section 2.4.    
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Table 2. SWAT parameters considered for the Sobol’ and PAWN sensitivity analysis, and their ranges of variation 

Parameter Definition Process Range 

Alpha_Bf Baseflow recession factor (1/day) Groundwater [0,1] 

Biomix Biological mixing efficiency (-) Evapotranspiration [0,1] 

Blai Maximum potential leaf area index for crop (mm) Evapotranspiration [0.5,10] 

Canmax Maximum canopy index (mm) Evapotranspiration [0,10] 

Ch_K2 Hydraulic conductivity in main channel (mm/h) Routing [0,150] 

Ch_N2 Manning coefficient for channel (-) Routing [0,1] 

Cn2 SCS runoff curve number for moisture condition II (-) Surface runoff [35,98] 

Epco Plant uptake compensation factor (-) Evapotranspiration [0.1,1] 

Esco Soil evaporation compensation factor (-) Evapotranspiration [0,1] 

Gw_Delay Groundwater delay (days) Groundwater [1,60] 

Gw_Revap Groundwater ‘revap’ coefficient (-) Groundwater [0.02,0.2] 

Gwqmn Threshold storage in shallow aquifer for return flow (mm) Groundwater [10,500] 

Rchrg_Dp Groundwater recharge to deep aquifer (-) Groundwater [0,1] 

Revapmn Threshold storage in shallow aquifer for ‘revap’ (mm) Groundwater [1,500] 

Sftmp Snowfall temperature (°C) Snow [-5,5] 

Slope Average slope steepness (m/m) Lateral flow [0,1] 

Slsubbsn Average slope length (m) Routing [10,150] 

Smfmn Minimum melt rate for snow (mm/°C/day) Snow [0,10] 

Smfmx Maximum melt rate for snow (mm/°C/day) Snow [0,10] 

Smtmp Snow melt base temperature (°C) Snow [-5,5] 

Sol_Alb Soil albedo (-) Evapotranspiration [0,0.25] 

Sol_Awc Available water capacity of the soil layer (mm) Soil water [0,1] 

Sol_K Soil conductivity (mm/h) Soil water [0,2000] 

Surlag Surface runoff lag coefficient (-) Surface runoff [0.5,10] 

Tlaps Temperature laps rate (°C/km) Evapotranspiration [-10,10] 

Timp Snow pack temperature lag factor (-) Snow [-10,10] 
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3. Results  

3.1. The distributions of the performance measures  

As mentioned above, two different performance measures are considered for the GSA: the NSE and the ME. The 

9000 random sample generated for Sobol’ application (i.e. model performance against random parameter matrices 

M1) are used to obtain the empirical distributions of the NSE and ME. As shown in Figure 1, the distribution of NSE is 

negatively-skewed, while the distribution of ME is slightly bi-modal with a second (small) peak on the right. The 

statistical analysis, based on the KS test (Smirnov, 1948), the Jarque-Bera test (Jarque and Bera, 1987) and the 

Lilliefors test (Lilliefors, 1967), strongly rejects that the NSE and ME have a normal distribution. Using these two 

performance measures with different empirical PDF shapes allows to compare the results of the Sobol’ and PAWN 

methods in both a situation of strongly non-symmetric distribution (NSE) and a situation of slightly bi-modal 

distribution (ME). 

 

Figure 1. Estimated Probability Density Function of the Nash-Sutcliffe efficiency (NSE) and the mean error (ME), based on a sample 

of 9000 model evaluations against randomly sampled parameter sets. The distribution of NSE is negatively-skewed, while the 

distribution of ME is slightly bi-modal. 

3.2. The convergence analysis of the Sobol’ and PAWN methods 

In this study, numerical approximation algorithms, based on Monte Carlo simulations, are applied in both the Sobol’ 

and PAWN methods to calculate the sensitivity indices. Therefore, obtaining converged values for the sensitivity 

indices is a crucial issue to guarantee reliable estimates of the sensitivity indices and a reliable parameter ranking. 

In order to investigate the convergence of the sensitivity indices and compare the convergence rate of the Sobol’ and 

the PAWN methods, the Sobol’ total sensitivity indices and the PAWN indices are calculated for an increasing sample 

size using both methods. As equal sample sizes result in different required numbers of model simulations in the 
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Sobol’ and the PAWN methods, the comparison is performed based on the required number of model evaluations for 

increasing sample size. Since small sample sizes result in large variations in the sensitivity indices, the comparison is 

started from a sample size of 900 (𝑁 = 900) and a sample size of 100 (𝑁𝑢 = 𝑁𝑐 = 100) for the Sobol’ and PAWN 

methods, respectively. It should be noted that the number of conditioning values for each parameter in the PAWN 

method is unchanged (𝑛 = 10). The fluctuations and the slope of the graphs for the increasing sample sizes are used 

as a measure to graphically analyze and compare the convergence. A graph with no significant fluctuation and a 

horizontal slope indicates almost complete convergence. According to such visual analysis, we found that for both 

methods, the sensitivity indices have converged- for most of the parameters- after 250,000 model simulations. The 

latter is equivalent to almost 1000 samples for the PAWN method (𝑁𝑢 = 𝑁𝑐 = 1000, 𝑛 = 10 ) and 9000 samples for 

the Sobol’ method (𝑁 = 9000). As shown in Figure 2, which reports the evolution of the sensitivity indices of a 

selected number of parameters, the sensitivity index of the most influential parameter, Cn2 (curve number), 

converges very quickly to its final value. In both the Sobol’ and PAWN methods, for the ME performance measure, 

the parameters with lower sensitivity indices (i.e. less influential parameters) do not have completely horizontal 

graphs. For example, the PAWN sensitivity index of Smtmp (snow melt base temperature) is still decreasing at large 

number of model evaluations, even if changes are rather small and possibly not affecting the conclusion about the 

relatively negligible influence of that parameter. A similar trend is observed for the other less-influential parameters 

and for the dummy parameter. 

In order to complete the convergence analysis, the parameter ranking results for an increasing number of simulations 

are also evaluated (Figure 3). For the top ranked parameters, such as Cn2 and Slope, both methods provide stable 

results even with a limited sample size, while the parameter ranking for less-influential parameters shows 

fluctuations, especially for the PAWN method. The reason is mainly related to the small and nearly equal values for 

the sensitivity indices of the less-influential parameters, which causes shifts in the parameter ranking for these 

parameters, even for small changes in the sensitivity indices. A similar observation for the less-influential parameters 

is also reported by Nossent et al. (2011). It is worth noticing that such variations in indices and ranking positions of 

the less-influence parameters may be of minor importance when, as often the case, the aim of GSA is to properly 

rank parameters that do have a significant influence on the model outputs.  
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Figure 2. The convergence rates of the Sobol’ and the PAWN methods are evaluated using the evolution of sensitivity indices for 

increasing sample sizes. The sensitivity indices using the NSE (a and c) reach stable values, while the results for ME (b and d), 

especially for less-influential parameters, do not have completely horizontal graphs. 

 

Figure 3. The convergence rate of the Sobol’ and PAWN methods is evaluated using the evolution of the parameter ranking. (a) 

PAWN ranking for the NSE, (b) PAWN ranking  for the ME, (c) Sobol’ ranking for the NSE and (d) Sobol’ ranking for the ME. Both 

methods provide a stable ranking for the top ranked parameters, while the ranking of the low-ranked parameters fluctuates, 

especially for the PAWN method. 
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3.3. Comparison of the Sobol’ and PAWN parameter ranking and screening results 

In this section, the results of the Sobol’ total sensitivity indices and the PAWN indices of the 26 SWAT parameters, 

together with the dummy parameter, are presented and parameter rankings are compared (Figure 4). The Sobol’ and 

PAWN sensitivity indices are estimated using sample sizes of 9000 (𝑁 =9000) and 1000 (𝑁𝑢 = 𝑁𝑐 = 1000  ), 

respectively (maximum sample sizes considered in this study). The red lines in Figure 4 illustrate the 95% confidence 

intervals, estimated using percentiles of 1000 bootstrap resamples. Parameters are sorted in order of increasing 

sensitivity index, to allow immediate evaluation of the ranking. Since the Sobol’ and PAWN methods have completely 

different background and rationale, comparing the values of the sensitivity indices does not provide any meaningful 

insights, however, the parameter ranking and screening results – based on the respective sensitivity indices- can be 

compared. 

 Comparison of Sobol’ and PAWN ranking and screening results for the NSE 

Based on the PAWN and Sobol’ sensitivity indices for the NSE (Figures 4(a) and (b)), Cn2 is clearly the most 

important parameter, followed by Ch_K2 (hydraulic conductivity of the river bed) in both methods. As expected, the 

sensitivity index of the dummy parameter is small, but not zero. For the PAWN method, the confidence intervals of 

the sensitivity indices of the parameters with a rank 12 and worse overlap with that of the dummy parameter (see 

Figure 4(a)), and hardly distinguishable between each other. Therefore, this group of parameters is considered as 

non-influential. The same applies to parameters ranked 12 or worse by the Sobol’ method (see Figure 4(b)). Although 

there are some differences in the parameter rankings produced by Sobol’ and PAWN, the separation between the top 

11 ranked parameters and the other “non-influential” ones, i.e. the screening result, is the same for both methods. 

When the influential parameters are considered, it is interesting to notice that the PAWN method leads to more 

distinctive sensitivity indices, as compared to Sobol’. For example, Alpha_Bf (baseflow recession factor) and Slope 

(average slope steepness) have almost the same Sobol’ sensitivity indices for the NSE, with confidence bounds 

largely overlapping, while PAWN indices are completely distinctive.  

Comparison of Sobol’ and PAWN ranking and screening results for the ME 

As expected, using the ME as a model output provides different sensitivity indices (Figures 4(d) and (e)) and 

consequently different parameter ranking, as compared to NSE. Although Cn2 is still the most important parameter, 

the sensitivity indices of Slope and Sol_K (soil conductivity) are increased considerably and these two parameters are 

ranked 2nd and 3rd, respectively, for both the PAWN and Sobol’ methods. Just as observed for the NSE case, the 

parameters ranked 13 and worse have almost the same sensitivity indices in both methods, and within the range of 

the variability of the dummy parameter. So, these parameters are considered non-influential. Again similarly to NSE, 
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the separation between the top 12 and the other parameters is similar for Sobol’ and PAWN, although not exactly the 

same: PAWN in fact includes Revapmn in the list of the top 12 influential parameters and excludes Gw_Revap, while 

Sobol’ does the opposite. It is also worth noticing that the separation between influential and non-influential 

parameters is very similar for NSE and ME (the only difference is the replacement of Gw_Revap by Revapmn 

according to PAWN). It implies that the choice between these two different performance measures, in this case study, 

does not significantly affect the parameter screening results. Finally, again similarly to NSE case, the Sobol’ method 

does not clearly discriminate the relative importance of the influential parameters (the parameters ranked 5 and 

worse have nearly the same sensitivity indices in Figure 4(d)).  

 

 

 

 

 

 

 

 

 

 

 



22 
 

 

 

 
 

Figure 4. Applying the Sobol’ and the PAWN methods results in different sensitivity indices for the SWAT model parameters using 

the NSE and ME performance measures. The numbers represent the parameter ranking obtained based on the sensitivity indices. 

The red lines represent 95% confidence intervals obtained by bootstrapping. (a) PAWN indices for NSE, (b) Sobol’ indices for NSE, 

(c) PAWN indices for ME and (d) Sobol’ indices for ME. 
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3.4. The two-sample Kolmogorov-Smirnov test for screening 

As explained in section 2.2, when using the PAWN method, the two-sample Kolmogorov-Simonov test can be applied 

as a more formal approach to separate the influential and non-influential parameters (screening).  

Figure 5 shows the test results for the NSE case. The p-values of the two-sample KS test for different conditioning 

values of the parameters are shown as circles. The red dashed line represents the significance level (α) of 5%. For 

the 9 lowest ranked parameters and for the dummy parameter, the p-value is larger than α at all conditioning values. 

Therefore, the null hypothesis of the test (i.e. the conditional and unconditional output distributions are the same) 

cannot be strongly rejected for those 9 parameters, indicating that they are non-influential. For the remaining 17 

parameters, the p-value is smaller than α for at least one conditioning value and, thus, the test indicates that these 

parameters are influential. However, it should be noted that the test is performed with a significant level of 5%, which 

means that there is still 5% probability that a parameter is identified influential while it is not (null hypothesis is 

rejected while it is true). As shown in the figure, for 6 parameters (Timp, Smtmp, Slsubbsn, Biomix, Epco and Gw-

revap), the p-value is smaller than α only for one (out of 10) conditioning value. Therefore, based on these results, it 

is difficult to strongly conclude that these 6 parameters are influential. On the other hand, for the top 11 parameters in 

Figure 5, the p-values are lower than 5% for most of the conditioning values, and consequently it is possible to 

strongly conclude that these top 11 parameters are influential. Interestingly, this group of influential parameters is the 

same as the one identified in section 3.3 using the “dummy parameter” approach (Figure 4(a)), which can be 

regarded as an indication of the validity of that approach.  
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 Figure 5. The p-values (circles) of the two-sample KS test for different conditioning values of the SWAT parameters, together with 

the dummy parameter, for the NSE performance measure. The red dashed line represents a significance level of 5% (α).  A p-value 

smaller than α implies that the parameter is influential. The p-values of parameter Cn2 (marked by an asterisk in the figure) are not 

shown because they are lower than 0.0001 for all 10 different conditioning values. 

The two-sample KS test is also performed for the ME performance measure and the results of the p-values are 

compared with the significance level of 5% (α) in Figure 6. Similar to the results for the NSE, Cn2 is the most 

significant parameter with p-values lower than 0.0001 for all 10 conditioning values (and, therefore, not visible in 

Figure 6). 

As shown in Figure 6, the null hypothesis of the test is not rejected for the 3 lowest ranked parameters (p-values are 

larger than α for all conditioning values). These 3 parameters can thus be considered non-influential. For the 

remaining parameters, the p-value is smaller than α for at least one conditioning value (the null hypothesis is 

rejected), which indicates that these parameters are influential. The conclusion applies also to the dummy parameter, 

for which the p-value is lower than 0.05 for one conditioning value. However, we are sure that the dummy parameter 

has no effect on the model output. The reason for this unexpected result is that, as already explained above, the set-

up of the test allows for Type I error (classifying a parameter as influential while it is not) with 5% probability. For the 

same reason, we cannot strongly conclude that all the other parameters with p-value lower than 0.05 at only one 

conditioning value are influential. On the other hand, the results of the test for the top 12 parameters strongly indicate 

that these parameters are influential. Similar to the results for the NSE, this group of influential parameters is the 

same as the one identified in Section 3.3, using the sensitivity index of the dummy parameter as a threshold for 

screening (Figure 4(c)). 
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Figure 6. The p-values (circles) of the two-sample KS test for different conditioning values of the SWAT parameters, together with 

the dummy parameter, for the ME performance measure. The red dashed line represents a significance level of 5% (α).  A p-value 

smaller than α implies that the parameter is influential. The p-values of parameter Cn2 (marked by an asterisk in the figure) are not 

shown because they are lower than 0.0001 for all 10 different conditioning values. 

4. Discussion 

The results of this study are used to compare the Sobol’ and PAWN methods for the global sensitivity analysis to 26 

parameters of the SWAT model. However, it should be noted that the comparison is performed for a specific case 

study (River Zenne, Belgium). Previous studies, for example Cibin et al., (2010), pointed out the effects of contrasting 

climate conditions and flow regimes on the Sobol’ sensitivity analysis results of SWAT models. Moreover, many other 

choices made in the experimental set-up of GSA, including the choice of the parameters subject to GSA and their 

ranges, the selection of the simulation period and of the scalar output, can strongly influence GSA results 

(Pappenberger et al., 2008; Shin et al., 2013). 

A visual analysis of the evolution of sensitivity indices and associated parameter rankings with increasing sample size 

shows that the parameters with the highest sensitivity indices converge quickly to their final sensitivity indices values 

for both Sobol’ and PAWN. The quick convergence of the Sobol’ total sensitivity indices for the most influential SWAT 

parameters was also reported by Nossent et al. (2011). Similar to the sensitivity indices, the parameter rankings of 

the top-ranked parameters converged to their final ranks quickly in both methods, even with a limited sample size. As 

pointed out by Nossent et al. (2011), for the Sobol’ method, a sample size of 2000 was enough for the significant 

parameters to attain their final rank. For the PAWN method, according to results of our analysis, a sample size of 200 

was actually sufficient to obtain stable parameter ranking for the top-ranked parameters. These results are also 
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consistent with the findings reported by Sarrazin et al. (2016), which shows that stable parameter ranking and 

screening can be obtained at significantly lower sample size (i.e. lower number of model evaluations) than stable 

estimates of the sensitivity indices. This can be an advantage for both the Sobol’ and PAWN methods, as the stable 

parameter ranking and parameter screening can be obtained with a limited computational cost. 

Overall, ranking and screening results of Sobol’ and PAWN are very consistent for both the considered performance 

measures (NSE and ME). However, for both the NSE and ME, the difference in value between the PAWN indices of 

the influential parameters is more marked, as compared to Sobol’, where all influential parameters are associated 

with an almost the same sensitivity index value. This difference between PAWN and Sobol’ may be related to the fact 

that the distributions of the performance measures are rather skewed (NSE) and slightly bi-modal (ME), which limits 

the ability of the Sobol’ method to properly quantify the relative influence of parameters on the model output. As 

discussed in the Introduction, the effectiveness of variance-based methods, such as Sobol’, depends on the level of 

symmetry of the output distribution (Borgonovo, 2007), and variance-based sensitivities become less reliable for 

highly skewed or multi-model distributions (Liu et al., 2006; Pianosi and Wagener, 2015). 

According to both the Sobol’ and PAWN indices, the curve number (Cn2) is the most influential parameter for both 

the NSE and ME performance measures. Actually, Cn2 has been reported as an important parameter affecting flow 

simulation in all of the SWAT applications (Gassman et al., 2007; Cibin et al., 2010; Nossent et al, 2011; Leta et al., 

2015). In general, the SWAT parameters identified as influential by both Sobol’ and PAWN are almost the same as 

those of previous GSA applications to this study area and similar catchments (Leta et al., 2015; Nossent at al., 2011). 

Comparing GSA results for different performance measures (NSE and ME), we found that the selection of the 

performance measure as scalar model output affects the parameter ranking but not the parameter screening. Overall, 

this choice seem to be less crucial than in other applications of GSA, where even smaller differences in the definition 

of the performance metric (for example, considering the mean of the squared errors or the mean of the absolute 

errors) significantly affected Sobol’ results (Pappenberger et al. (2008)). 

Finally, we found that our proposed “dummy parameter” approach is indeed an easy-to-implement and effective way 

to set a screening threshold. Application of such approach to both Sobol’ and PAWN results provided the same 

separation of influential and non-influential parameters. The statistical two-sample KS test was also applied in PAWN, 

which confirmed that the top 11 ranked parameters for the NSE performance measure are strongly influential. 

However, the application of the two-sample KS test also illustrates the possibility of occurrence of Type I errors 

(coherently with the chosen confidence level), thus highlighting the statistical nature of the test and hence the need 

for interpreting its results coherently with such statistical nature. 
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5. Conclusions 

In this paper, we compared the application of two GSA techniques, the variance-based Sobol’ method and the 

density-based PAWN method, to the analysis of 26 parameters of the SWAT model, a hydrological model widely-

used for water quality and quantity simulations. The comparison was performed in terms of convergence rate and 

parameter ranking and screening results. Moreover, the use of a “dummy parameter” approach as a viable option to 

set a threshold value for parameter screening was demonstrated for both Sobol’ and PAWN. 

Considering the results, there was no difference between the Sobol’ and PAWN methods in term of convergence rate 

and screening. Both methods can identify the set of 14 (or 15, depending on the performance metric) non-influential 

parameters with a relatively limited number of model evaluations. Therefore, they are equally useful for informing 

about which parameters could be excluded from computationally expensive automatic calibration. However, in terms 

of parameter ranking, the difference between the relative importance of the influential parameters was better 

quantified by the PAWN method, as compared to Sobol’. One possible explanation for this is that the distributions of 

the model outputs (i.e. NSE and ME) were non-symmetric, undermining Sobol’ implicit assumption that variance is a 

good proxy for output uncertainty. We think these findings are encouraging towards promoting PAWN as an 

alternative method for GSA of environmental models. 

Since all the above results were obtained for a specific model, case study and GSA set-up, further research is 

needed to investigate how transferable our conclusions are to other models and applications. Moreover, we would 

like to highlight that in this paper we presented Sobol’ and PAWN as alternative methods. In fact, the numerical 

approximation of the respective indices requires a tailored sampling strategy, and therefore the application of PAWN 

after Sobol’ (or vice versa) require running the model thousands or even hundred thousands more times, which would 

be unfeasible for many time-consuming simulation models. However, ongoing research (e.g. Strong and Oakley, 

2013, Plischke et al, 2013, Pianosi et al., 2016) is aiming at developing new approximation strategies to compute 

Sobol’ and PAWN indices from a single output sample. Once established, these strategies will open up the possibility 

of applying both methods to the same set of model evaluations, and in general of applying multiple GSA methods at 

the same computational cost as individual GSA methods (Pianosi et al., 2016). Looking forward, we thus think that 

variance-based and density-based approaches can be regarded as complimentary approaches that will be applied in 

the future to investigate model output sensitivities from different and complimentary angles. 
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