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Abstract  

Claisen-Schmidt condensation of 2,3,4,9-tetrahydro-1H-carbazol-1-one with 3-bromo-4-

methoxy benzaldehyde  afforded  the 2-(3'-bromo-4'-methoxybenzylidene)-2,3,4,9-tetrahydro-

1H-carbazol-1-one 3. Compound 3 was allowed to react with different organic reactants, 

hydroxylamine hydrochloride, malononitrile and guanidine nitrate through condensation cum 

cycloaddition reactions to afford a series of the respective novel hetero annulated carbazoles 

such as isoxazolo-, pyrido- and pyrimido carbazoles. The structures of the compounds were 

established by FT-IR, 1H NMR, 13C NMR, X-ray diffraction and elemental analysis. The 

compounds have been screened for in vitro anti-tumor activity by MTT assay and displayed 

enviable selective growth inhibition on MCF-7 cell line compared to A-549 cell line. Apoptotic 

morphological changes in MCF-7 and A-549 cells were visualized using fluorescent microscopic 

technique. The preliminary structure activity relationships were also carried out. Data pointed out 

that among pyrimido carbazole compounds, 2-amino-4-(3'-bromo-4'-methoxyphenyl)-8-chloro-

11H-pyrimido[4,5-a]carbazole could be exploited as an excellent therapeutic drug against cancer 

cell proliferation. 
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1. Introduction 

Cancer is a genetic irregularity of immortal cells which exasperates. In the last few 

decades, cancer has become a second leading life-threatening disease accounting for high 

mortality rates after cardiovascular diseases [1,2]. Breast cancer and lung cancer are the most 

frequent causes of cancer related deaths. Breast cancer is a kind of malignant tumor for women 

[3]. In recent years, the mortality rate of breast cancer shows an increasing trend [4]. Lung 

cancer accounts for more than one million deaths a year worldwide with non-small cell lung 

cancer (NSCLC) [5] accounting for 80-85% of lung cancer and it remains a disease with poor 

prognosis and the primary cause of cancer related deaths in both men and women [6]. 

Chemotherapy is one of the most commonly used treatment options. The lack of selectivity of 

chemotherapeutic agents for cancer tissues is the main drawback of chemotherapy and which 

causes severe adverse effect. Therefore there is a strong need for the establishment of new 

chemopreventives and the discovery of new drugs to eradicate these cancer anomalies with less 

undesirable side effects. Among potential chemotherapeutic agents, heterocyclic compounds 

represent a remarkable type of anticancer drug candidates. 

Carbazoles are probably the most widely spread nitrogen heterocycles in nature [7,8]. 

Carbazoles and hetero annulated carbazole derivatives have attracted substantial attention due to 

their wide range of biological activities such as antidiabetic, antimicrobial, antioxidant, 

anticancer, antitubercular and anticonvulsant activity [9-17]. Many carbazole derivatives 

especially those with chloro substituents are important in the synthesis of new anti-cancer agents 

[18], and the carbazole back bone has been chosen here because it possess better inhibition 

properties compared to other nitrogen containing alkaloids. The introduction of additional 

heterocyclic rings to the carbazole core tends to exert profound influence in increasing the 

compounds’ anticancer activity owing to their larger π-conjugated system [19]. In the past few 

years, several studies have highlighted the importance of carbazole based compounds as 

promising chemotherapeutic agents. Beata Tylinska and co-workers [20] reported the synthesis 

of 1-substituted-6H-pyrido[4,3-b]carbazole derivatives, which exhibited over 20 times better 

activity against murine leukemia L1210 tumor cell line than the reference ellipticine. Kumar and 

co-workers [21] synthesized a novel substituted carbazole derivative, which showed significant 

cytotoxic activity against Ehrlich’s Ascites Carcinoma (EAC) and HEP2 cell lines, while 



Molatlhegi and co-workers [22] explored the anti breast cancer activity of a novel carbazole 

based compound against lung cancer cell line A-549.  

The pyrimidine moiety is one of the most widespread heterocycles in biologically 

occurring compounds such as nucleic acids and vitamin B1, and it is an important constituent of 

numerous drug molecules in many therapeutic areas [23-25]. Amino pyrimidine moieties are 

common in marketing drugs such as anti-atherosclerotic aronixil, anti-histaminic thonzylamine, 

anti-anxielyticbuspirone and other medicinally relevant compounds [26] (Fig.1). 

Pyridocarbazoles constitute an important class of therapeutic agents in medicinal chemistry. 

Olivacine and ellipticine are natural pyridocarbazole alkaloids, which have also been shown to 

have anticancer activity [27-32], DNA intercalation and inhibition of topoisomerase II. 

Moreover, compounds containing an isoxazole moiety exhibited anti-inflammatory, 

antidepressant, anticonvulsant and antibacterial activities. A number of drugs, including the 

COX-2 inhibitor valdecoxib possesses isoxazole as the core pharmacophore. Taking all the 

above findings into consideration and in searching for new heterocyclic compounds endowed 

with potent antitumor activity, we report herein the synthesis of some carbazoles bearing 

isoxazolo, pyrido and pyrimido moieties and evaluate their in vitro antitumor activities against 

human lung cancer (A-549) and human breast cancer (MCF-7) cell lines and to explore a 

valuable SAR. 

 

 

 



2. Results and Discussions 

2.1. Chemistry 

The synthetic pathways employed to synthesis the new targeted derivatives are depicted 

in scheme. 1.  

 

 

The synthon 2-(3'-bromo-4'-methoxybenzylidene)-2,3,4,9-tetrahydro-1H-carbazol-1-one 

(3a) was derived by Claisen-Schmidt condensation reaction between an equimolar mixture of 

2,3,4,9-tetrahydro-1H-carbazol-1-one (1a) and 3-bromo-4-methoxybenzaldehyde (2) in ethanolic 

KOH solution. The FT-IR spectrum of 3a displayed a characteristic band for a carbazole 

carbonyl group at 1639 cm-1and absorption at 3262 cm-1 ascribable to indole NH stretching. The 

1H NMR spectrum exhibited a broad singlet at δ 9.09 ppm due to the presence of the indole NH 

proton and multiplet signals in the region δ 7.68-7.36 ppm attributed to the seven aromatic 

protons. The proton at the C8 position appeared as a doublet centered at δ 6.95 ppm (Jo = 8.0 Hz), 

and the three methoxy protons at the C'4 position accounted for a singlet at δ 3.94 ppm. The 



methylene protons of C4 and C3 appeared as two multiplets centered at δ 3.08 and 3.25 ppm 

respectively. The 13C NMR spectrum revealed the presence of 20 carbons. A signal resonating at 

δ 56.3 ppm was attributed to the methoxy carbon. The universal validity of the reaction was 

tested with other substituted derivatives 1 (b-d) to afford the corresponding 2-arylidene 

carbazoles 3 (b-d). 

The 2-(3'-bromo-4'-methoxybenzylidene)-2,3,4,9-tetrahydro-1H-carbazol-1-one (3a) was 

reacted with hydroxyl amine hydrochloride in the presence of pyridine which lead to the 

formation of the cyclised product, 3-(3'-bromo-4'-methoxyphenyl)-4,5-dihydro-10H-

isoxazolo[3,4-a]carbazole (4a). Its FT-IR spectrum revealed prominent absorptions at 3222 and 

1500 cm-1 due to the indole NH and C=N stretchings respectively. The 1H NMR spectrum 

exhibited a broad singlet at δ 8.80 ppm due to the presence of the indole NH proton, and  three 

doublets appeared at δ 8.21, 8.12 and 8.02 ppm (J = 2.0, 8.0 and 8.0 Hz) linked to the C2', C'6 and 

C9 protons respectively.  The C7 proton signal occurred as a multiplet in the region δ 7.94-7.92 

ppm while the C8 proton accounted for a multiplet signal centered at δ 7.68 ppm. Two protons at 

the C5' and C6 positions appeared as two doublets at δ 7.61 ppm (Jo= 8.0 Hz), δ 7.56 ppm (Jo= 

7.6 Hz) respectively. A singlet at δ 3.95 ppm assigned to the C4'-OCH3 protons, and methylene 

protons of C5 and C4 appeared as multiplets centered at δ 2.92 ppm. The13C NMR spectrum of 4a 

displayed 20 resonances in agreement with the proposed structure. The methoxycarbon displayed 

a resonance signal at δ 56.3 ppm. The identities of the other compounds 4 (b, c) were established 

in a similar ways with all spectroscopic data provided in the supplementary information. 

The intermediate 3a was also reacted with malononitrile in the presence of sodium 

hydride to yield 4-(3'-bromo-4'-methoxyphenyl)-2-ethoxy-5,6-dihydro-11H-pyrido[2,3-

a]carbazole-3-carbonitrile (5a). It is important to note that the condensation which occurred at 

the carbonyl carbon led to the formation of the C=N bond which resulted in the formation of 5a. 

The FT-IR spectrum of 5a showed absorption bands at 3335, 2218 and 1555 cm-1 assignable to 

the indole NH, cyano and C=N groups respectively. The 1H NMR spectrum of 5a showed a 

broad singlet at δ 8.76 ppm related to the indole NH proton, and the signals due to C7, C2', C10 

and C5' protons were visible as four doublets centered at δ 7.58, 7.52, 7.43 and 7.02 ppm (J = 

7.6, 2.0, 8.0 and 8.4 Hz) respectively. The other aromatic protons at C6' & C9 appeared as a 

multiplet centered at δ 7.28 ppm whereas C8-H appeared as a triplet at δ 7.24 ppm (J = 7.6 Hz). 

The two protons of the OCH2CH3 group appeared as a quartet centered at δ 4.61 (J = 7.2 Hz) and 



the methoxy group at C'4 position resonated as a singlet at 3.96 ppm. The methylene protons of 

C6 and C5 appeared as a multiplet  at δ 2.92 ppm, and three protons of OCH2CH3 group appeared 

as a triplet at δ 1.50 (J = 7.2 Hz). The 13C NMR data afford further evidence of the structure and 

it shows the presence of 25 carbons. A resonance signal at δ 119.9 ppm corresponded to CN 

carbon. The resonance signals at δ 63.0 and 14.5 ppm were attributed to OCH2CH3 and 

OCH2CH3 carbons. The structure of the compound 5a was further confirmed by X-ray 

diffraction (Fig. 2). This was also the case for all the other compounds of the series 5 (b-d). 

The intermediate 3a was also reacted with guanidine nitrate in the presence of sodium 

hydride for about 18 h, which led to the formation of 2-amino-4-(3'-bromo-4'-methoxyphenyl)-

11H-pyrimido[4,5-a]carbazole (6a).The appearance of C=N stretching at the expense of C=O 

and the disappearance of a benzylidene singlet indicates the formation of 6a. The FT-IR 

spectrum of 6a showed absorptions at 3405, 3328, 3212, 1573 and 1540 cm-1 which were 

assigned to the asym NH2, sym NH2, indole NH and two C=N groups respectively. The 1H NMR 

spectrum of 6a showed a broad indole NH singlet at δ 9.90 ppm. The disappearance of 

methylene protons in the aliphatic region and the appearance of further peaks in the aromatic 

region clearly indicated that the product was fully aromatized. The signals due to C7, C10, C6, C5, 

C6', and C5' protons were visible as six doublets centered at δ 8.11, 7.91, 7.75, 7.63, 7.58 and 

7.06 (Jo = 8.0, 8.8, 8.4, 8.4, 8.0 and 7.2 Hz) respectively, and C2'-H and C4'-OCH3 protons 

occurred as two singlets at δ 8.04 and 4.00 ppm. From a singlet at δ 5.57 the presence of an 

amino group in the substrate was inferred. The presence of 21 carbons as identified from its 13C 

NMR spectrum and further confirmed by X-ray diffraction Fig. 3. A series of similar reactions 

were carried out with 3 (b-d) and similar results (formation 6 (b-d)), were obtained. All the 

compounds were obtained in moderate to good yield ranging from 65% to 75%. 



 

 
Fig.2. Structure of 5a (hydrate) with ellipsoids depicted at the 50% probability level and atomic labeling 

shown. Hydrogen atoms are omitted and only one position of the disordered water oxygen O5 is 

shown for clarity. 



 
Fig.3. Structure of 6a with ellipsoids depicted at the 50% probability level and atomic labeling shown. 

Hydrogen atoms are omitted for clarity. 

 

2.1.1. Mechanism for the formation of pyrimido[4,5-a]carbazole 

A plausible mechanism for the formation of product 6 is depicted in Scheme 2. The 

reaction occurs via initial formation of 3, from the Claisen-Schmidt condensation of aromatic 

aldehyde and 2,3,4,9-tetrahydro-1H-carbazol-1-one. The synthon 3 reacts with the amino group 

of guanidine nitrate to afford the Schiff base intermediate I, which on intramolecular 1,4-

Michael addition gives intermediate II. Subsequently, the cyclized intermediate II undergoes 

prototropic shift to yield intermediate III. Aerial oxidation of intermediate III gave the final 

stable aromatized product 6. 



 

2.2. Biological evaluation 

2.2.1. In vitro cytotoxicity 

 To evaluate the cytotoxicity of the newly synthesized compounds, two different cancer 

cell lines were utilized: MCF-7 (breast cancer) and A-549 (lung cancer). The viability of the cells 

was assessed by the MTT (3-(4',5'-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay 

[33] in vitro. Cisplatin was used as a positive control which showed IC50 values of 18±1.5µM for 

MCF-7 and 19±1.7µM for A-549 cancer cell lines. Three independent experiments in triplicate 

were performed for the determination of sensitivity to each compound. The anticancer potency of 

these compounds was expressed as growth inhibitory concentration (IC50) values which represent 

the compound concentration that causes a 50% reduction of cell growth, the results are 



summarized in Table 1. The percentage cell viability was determined using the following 

formula, and a graph was plotted between percentage cell viability and concentration, from this 

plot, the IC50 value was calculated. The in vitro cytotoxic activity of the synthesized compounds 

(4b, 6b and 6d) (10-100 µM concentrations) against both cancer cells has been presented in Fig. 

4-6. The experimental results demonstrate that all the compounds have the ability to inhibit cell 

proliferation in a dose dependent manner. 

 

 

Table 1. In vitro cytotoxicity and IC50 (µM/mL) 

Compounds MCF-7a A-549b 

4a 31±1.2 33±0.6 

4b 21±1.7 28±1.4 

4c 32±0.8 35±1.5 

5a 35±1.6 37±1.7 

5b 25±1.8 29±0.8 

5c 36±0.5 39±1.3 

5d 25±1.3 32±0.9 

6a 26±0.9 29±1.2 

6b 22±0.7 24±1.5 

6c 28±1.4 31±1.7 

6d 20±1.1 25±0.8 

Cisplatin 18±1.5 19±1.7 

a breast cancer.b lung cancer  

As shown in Table 1, the synthesized compounds showed excellent to moderate 

anticancer activities against the two tested cancer cell lines. The cytotoxic activity results 

revealed that the majority of the synthesized compounds exhibited potent anticancer activity 

against MCF-7 cell line and moderate activity against A-549 cell line which is represented in 

Table 1. Among the synthesized compounds, compound 6d was found to be the most potent 

derivative against MCF-7 with an IC50 value of 20±1.1 µM compared to the IC50 value of 

cisplatin (18±1.5 µM). The next most promising compound is 4b which depicted stronger 



cytotoxic activity against MCF-7 with an IC50 value of 21±1.7 µM, furthermore, compound 6b 

displayed substantial activity (IC50 value of 22±0.7 µM) against MCF-7. In addition, compounds 

6c, 5d, 5b, 4c, 6a and 4a with IC50 values of 28±1.4, 25±1.3, 25±1.8, 32±0.8, 26±0.9 and 31±1.2 

µM respectively, showed good activity against MCF-7 cancer cell line. While compounds 5a and 

5c were moderately active with IC50 values of 35±1.6 and 36±0.5 µM respectively.  

Concerning activity against A-549 cell line, compounds 6b and 6d were found to be the 

most potent derivatives with IC50 values of 24±1.5 and 25±0.8 µM respectively, while 

compounds 4b, 5b and 6a displayed significant IC50 values of 28±1.4, 29±0.8 and 29±1.2 µM 

respectively. Compounds 6c, 5d, 5c, 5a, 4c and 4a also showed moderate activity against A-549 

with IC50 values of 31±1.7, 32±0.9, 39±1.3,37±1.7, 35±1.5 and 33±0.6 µM respectively. In 

general, it was found that all the synthesized compounds displayed selective cytotoxicity against 

MCF-7 compared to A-549 cell line. 

 
Fig.4. Cytotoxic effect of the compound 4b on the viability of MCF-7 & A-549 cell lines 

 

 



Fig.5. Cytotoxic effect of the compound 6b on the viability of MCF-7 & A-549 cell lines 

 

 
Fig.6. Cytotoxic effect of the compound 6d on the viability of MCF-7 & A-549 cell lines 

 

2.2.2. Structure activity relationship (SAR)  

The results of the aforementioned anticancer activity lead to the following assumptions 

about the structural activity relationship (SAR): 

� It is clear from the results summarized in Table 1 that, among the synthesized 

compounds, the compound 6d showed highly improved cytoctoxic efficacy (1C50; MCF-

7=20±1.1 and A-549=25±0.8). Compounds 6a, 6b and 6c also exhibited stronger 

cytotoxic activity against MCF-7 breast cancer cell line. This might be due to the 

presence of the pyrimido moiety and the amino group at the C2 position which boosts the 

cytotoxic activity. The electron donating ability of the amino group increases the electron 

density of the parent molecule which rationally increases the potency of the compound 

towards anticancer activity. The role of NH2 group at the C2 position of pyrimido moiety 

in improving anticancer activities had been previously reported in the literature [34]. In 

addition combination of a pyrimidine group with a carbazole also increases its therapeutic 

value. 

� The next most promising compounds were 4a, 4b and 4c which exhibited potent 

cytotoxic activity. This might be due to the presence of isoxazolo moiety which enhanced 

the cytotoxic activity. 

� Compounds 5a, 5b, 5c and 5d having pyrido group also showed moderate cytotoxic 

activities [35] with IC50 values <40 µM against MCF-7 cancer cell line. 



� In general, it was observed that the substituent present in the carbazole ring plays a vital 

role in determining the anticancer potency. Among the hetero annulated carbazole 

compounds, the compounds bearing electron withdrawing chloro group in the pyrimidine 

annulated carbazole ring enhanced the cytotoxic activity more than the electron donating 

methyl group and unsubstituted group [36]. (Scheme. 3) 
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Scheme 3. Role of substituents in increasing the efficancy of cytotoxicity.
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The detected patterns of cytotoxicity of annulated carbazoles are in the following order: Scheme. 4. 

 

 

2.2.3. Cell morphology analysis  

 To observe the effect of synthesized compounds on cell morphology, treated cancer cells 

were examined by inverted light microscopy and compared with untreated cells. Treated cells 

showed significant changes in comparison to the untreated cells.  Cytological investigations 

elucidate the anticancer effect routed through membrane blebbing, membrane instability and 

disturbing the cytoskeleton of the cells by the compounds. Fig.7 and Fig.8 show the 

morphological changes in MCF-7 breast cancer and A-549 lung cancer cells after treatment with 

compounds with their respective inhibitory concentration for 24 h. Phase-contrast micrographs 



revealed that the compounds 6b and 6d induce increased cell shrinkage, membrane blebbing and 

form floating cells, compared to compounds 5d, 5b and 4b in a dose-dependent manner. 

 

Fig.7. Morphometric analysis of treated MCF-7 cells the arrows indicates the formation of 

floating cells and appearance of membrane blebbing. 

 
Fig.8. Morphometric analysis of treated A-549 cells the arrows indicates the formation of 

floating cells and appearance of membrane blebbing 

 

 



2.2.4. Fluorescence microscopic analysis of cell death 

 Fluorescence microscopy analysis revealed the effects of synthesized compounds to 

induce apoptosis in MCF-7 breast cancer and A-549 lung cancer cells. Induction of apoptosis is 

the most important mechanism for many anticancer agents. In fact, an ideal anticancer agent 

mostly potentiates apoptotic effects in cancer cells [37]. Fluorescence microscopic analysis of 

cell death showed that treatment of cells with compounds induce more apoptotic cell death rather 

than necrotic death. Mechanism of cell death was studied by nuclear staining methods such as 

AO/EB and DAPI staining methods. Staining cells with fluorescent dye is used in evaluating the 

nuclear morphology of apoptotic cells. One of the characteristics of cells undergoing apoptosis is 

nuclear chromatin condensation. The DNA in condensed chromatin stains strongly with 

fluorescent dyes which allows for differentiation of apoptotic from non-apoptotic cells. 

 

2.2.4.1. Acridine orange/ Ethidium bromide (AO/EB) staining method 

 To confirm the induction of apoptosis, treated cells were visualized by fluorescence 

microscopy following treatment with 1:1 ratio of AO/EB, which allow differentiation of dead 

and viable cells by staining DNA. Fluorescence microscopy images of MCF-7 and A-549 cancer 

cells in the absence of compounds (control) and in the presence of compounds are shown Fig.9 

and Fig.10 respectively. The untreated MCF-7 cancer cells did not show any significant adverse 

effect compared to the compounds treated cancer cells. It can be observed that the addition of 

compounds 5d and 6d to the MCF-7 cancer cells, the fluorescence green colour of cells are 

changed to orange/red colour, which is due to induced apoptosis and nuclear condensation effect. 

The cells with intact membranes shows  fluorescence green due to AO staining while EtBr stains 

cells with damaged membranes which exhibits orange/red fluorescence due to DNA intercalation 

of both stains. The rest of the compounds 4b, 5b and 6b showed less fluorescence intensity leads 

to the reduced level of induction of apoptosis in the MCF-7 cells. In the case of lung cancer cell, 

compounds 4b, 5b and 6d exhibited significant apoptotic induction rather than the compounds 

5d and 6b. The apoptotic induction values of the synthesized compounds were remarkable in 

MCF-7 cells compared to the lung cancer cells. 

 



 
Fig.9. AO/EB apoptotic analysis of treated MCF-7 cells the arrows indicate apoptotic cells 

 

 
Fig.10. AO/EB apoptotic analysis of treated A-549 cells the arrows indicate apoptotic cells 

 

 

 

 

 



2.2.4.2. DAPI staining method 

 In order to further confirm whether the synthesized compounds mediated cell death in 

MCF-7 breast cancer and A-549 lung cancer cells was due to apoptosis, the cells were stained 

with DAPI. DAPI (4',6-diamidino-2-phenylindole dihydrochloride) is a fluorescent nuclear dye 

that binds strongly to DNA. Fluorescence microscopic images of breast cancer cells after 24 h 

stained with DAPI in the presence and absence of compounds are shown in Fig.11. The 

compounds 4b, 5b and 6b displayed higher level of nuclear fragmentation and the untreated cells 

did not show any significant changes in the nuclear appearance, whereas compounds 5d and 6d 

exhibited bright fetches when treated with MCF-7 cancer cells, which indicates the condensed  

chromatins and nuclear fragmentations in the cells. Fig.12 showed fluorescent DAPI analysis of 

compounds treated A-549 lung cancer cells. Compounds 4b and 6b exhibit higher level of 

nuclear fragmentation in the treated A-549 cells, whereas, the compounds 5b, 5d and 6d failed to 

show the same effect caused by compounds 4b and 6b. The bright fetch observed in compounds 

treated MCF-7 breast cancer cells are higher than that observed in A-549 lung cancer cells.  

 

Fig.11. DAPI apoptotic analysis of treated MCF-7 cells the arrows indicate apoptotic cells 

 



 
Fig.12. DAPI apoptotic analysis of treated A-549 cells the arrows indicate apoptotic cells 

 

3. Conclusions 

 The newly synthesized heterocycles isoxazolo-, pyrido- and pyrimidocarbazoles were 

prepared from the easily accessible 2-(3'-bromo-4'-methoxybenzylidene)-2,3,4,9-tetrahydro-1H-

carbazol-1-one by cyclo condensation with appropriate reactants, hydroxylamine hydrochloride, 

malononitrile and guanidine nitrate. The structures of the compounds were characterized by 

spectroscopic and X-ray crystallographic methods. All the synthesized compounds were 

subjected to in vitro cytotoxicity against two human cancer cell lines: MCF-7 and A-549. 

Compound 6d exhibited significant activity against MCF-7 and all other compounds showed 

moderate to potent activity and subsequent apoptotic cell death to be evidenced by AO/EB and 

DAPI of fluorescence microscopy analysis. The structure-activity relationship studies revealed 

that, the compound bearing the pyrimido moiety and the electron withdrawing chloro group in 

the carbazole displayed excellent cytoctoxic activity. 

 

4. Experimental protocols 

4.1. Chemistry 

4.1.1. General 

All the chemicals were bought from Sigma-Aldrich and Merck and were utilized for the 

process without further purification. Melting points (M.p.) were determined on a Mettler FP 51 



apparatus (Mettler Instruments, Switzerland) and are uncorrected. They are expressed in degree 

centigrade (°C). FT-IR spectra were recorded on Avatar Model FT-IR(4000–400 cm-1) 

spectrophotometer. 1H NMR and 13C NMR spectra were recorded on a Agilent- 400 MHz (1H) 

and 100 MHz (13C) spectrometers respectively in CDCl3 using TMS (tetramethylsilane) as 

internal reference; chemical shifts are expressed in parts per million (ppm); coupling constants 

(J) are reported in hertz (Hz) and  the terms Jo and Jm refer to ortho coupling constant and meta 

coupling constant. The signals were characterized as s (singlet), d (doublet), t (triplet), m 

(multipiet), bs (broad singlet) and dd (doublet, and doublet).Microanalyses were carried out 

using Vario EL III model CHNS analyzer (Vario, Germany). When known compounds had to be 

prepared according to literature procedures and pertinent references are given. The purity of the 

products was tested by TLC plates coated with silica gel-G using petroleum ether and ethyl 

acetate in the ratio of 1:1 as developing solvents. 

 

4.2. Synthesis 

4.2.1. General procedure for the synthesis of 2-(3'-bromo-4'-methoxybenzylidene)-2,3,4,9-

tetrahydrocarbazol-1-one 3 

An equimolar mixture of the 2,3,4,9-tetrahydrocarbazol-1-one (1, 0.005 mol) and 3-

bromo-4-methoxybenzaldehyde (2, 0.005 mol) was treated with  5 % ethanolic KOH (25 

mL)solution and stirred for 24 h at room temperature. The completion of the reaction was 

monitored by TLC. After the completion of the reaction, the reaction mixture was cooled to 

room temperature and poured into ice cold water and neutralized with 1:1 HCl. The precipitated 

solid was filtered and purified by column chromatography over silica gel using petroleum ether: 

ethyl acetate (99:1) mixture as eluant to afford the respective product, 2-(3'-bromo-4'-

methoxybenzylidene)-2,3,4,9-tetrahydrocarbazol-1-one 3. 

 

4.2.1.1. 2-(3'-Bromo-4'-methoxybenzylidene)-2,3,4,9-tetrahydrocarbazol-1-one (3a). Yellow 

solid; m.p. 275-277oC; Yield: 83%; IR (KBr, cm-1) υmax: 3262 (NH), 1639 (C=O); 1H-NMR (400 

MHz,CDCl3) (ppm) δ: 9.09 (b s, 1H, N9-H), 7.68-7.36 (m, 7H, C7, C6, C5, C2, C6', C5' & C2'-H), 

6.95 (d, 1H, C8-H, Jo= 8.0 Hz), 3.94 (s, 3H, C4'-OCH3), 3.26-3.23 (m, 2H, C3-2H), 3.09-3.06 (m, 

2H, C4-2H);13C NMR (100 MHz, CDCl3) (ppm) δc:180.4 (C1), 155.8 (C4'), 138.4 (C8a), 135.6 

(C2), 134.5 (C2a), 133.5 (C2'), 132.2 (C6'), 130.4 (C9a), 130.0 (C4b), 128.1 (C1'), 127.2 (C4a), 125.9 



(C7), 121.3 (C6), 120.5 (C5), 112.4 (C5' & C3'), 111.6 (C8), 56.3 (C4'-OCH3), 27.5 (C3), 20.7 (C4); 

Anal.Calcd.for C20H16BrNO2: C, 62.84; H, 4.22; N, 3.66. Found: C, 62.95; H, 4.27; N, 3.63 %. 

 

4.2.1.2. 2-(3'-Bromo-4'-methoxybenzylidene)-6-methyl-2,3,4,9-tetrahydrocarbazol-1-one (3b). 

Yellow solid; m.p. 277-279oC; Yield: 75%; IR (KBr, cm-1) υmax: 3276 (NH), 1635 (C=O); 1H-

NMR (400 MHz,CDCl3) (ppm) δ: 9.04 (b s, 1H, N9-H), 7.68-7.67 (m, 2H, C2' & C5-H), 7.43 (s, 

1H, olefinic-H), 7.39 (d d, 1H, C6'-H, Jm = 2.0 Hz & J = 8.4 Hz), 7.36 (d, 1H, C8-H, Jo= 8.4 Hz), 

7.22 (d d, 1H, C7-H, Jm = 1.2 Hz & Jo = 8.4 Hz), 6.95 (d, 1H, C5'-H, Jo = 8.4 Hz),  6.96-6.94 (d, 

1H, C8-H, Jo = 8.0 Hz) 3.95 (s, 3H, C'4-OCH3), 3.25-3.22 (m, 2H, C3-2H), 3.07-3.04 (m, 2H, C4-

2H), 2.45 (s, 3H, C6-CH3); 
13C NMR (100 MHz, CDCl3) (ppm) δc:180.6 (C1), 155.9 (C4'),  137.1 

(C2), 135.9 (C8a), 134.6 (C2a), 133.5 (C2'), 132.5 (C6'), 130.6 (C9a), 130.2 (C6), 130.0 (C1'), 129.4 

(C4b), 127.8 (C4a), 126.2 (C7), 120.7 (C5), 112.3 (C5'), 111.8 (C3'), 111.8 (C8), 56.4 (OCH3), 27.7 

(C3), 21.5 (C3), 20.9 (CH3); Anal.Calcd.for C21H18BrNO2: C, 63.65; H, 4.58; N, 3.53. Found: C, 

63.74; H, 4.52; N, 3.56 %. 

 

4.2.1.3. 2-(3'-Bromo-4'-methoxybenzylidene)-8-methyl-2,3,4,9-tetrahydrocarbazol-1-one 

(3c).Yellow solid; m.p. 276-278oC; Yield: 76%; IR (KBr, cm-1) υmax: 3204 (NH), 1644 (C=O); 

1H-NMR (400 MHz,CDCl3) (ppm) δ: 8.81 (b s, 1H, N9-H), 7.68-7.67 (m, 2H, olefinic & C2'-H), 

7.51(d, 1H, C5-H, Jo = 7.6 Hz), 7.38 (d d, 1H, C6'-H, Jo= 2.0 Hz & Jm = 8.0 Hz), 7.18 (d, 1H, C7-

H Jo = 6.4 Hz), 7.08 (t, 1H, C6-H, J = 7.6 Hz), 6.95 (d, 1H, C5'-H, Jo = 8.0 Hz), 3.94 (s, 3H, C4'-

OCH3), 3.26-3.23 (m, 2H, C3-2H), 3.09-3.05 (m, 2H, C4-2H), 2.51 (s, 3H, C8-CH3); 
13C NMR 

(100 MHz, CDCl3) (ppm) δc:180.4 (C1), 155.8 (C4'), 138.2 (C2), 135.6 (C8a), 134.4 (C2a), 133.5 

(C2'), 132.0 (C6'), 130.4 (C9a), 130.0 (C6), 128.7 (C1'), 127.4 (C4b), 125.5 (C4a), 121.7 (C7), 120.8 

(C5), 118.9 (C5'), 111.7 (C3'), 111.7 (C8), 56.3 (OCH3), 27.5 (C4), 20.8 (C3), 16.6 (CH3); 

Anal.Calcd.for C21H18BrNO2: C, 63.65; H, 4.58; N, 3.53. Found: C, 63.71; H, 4.64; N, 3.49 %. 

 

4.2.1.4. 2-(3'-Bromo-4'-methoxybenzylidene)-6-chloro-2,3,4,9-tetrahydrocarbazol-1-one 

(3d).Yellow solid; m.p. 279-281oC; Yield: 75%; IR (KBr, cm-1) υmax: 3249 (NH), 1648 (C=O); 

1H-NMR (400 MHz,CDCl3) (ppm) δ: 9.04 (b s, 1H, N9-H),7.68-7.63 (m, 3H, olefinic, C2' & C6' -

H), 7.39-7.30(m, 3H, C8, C7 & C5-H), 6.95 (d, 1H, C5'-H, Jo = 8.8 Hz), 3.94 (s, 3H, C4'-OCH3), 

3.25-3.22 (m, 2H, C3-2H), 3.04-3.01 (m, 2H, C4-2H); 13C NMR (100 MHz, CDCl3) (ppm) 



δc:180.3 (C1), 154.0 (C4'),  137.5 (C2), 136.0 (C8a), 134.3 (C2a), 133.7 (C2'), 132.2 (C6'), 131.1 

(C9a), 130.5 (C6), 130.4 (C1'), 129.7 (C4b), 128.1 (C4a), 126.7 (C7), 121.5 (C5), 112.7 (C5'), 111.6 

(C3'), 111.4 (C8), 56.3 (OCH3), 27.4 (C3), 21.7 (C3); Anal.Calcd.for C20H15BrClNO2: C, 57.65; 

H, 3.63; N, 3.36. Found: C, 57.77; H, 3.67; N, 3.32 %. 

 

4.2.2. General procedure for the synthesis of 3-(3'-bromo-4'-methyoxyphenyl)-4,5-dihydro-10H-

isoxazolo[3,4-a]carbazole 4. 

The 2-(3'-bromo-4'-methoxybenzylidene)-2,3,4,9-tetrahydrocarbazol-1-one (1, 0.001 

mol) was refluxed with hydroxylamine hydrochloride (0.014 mol) in pyridine (5 mL) at 130 oC 

for 8 h. The reaction was monitored by TLC. After completion of the reaction, the crude mixture 

was poured into ice-cold water and neutralized with 1:1 HCl, the resulting semi-solid that 

separated was extracted with ethyl acetate. The combined organic layers were dried over 

anhydrous sodium sulphate. It was then purified by column chromatography over silicagel using 

pet.ether: ethyl acetate (98:2) to yield the respective 3-(3'-bromo-4'-methyoxyphenyl)-4,5-

dihydro-10H-isoxazolo[3,4-a]carbazole 4. 

 

4.2.2.1. 3-(3'-Bromo-4'-methyoxyphenyl)-4,5-dihydro-10H-isoxazolo[3,4-a]carbazole (4a). 

Brown solid; m.p. 209-211 oC; Yield: 70%; IR (KBr, cm-1) υmax: 3222 (NH), 1500 (C=N); 1H-

NMR (400 MHz,CDCl3) (ppm) δ: 8.80 (b s, 1H, N10-H), 8.21 (d, 1H, C2'-H, Jm = 2.0 Hz), 8.12 

(d, 1H, C6'-H, Jo = 8.0 Hz), 8.02 (d, 1H, C9-H, Jo = 8.4 Hz) 7.94-7.92 (m, 1H, C7-H), 7.69-7.66 

(m, 1H, C8-H), 7.61 (d, 1H, C5'-H, Jo = 8.0 Hz), 7.56 (d, 1H, C6-H, Jo = 7.6 Hz), 3.95 (s, 3H, C4'-

OCH3), 2.96-2.88 (m, 4H, C5 & C4-2H); 13C NMR (100 MHz, CDCl3) (ppm) δc: 163.6 (C3), 

155.8 (C4'), 133.0 (C10b), 133.0 (C9a), 131.2 (C10a), 128.5 (C2'), 126.7 (C6'), 124.1 (C1'), 122.8 

(C5b), 120.6 (C8), 120.2 (C7), 119.4 (C6), 117.1 (C5a), 112.2 (C3'), 112.1 (C5'), 111.5 (C9), 97.1 

(C3a), 56.3 (C4'-OCH3), 20.0 (C5), 21.7 (C4); Anal.Calcd.for C20H15BrN2O2: C, 60.78; H, 3.83; N, 

7.09. Found: C, 60.69; H, 3.87; N, 7.04 %. 

 

4.2.2.2. 3-(3'-Bromo-4'-methyoxyphenyl)-4,5-dihydro-7-methyl-10H-isoxazolo[3,4-a]carbazole 

(4b).Brown solid; m.p. 208-210 oC; Yield: 63%; IR (KBr, cm-1) υmax: 3226 (NH), 1536 (C=N); 

1H-NMR (400 MHz,CDCl3) (ppm) δ: 8.85 (b s, 1H, N10-H), 7.38 (s, 1H, C6-H), 7.32 (s, 1H, C2'-

H), 7.28 (d, 1H, C8-H, Jo = 8.4 Hz), 7.19 (d, 1H, C6'-H, Jo= 8.4 Hz), 7.11 (d, 1H, C9, Jo = 8.4 



Hz), 7.05 (d, 1H, C5'-H, Jo = 8.4 Hz),  3.96 (s, 3H, C4'-OCH3), 2.89-2.80 (m, 4H, C5 & C4-2H), 

2.44 (s, 3H, C7-H); 13C NMR (100 MHz, CDCl3) (ppm) δc: 162.9 (C3), 155.6 (C4'), 133.3 (C10b), 

133.1 (C9a), 130.9 (C10a), 128.7 (C2'), 125.6 (C6'), 124.4 (C1'), 123.0 (C5b), 121.5 (C8), 120.7 (C7), 

118.5 (C6), 117.5 (C5a), 112.7 (C3'), 112.3 (C5'), 111.8 (C9), 96.4 (C3a), 57.0 (OCH3), 21.0 (C5), 

20.7 (C4) 16.3 (CH3); Anal.Calcd.for C21H17BrN2O2: C, 61.63; H, 4.19; N, 6.84. Found: C, 

61.71; H, 4.15; N, 6.92 %. 

 

4.2.2.3. 3-(3'-Bromo-4'-methyoxyphenyl)-4,5-dihydro-8-methyl-10H-isoxazolo[3,4-a]carbazole 

(4c). Brown solid; m.p. 215-217 oC; Yield: 58 %; IR (KBr, cm-1) υmax: 3367 (NH), 1492 (C=N); 

1H-NMR (400 MHz,CDCl3) (ppm) δ: 8.40 (b s, 1H, N10-H), 7.56 (s, 1H, C2'-H), 7.45 (d, 1H, C6-

H, Jo = 7.6 Hz), 7.40-7.22 (m, 3H, C8, C7 & C5'-H), 6.90 (d, 1H, C6'-H, Jo = 8.4 Hz ), 3.92 (s, 3H, 

C4'-OCH3), 3.00-2.99 (m, 2H, C4-2H), 2.94-2.91 (m, 2H, C5-2H), 2.43 (s, 3H, C8-H); 

Anal.Calcd.for C21H17BrN2O2: C, 61.63; H, 4.19; N, 6.84. Found: C, 61.69; H, 4.17; N, 6.89 %. 

 

4.2.3. General procedure for the synthesis of 4-(3'-bromo-4'-methoxyphenyl)-2-ethoxy-5,6- 

dihydro-11H-pyrido[2,3-a]carbazole-3-carbonitrile 5 

The appropriate 2-(3'-bromo-4'-methoxybenzylidene)-2,3,4,9-tetrahydrocarbazol-1-one 

(3,0.001 mol) in dry ethanol (20 mL) was added to an ice-cooled solution of 1.00g of NaH in dry 

benzene (10 mL). To this, malononitrile (0.001mol) was added and refluxed on an oil bath for 5 

h. The reaction monitored by TLC indicated the formation of product. The mixture was poured 

into ice-cold water. The brown solid that separated was neutralized with 1:1 HCl, then filtered 

and dried. It was then purified by column chromatography over silica gel using pet.ether: ethyl 

acetate (98:2) as eluant to yield the respective 4-(3'-bromo-4'-methoxyphenyl)-2-ethoxy-5,6-

dihydro-11H-pyrido[2,3-a]carbazole-3-carbonitrile 5. 

 

4.2.3.1. 4-(3'-Bromo-4'-methoxyphenyl)-2-ethoxy-5,6-dihydro-11H-pyrido[2,3-a]carbazole-3-

carbonitrile (5a).Yellow solid; m.p. 265-267 °C; yield: 81%; IR (KBr, cm-1) υmax: 3335 (NH), 

2218 (CN), 1555 (C=N); 1H-NMR (400 MHz,CDCl3) (ppm) δ: 8.76 (b s, 1H, N11-H), 7.58 (d, 

1H, C7-H, Jo = 7.6 Hz), 7.52 (d, 1H, C2'-H, Jm = 2.0 Hz), 7.43 (d, 1H, C10-H, Jo = 8.0 Hz), 7.30-

7.26 (m, 2H, C6' & C9-H), 7.14 (t, 1H, C8-H, J = 7.6 Hz), 7.02 (d, 1H, C5'-H, Jo = 8.4 Hz), 4.64-

4.58 (q, 2H, OCH2CH3, J = 7.2 Hz), 3.96 (s, 3H, C4'-OCH3), 2.97-2.87 (m, 4H, C6 & C5-2H), 



1.50 (t, 3H, OCH2CH3, J = 7.2 Hz); 13C NMR (100 MHz, CDCl3) (ppm) δc: 148.7 (C2 & C4'), 

137.9 (C11b & C4), 133.2 (C10a), 132.1 (C1' & C2'), 128.9 (C6' & C11a), 126.7 (C6b & C4a), 124.7 

(C9), 121.4 (C8 & C7), 120.3 (C5' & C3'), 119.9 (CN), 1119 (C3 & C6a), 111.7 (C10), 63.0 

(OCH2CH3), 56.3 (C4'-OCH3), 25.2 (C5), 19.4 (C6), 14.5 (OCH2CH3); Anal.Calcd.for 

C25H20BrN3O2: C, 63.30; H, 4.25; N, 8.86. Found: C, 63.39; H, 4.29; N, 8.79 %. 

 

4.2.3.2. 4-(3'-Bromo-4'-methoxyphenyl)-2-ethoxy-5,6-dihydro-8-methyl-11H-pyrido[2,3-

a]carbazole-3-carbonitrile (5b).Yellow solid; mp 263-265 °C; yield: 79%; IR (KBr, cm-1) υmax: 

3380 (NH), 2206 (CN), 1553 (C=N); 1H-NMR (400 MHz,CDCl3) (ppm) δ: 8.65 (b s, 1H, N11-

H), 7.52-7.09 (m, 5H, C10, C9, C7, C6' & C2'-H), 7.03 (d, 1H, C5'-H, Jo = 8.4 Hz),  4.63-4.57 (q, 

2H, OCH2CH3, J = 7.0 Hz), 3.96 (s, 3H, C4'-OCH3), 2.91-2.85 (m, 4H, C6 & C5-2H), 2.44 (s, 3H, 

C8-CH3) 1.49 (t, 3H, OCH2CH3, J = 7.0 Hz); Anal.Calcd.for C26H22BrN3O2: C, 63.94; H, 4.54; N, 

8.60. Found: C, 63.85; H, 4.49; N, 8.66 %. 

 

4.2.3.3. 4-(3'-Bromo-4'-methoxyphenyl)-2-ethoxy-5,6-dihydro-10-methyl-11H-pyrido[2,3-

a]carbazole-3-carbonitrile (5c).Yellow solid; mp 264-256 °C; yield: 77%; IR (KBr, cm-1) υmax: 

3367 (NH), 2215 (CN), 1552 (C=N); 1H-NMR (400 MHz,CDCl3) (ppm) δ: 8.58 (b s, 1H, N11-

H), 7.52 (d, 1H, C2'-H, Jm = 2.0 Hz), 7.42 (d, 1H, C7-H, Jo= 6.4 Hz), 7.30 (d d, 1H, C6'-H, Jm = 

2.0 Hz & Jo =  8.4 Hz), 7.10-7.03 (m, 2H, C9 & C8-H), 7.02 (d, 1H, C5'-H, Jo = 8.4 Hz)  4.66-4.60 

(q, 2H, OCH2CH3, J = 6.8 Hz), 3.96 (s, 3H, C4'-OCH3), 2.93-2.83 (m, 4H, C6 & C5-2H), 2.57 (s, 

3H, C10-CH3) 1.52-1.49 (t, 3H, OCH2CH3, J = 6.8 Hz); 13C NMR (100 MHz, CDCl3) (ppm) δc: 

163.5 (C2), 156.4 (C11b), 152.3 (C4'), 148.8 (C4), 137.5 (C10a), 133.2 (C1'), 131.8 (C11a), 129.0 (C6' 

& C2'), 126.3 (C6b & C4a), 125.2 (C8), 121.5 (C10), 120.9 (C9), 120.5 (C7), 119.7 (C6a), 117.6 

(CN), 115.7 (C5' & C3'), 111.9 (C3), 63.1 (OCH2CH3), 56.3 (OCH3), 25.3 (C5), 19.5 (C6), 16.7 

(CH3), 14.5 (OCH2CH3); Anal.Calcd.for C26H22BrN3O2: C, 63.94; H, 4.54; N, 8.60. Found: C, 

63.87; H, 4.48; N, 8.65 %. 

 

4.2.3.4. 4-(3'-Bromo-4'-methoxyphenyl)-2-ethoxy-5,6-dihydro-8-chloro-11H-pyrido[2,3-

a]carbazole-3-carbonitrile (5d).Yellow solid; mp 269-270 °C; yield: 68%; IR (KBr, cm-1) υmax: 

3316 (NH), 2219 (CN), 1556 (C=N); 1H-NMR (400 MHz,CDCl3) (ppm) δ: 8.79 (b s, 1H, N11-

H), 7.53-7.02 (m, 6H, C10, C9, C7, C6', C5' & C2'-H), 4.63-4.57 (q, 2H, OCH2CH3, J = 7.0 Hz), 



3.96 (s, 3H, C4'-OCH3), 2.92-2.85 (m, 4H, C6 & C5-2H), 1.51-1.48 (t, 3H, OCH2CH3, J = 7.0 

Hz); 13C NMR (100 MHz, CDCl3) (ppm) δc:158.2 (C2 & C11b), 156.0 (C4' & C4), 134.8 (C10), 

133.0 (C11a), 131.2 (C1'), 129.3 (C2' & C6'), 128.8 (C6b), 126.5 (C8), 120.8 (C4a), 119.4 (C9), 114.2 

(C7), 113.5 (CN), 112.3 (C6a), 112.3 (C10), 111.9 (C5' & C3'), 111.7 (C3), 61.9 (OCH2CH3), 56.4 

(OCH3), 27.3 (C5), 20.7 (C6), 14.7 (OCH2CH3); Anal.Calcd.for C25H19BrClN3O2: C, 59.02; H, 

3.76; N, 8.26. Found: C, 59.11; H, 3.72; N, 8.20 %. 

 

4.2.4. General procedure for the synthesis of 2-amino-4-(3'-bromo-4'-methoxyphenyl)-11H-

pyrimido[4,5-a]carbazole 6 

A mixture of respective 2-(3'-bromo-4'-methoxybenzylidene)-2,3,4,9-tetrahydrocarbazol-

1-one (3, 1 mmol), guanidine nitrate (0.10 mol) and benzene (10 mL) was refluxed in the 

presence of sodiumhydride (1.00 g) for 18 h. The reaction was monitored by TLC. After 

completion of the reaction, the excess of solvent was boiled off and the residue was poured into 

crushed ice. The mixture was then neutralized with 1:1 HCl and extracted with ethyl acetate. The 

organic layer was washed with water and dried over anhydrous sodium sulphate, upon removal 

of the solvent a brown mass was obtained.It was purified by column chromatography over silica 

gel using petroleum ether:ethyl acetate (85:15) to yield the respective 2-amino-4-(3'-bromo-4'-

methoxyphenyl)-11H-pyrimido[4,5-a]carbazole 6. 

 

4.2.4.1. 2-Amino-4-(3'-bromo-4'-methoxyphenyl)-11H-pyrimido[4,5-a]carbazole (6a).Yellow 

solid; m.p. 292-294 °C; yield: 77%; IR (KBr, cm-1) υmax: 3405 (asym NH2), 3328 (sym NH2), 

3212 (NH), 1573 (C=N), 1540 (C=N); 1H-NMR (400 MHz,CDCl3) (ppm) δ: 9.90  (b s, 1H, N11- 

H), 8.11 (d, 1H, C7-H, Jo = 8.0 Hz), 8.04 (s, 1H, C2'-H), 7.91(d, 1H, C10-H, Jo = 8.8 Hz), 7.75 (d, 

1H, C6-H, Jo = 8.4 Hz), 7.63 (d, 1H, C5-H, Jo= 8.4 Hz), 7.58 (d, 1H, C6'-H, Jo = 8.0 Hz), 7.48 (t, 

1H, C8-H,  J = 7.2 Hz), 7.29 (t, 1H, C9-H, J = 7.2 Hz ), 7.06 (d, 1H, C5'-H, Jo = 8.0 Hz), 5.57 (s, 

2H, C2-NH2), 4.00 (s, 3H, C4'-OCH3); 
13C NMR (100 MHz, CDCl3) (ppm) δc: 139.5 (C2 & C4'), 

134.7 (C4 & C11b), 130.4 (C10), 126.7 (C11a & C2'), 123.2 (C6' & C1'), 120.7 (C5 & C6b), 120.1 (C6 

& C8), 117.8 (C7 & C9), 116.7 (C6b & C4a), 111.8 (C5' & C3'), 111.4 (C10), 56.4 (C4'-OCH3); 

Anal.Calcd.for C21H15BrN4O: C, 60.16; H, 3.61; N, 13.36. Found: C, 60.25; H, 3.65; N, 13.29 %. 

 



4.2.4.2. 2-Amino-4-(3'-bromo-4'-methoxyphenyl)-8-methyl-11H-pyrimido[4,5-a]carbazole 

(6b).Yellow solid; m.p. 295-297 °C; yield: 68%; IR (KBr, cm-1) υmax: 3414 (asymNH2, sym 

NH2& indole NH), 1575 (C=N), 1541 (C=N); 1H-NMR (400 MHz,CDCl3) (ppm) δ: 9.97  (b s, 

1H, N11- H), 8.04 (s, 1H, C7-H), 7.88-7.74 (m, 3H, C9, C6' & C2'-H), 7.61 (d, 1H, C6-H, Jo = 8.4 

Hz), 7.49 (d, 1H, C5-H, Jo = 8.4 Hz), 7.33 (d, 1H, C10-H, Jo = 8.4 Hz), 7.06 (d, 1H, C5'-H, Jo = 

8.0 Hz), 5.84 (s, 2H, C2-NH2), 4.00 (s, 3H, C4'-OCH3), 2.54 (s, 3H, C8-CH3); 
13C NMR (100 

MHz, CDCl3) (ppm) δc: 158.7 (C2), 151.6 C4'), 147.5 (C4), 144.0 (C11b), 131.5 (C10a), 129.4 

(C2'), 128.5 (C6a), 127.5 (C8), 125.1 (C6b), 124.9 (C6'), 124.2 (C1'), 123.5 (C11a), 122.1 (C5), 121.8 

(C7), 116.6 (C6), 115.7 (C9), 114.6 (C4a), 113.8 (C3'), 113.6 (C5'), 112.6 (C10), 51.6 (OCH3), 20.5 

(CH3); Anal.Calcd.for C22H17BrN4O:C, 60.98; H, 3.95; N, 12.93. Found:C, 60.89; H, 3.98; N, 

12.97 %. 

 

4.2.4.3. 2-Amino-4-(3'-bromo-4'-methoxyphenyl)-10-methyl-11H-pyrimido[4,5-a]carbazole 

(6c).Yellow solid; mp 296-278 °C; yield: 71%; IR (KBr, cm-1) υmax: 3391(asymNH2), 3360 (sym 

NH2& indole NH), 1544 (C=N), 1497 (C=N); 1H-NMR (400 MHz,CDCl3) (ppm) δ: 10.82  (b s, 

1H, N11- H), 7.80-6.98 (m, 8H, C9, C8, C7, C6, C5, C6', C5' & C2'-H), 5.66 (s, 2H, C2-NH2), 4.02 

(s, 3H, C4'-OCH3), 2.39 (s, 3H, C10-CH3);  Anal.Calcd.for C22H17BrN4O:C, 60.98; H, 3.95; N, 

12.93. Found: C, 60.91; H, 3.97; N, 12.98 %. 

 

4.2.4.4. 2-Amino-4-(3'-bromo-4'-methoxyphenyl)-8-chloro-11H-pyrimido[4,5-a]carbazole 

(6d).Yellow solid; mp 299-281 °C; yield: 63%; IR (KBr, cm-1) υmax: 3401(symNH2), 3387 (sym 

NH2), 3204 (NH), 1545 (C=N), 1496 (C=N); 1H-NMR (400 MHz,CDCl3) (ppm) δ: 9.28 (b s, 1H, 

N11- H),  7.79 (s, 1H, C5-H), 7.53 (s, 1H, C2'-H), 7.48-7.17 (m, 5H, C10, C9, C7, C6 & C6'-H), 6.96 

(d, 1H, C5'-H, Jo = 8.8 Hz), 5.06 (s, 2H, C2-NH2), 3.94 (s, 3H, C4'-OCH3);  Anal.Calcd.for 

C21H14BrClN4O: C, 55.59; H, 3.11; N, 12.35. Found: C, 55.51; H, 3.15; N, 12.41 %. 

 

4.3. Biological evaluation 

4.3.1. In vitro cytotoxic activity 

4.3.1.1. Cell line and cell culture 

 The Human lung and breast cancer cells were purchased from the National Center for 

Cell Sciences (NCCS), Pune, India. The cancer cells were maintained in Dulbecco’s modified 



eagles medium (DMEM) supplemented with 2mM l-glutamine and balanced salt solution (BSS) 

adjusted to contain 1.5 g/L Na2CO3, 0.1 mM nonessential amino acids, 1 mM sodium pyruvate, 2 

mM l-glutamine, 1.5 g/L glucose, 10 mM (4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid) 

(HEPES) and 10% fetal bovine serum (GIBCO, USA). Penicillin and streptomycin (100 

IU/100µg) were adjusted to 1mL/L. The cells were maintained at 37◦C with 5% CO2 in a 

humidified CO2 incubator. 

4.3.1.2. In vitro assay 

The inhibitory concentration (IC50) value was evaluated using an MTT [3-(4,5- 

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Cancer cells were grown (1×104 

cells/well) in a 96-well plate for 48 h in to 75% confluence. The medium was replaced with fresh 

medium containing serially diluted synthesized compounds, and the cells were further incubated 

for 48 h. The culture medium was removed, and 100µL of the MTT [3-(4,5-dimethylthiozol-2-

yl)-3,5-diphenyl tetrazolium bromide] (Hi-Media) solution was added to each well and incubated 

at 37 ◦C for 4 h. After removal of the supernatant, 50 µL of DMSO was added to each of the 

wells and incubated for 10 min to solubilize the formazan crystals. The optical density was 

measured at 620 nm in an ELISA multiwell plate reader (ThermoMultiskan EX, USA). 

 

4.3.2. Cell morphology analysis 

The MCF-7 and A-549 cells that were grown on cover slips (1×105 cells/cover slip) 

incubated for 6-24 h with compounds at the IC50 concentration, and they were then fixed in an 

ethanol:acetic acid solution (3:1; v/v). The cover slips were gently mounted on glass slides for 

the morphometric analysis. Three monolayers per experimental group were photo micrographed. 

The morphological changes of the MCF-7 and A-549 selected cells were analyzed using Nikon 

(Japan) bright field inverted light microscopy at 40x magnification. 

 

4.3.3. Fluorescence microscopic analysis of apoptotic cell death 

Approximately 1µL of a dye mixture (100 mg/mL acridine orange (AO) and 100 mg/mL 

ethidium bromide (EtBr) in distilled water) was mixed with 9 mL of cell suspension (1×105 

cells/mL) on clean microscope cover slips. The selected cancer cells were collected, washed with 

phosphate buffered saline (PBS) (pH 7.2) and stained with 1 mL of AO/EtBr. After incubation 

for 2 min, the cells were washed twice with PBS (5 min each) and visualized under a 



fluorescence microscope (Nikon Eclipse, Inc, Japan) at 400× magnification with an excitation 

filter at 480 nm. Likewise the cells were plated on glass coverslip in a 24-well plate and treated 

with complex for 24 h. The fixed cells were permeabilised with 0.2% triton X-100 (50µl) for 10 

min at room temperature and incubated for 3 min with 10µl of DAPI by placing a coverslip over 

the cells to enable uniform spreading of the stain. The cells were observed under (Nikon Eclipse, 

Inc, Japan) fluorescent microscope. 
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