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Rotational seismic excitation effects on CIDH pile-supported bridge piers 

Elli-Konstantina V. Mylona1, Anastasios G. Sextos2, George E. Mylonakis3 

ABSTRACT 

This paper investigates the response of bridges founded on single, cast-in-drilled-hole (CIDH) piles 
under combined translational and rotational excitation. The input motion stems from kinematic 
interaction - a result of the relative flexibility between pile and soil - and subsequent pile bending, 
under the passage of vertically propagating seismic shear waves. The rotational component of seismic 
excitation is typically ignored in analysis and design, and it is not prescribed in modern seismic codes. 
More importantly, the significance of this effect on the response of pile-supported bridges has not 
been quantified and is presently poorly understood. Along these lines, a simple framework is presented 
in this paper for studying parametrically: (a) the salient features of the rotational excitation component 
and (b) the seismic demand imposed on the superstructure. For this purpose, multiple MDOF 
oscillators representing typical bridge piers of different heights, founded on soils of different stiffness, 
are considered, subjected to a variety of harmonic signals and recorded earthquake motions. The 
displacement demands on the superstructure are compared to corresponding displacements obtained 
under exclusively translational excitation. It is concluded that the kinematically-induced rotational 
excitation may significantly increase deck displacements (by a factor of 2 or more depending on the 
circumstances), especially close to resonant frequencies associated with the dynamic characteristics of 
the soil and the superstructure. 
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1. INTRODUCTION 

In the age of rapid transportation, importance of bridge safety can hardly be overstated. Following a 

series of catastrophic earthquakes that inflicted serious damage on bridges (San Fernando 1971, Loma 

Prieta 1989, Northridge 1994, Kobe 1995, Kocaelli 1999, Maule 2010, Tohoku 2011), research on 

earthquake performance of bridge structures has turned into a mainstream area in structural and 

dynamics engineering. Recent seismic codes prescribe means to ensure a target level of bridge 

performance related to integrity and serviceability for various levels of earthquake loading, so that the 

probability of massive human loss is reduced and the disruption of social and financial activity is 

limited to a minimum. 

Despite their relatively simple structural form (compared to buildings), bridges may exhibit complex 

dynamic response. This stems from their large dimensions, asymmetry in plan, kinematic constraints 

such as stoppers and shear keys, potentially significant contribution of higher modes, sensitivity to 

spatially variable foundation properties and ground motion, as well as on topography and/or soft 

geologic formations of the areas crossed. It is, therefore, not surprising that the superstructure – 

foundation – subsoil system is often studied as a whole, with full consideration of the interactions 

among its components and the spatially variable nature of foundation conditions and earthquake input. 

The inherent complexity of bridge response has been thoroughly studied in recent years, and progress 

on bridge research, especially in pile supported structures, has been achieved thanks to analytical 

solutions and advanced numerical simulations [1,2] encompassing site response [3] and  soil-pile 

behaviour [4–7]. Experimental results involving complex bridge structures on pile foundations are also 

available [8–10], while theoretical research has shed light into the nature of kinematic soil-pile 

interaction [11–16]. Furthermore, calibrated models from experimental tests and free-field 

measurements on Test Sites [17,18] have demonstrated the SSI effects for a range of ground motion 

intensities.  

A potentially important issue that has not received proper attention by researchers and code writers is 

the rotational excitation imposed at the base of a pile–supported bridge pier due to kinematically–

induced rotation of the pile head [19,20]. This rocking differs from the ordinary rotation of the pile 

head developing as a result of soil-foundation compliance (modelled by the well-known foundation 

springs and dashpots at the pile head), as in this case the rotation is also part of the excitation – not 

just response. In other words, the presence of a pile foundation modifies the amplitude and frequency 

content of the incoming seismic waves, thus resulting to an input motion that is different from the 
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motion of the free field and includes the aforementioned rotational component. When the system is 

analysed as a whole, the rotational excitation is inherent in the response. However, in most cases sub-

structuring techniques are employed, which require proper consideration of the imposed kinematic 

rotation. It is noted that while in surface footings development of rotational excitation requires inclined 

or surface seismic waves, in pile foundations this happens with vertically propagating S waves as well. 

Analytical expressions have been derived for computing the kinematic pile head rotation under 

idealised conditions [16,21]. Still, however, there is no comprehensive approach available for practical 

purposes that can simultaneously account for the translational and the rotational component of seismic 

acceleration, nor has this effect been quantified for structural engineering purposes [22]. This is 

desirable, especially for bridges supported on cast-in-drilled-hole (single) pile foundations, which are 

more prone to pile head rotation over pile groups. 

Along these lines and with reference to pile–supported bridge piers, the scope of this paper is 

threefold: 

(a) to outline a rational methodology for considering simultaneously the translational and rotational 

excitation components of a soil–pile–superstructure system, 

(b) to present a comprehensive set of parametric analyses and identify cases where the rotational 

component of the excitation is significant and cannot be neglected, 

(c) to provide practical recommendations for incorporating rotational excitation in design. 

The analysis framework and the comparative results are presented in the following. 

2. DIMENSIONAL ANALYSIS OUTLINE 

The study at hand requires the definition of a set of relevant variables that can be grouped into four 

categories, namely superstructure, CIDH pile foundation, soil, and seismic excitation. The system into 

consideration, shown in Fig. 1, is a model of a circular bridge pier of diameter bd and height bh  

supporting a deck mass bm  (and Jmb), sitting on a single cylindrical pile of diameter pd  with mass mp 

(and Jmp=0 due to lack of a pile cap) embedded in a uniform soil stratum of shear modulus sG  (i.e., 

with shear wave velocity s s sV G ρ= ) and thickness Hs. Other important parameters are density and 

material damping of bridge pier, pile and soil, i.e., { }, ,b p sρ ρ ρ  and { }, ,b p sζ ζ ζ , respectively. Both pier 

and pile are made of reinforced concrete, characterised by the corresponding moduli of elasticity 
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{ },b pΕ Ε . Vertically propagating harmonic S  waves of the form i t
gu u e ω=  with bedrock amplitude gu  

and circular frequency ω  constitute the earthquake excitation. The response parameters of interest 

are the pier top (deck) displacement due to pure translational and combined translational/rotational 

excitation, 
deck
uδ and 

deck
u θδ + , respectively, as well as the free field soil response at the ground surface 

( 0)ff zu =  being derived from the familiar expression [21]: 

*

*

cos
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i t
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 = =
 
 
 

         (1) 

for depth z=0, where *
sV  ( *

sG ρ= ) is the complex shear wave propagation velocity an

* (1 2 )s sG G ζ= +  is the corresponding shear modulus. It is recalled that the cyclic natural frequency 

of the soil 2s s sVω π= Η and the shear and Young’s moduli are related through the expression

2(1 )s sG E v= + . Overall, the displacement response of the system deck
uδ  depends on 21 independent 

variables as summarised in Table 1. Note that under linear conditions, the bedrock motion amplitude 

gu  is not an essential independent variable, as it merely scales the response in proportion to its value. 

Similarly, the length of the pile pL  does not affect the lateral response at the pile head (assuming long 

pile conditions), while pier and pile materials are identical, hence, b pE E= , b pρ ρ=  and b pζ ζ= . 

Based on the above, the 21+1 characteristic problem variables become 16+1, where 13 are 

dimensional and 3 (i.e., damping ,b sζ ζ  and v ) are inherently dimensionless. Accordingly, the response 

function of the bridge in terms of deck displacement due to translational excitation only, can be written 

as: 

( , , , , , , , , , , , , , , , )deck
u b b mb b b b b p mp p s s s sf E m J h d m J d G Hδ ρ ζ ν ρ ζ ω=      (2) 

The above parameters involve 3 reference dimensions, namely length [L], time [T] and mass [M]. 

According to Buckingham’s theorem, the number of independent dimensionless groups (Π-products) 

is equal to the number of independent variables reduced by the number of reference dimensions, i.e. 

16-3=13 dimensionless groups, hence, one can write: 
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2 2
,
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Likewise: 
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for the case of simultaneous translational and rotational earthquake motion. It is recalled that the first 

parameter is commonly denoted as normalised frequency 0 p sa d Vω= . The terms: 
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          (4) 

constitute the normalized Engineering Demand Parameters (EDPs) of interest, being herein a form 

of “modified SSI coefficients” as they express the elastic displacement demand imposed on the bridge 

pier due to the conventional translation excitation of the pier base and the combined 

translational/rotational component, respectively, both normalized to the displacement demand of the 

bridge pier due to the free field displacement at the soil surface. It is recalled to this end, that the above 

coefficients are analogous to the conventional kinematic interaction coefficients which are defined as 

[23]: 

( 0)
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ω=

=          (5a) 

( 0)

( )
( )

( )
p p

ff z

d
I

uθ

θ ω
ω

ω=

=          (5b) 

The dynamic excitation of the bridge is considered in the transverse direction along which the 

rotational excitation of earthquake ground motion is expected to be more critical due to relatively 

lower redundancy. A 4–DOF oscillator is adopted, associated with two pairs of translational and 

rotational DOFs of the two lumped masses ( bm , Jmb, pm  and Jmp) assumed at the top and bottom of 

the pier, as shown in Figure 1. A bed of Winkler springs and dampers connecting the pile to the free 

field soil is used to model soil–pile interaction. 
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Table 1: Independent problem variables 

Variable class Variable Units Fundamental 
dimensions 

Dependence / 
Significance 

Superstructure 

Modulus of elasticity, Εb kN/m2 M,T, L Εb=Ep 
Mass of superstructure, mb t  M  

Rotational mass of the superstructure Jmb tm2 M, L  
Pier height, hb M L  
Pier density, ρb kg/m3 M, L ρb= ρp 

Pier material damping, ζb - - ζb= ζp 
Pier diameter, db m L  

Foundation:            
R/C  

CIDH pile 

Modulus of elasticity, Εp=E kN/m2 M,T, L Εb=Ep 
Mass of foundation, mp t  M  

Rotational mass of the foundation Jmp tm2 M, L Negligible 
Pile diameter, dp M L  

Density, ρp kg/m3 M, L ρbp= ρp 
Material damping, ζp - - ζbp= ζp 

Length, Lp m L Irrelevant 

Soil 

Shear modulus, Gs kN/m2 M,T, L  
Stratum thickness, Ηs M L  

Density, ρs kg/m3 M, L  
Material damping, ζs - -  

Poisson’s ratio ν - -  

Excitation Cyclic frequency, ω T T  
Bedrock amplitude ug m/s2 L,T Irrelevant 

 
Figure 1: Overview of CIDH pile-bridge system considered and related variables. 
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3. KINEMATIC AND INERTIAL SOIL-PILE-PIER INTERACTION 

3.1 Overview of kinematic and inertial decoupling 

The response of bridge–foundation systems, such as the one of Fig. 1, can be computed as the 

superposition of two effects [24]: (1) the kinematic interaction effect involving the response to base 

excitation of the actual system assuming zero mass in the superstructure; (2) an inertial interaction 

effect referring to the response of the complete soil–pile–structure system to excitation by D’Alembert 

forces associated with the acceleration of the superstructure due to the kinematic interaction. For 

computational convenience and conceptual simplicity, each one of the above two stages is further 

subdivided into two independent analysis steps for the needs of this study, as follows: 

For the kinematic response: (a1) analysis of the free–field soil response (i.e. without the presence of 

piles) to vertically incident S waves, ( , )ffu z ω  and (a2) analysis of the interaction of the single pile with 

the surrounding soil, ( 0) ( 0)( ) ( )pile z u ff zu I uω ω= == , driven by the free–field response of step (a1), where z  

is the depth of the Winkler springs along the pile length and ( 0)ff zu =  the motion at free–field soil surface. 

To capture in a simple way the rotational component of the excitation, the base rotation exciting the 

superstructure is derived from the definition of the rotational kinematic response factor, Iθ , eq. (5b): 

, 0( ) ( )
( ) ff z

p
p

u
d

θ ω ω
θ ω =Ι

=         (6) 

For the inertial response: (b1) computation of the dynamic impedances (“springs” and “dashpots”) at 

the pile head, associated with the swaying ( )*
xxK , rocking ( )*

rrK and cross-swaying-rocking ( )*
xrK

degrees of freedom at the pile head; and (b2) analysis of the dynamic response of the superstructure 

supported on the “springs” and “dashpots” of step (b1), subjected to the kinematic pile–head motion 

of step (a2); the latter consisting the “Foundation Input Motion” (F.I.M.). 

The translational ( )*
xxK  and rotational ( )*

rrK  stiffness of the soil–pile system in step (b1) are derived 

according to the literature [25] and they are terms of the complex dynamic impedance along any degree 

of freedom of the system * ( , )k z ω  encompassing the stiffness, inertia, radiation and hysteretic action 

in the soil, which can be cast in the form: 

* ( , ) ( , ) ( , )k z k z i c zω ω ω ω= +         (7) 



Accepted Manuscript

8  

Note that no cross–swaying–rocking stiffness term ( )*
xrK is employed in the analysis; instead the pier 

length is increased by a pertinent complex eccentricity e to diagonalise the stiffness matrix, thus 

uncoupling swaying and rocking response at an extra base node [26]: 

*

*

1
2

rx

xx

Ke
K λ

= =            (8) 

where λ is a wave number parameter associated with the attenuation of flexural waves along the pile 

and z  is the vertical coordinate measured from ground surface: 

( )
1/ 42

4
x p x

p p

k m i c
E I
ω ω

λ ω
 − +

=  
  

         (9) 

with  

* 34xx p pK E I λ=           (10) 

* 22xr p pK E I λ=           (11) 

* 2rr p pK I λ= Ε            (12) 

4 64p pI dπ=            (13) 

           x sk δ= ⋅Ε            (14) 

( ) ( )
5/ 4

1/ 4

02 1 2La s x
x s s p

s

V kc a V d
V

ζ
ω ρ

ω
−

  
= + +  

   
       (15) 

,x xk c  being the corresponding stiffness and damping coefficients, respectively. In the above equations, 

3.4
(1 )

s
La

VV π ν= −  is a fictitious wave velocity commonly known as “Lysmer’s analog velocity” [8, 38]. 

The dimensionless parameter δ  describes spring stiffness and can be approximated as [29]:  

0.0531.67( )p sEδ −= Ε          (16) 

The advantage of using the eccentricity transformation in eq. (8) can hardly be overstated, as it greatly 

simplifies the analysis by avoiding the coupling between rotational and translational response at the 

base of the model. It is fair to mention that the eccentricity in question is complex valued, resulting 
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from the damping mismatch between the cross stiffness and horizontal stiffness at the pile head. In 

this lihght, e  should not be viewed as a physical length. From a mathematical viewpoint, this is merely 

a procedure to diagonalise a matrix [25,26]. An equivalent, yet more complicated approach to handle 

the cross stiffness term xrK  has been proposed by Zania [30]. Also, the use of Lysmer’s analog velocity 

in eq. (15) and the Winkler stiffness δ  in eq. (16) are not essential assumptions. Alternatives can be 

found in a recent study by Karatzia and Mylonakis [31].  

3.2 Translational and rotational kinematic interaction 

The lateral harmonic deflection ( , ) ( ) i tY z t Y z e ω= , of a vertical elastic pile embedded in a Winkler 

medium satisfies the well-known equation: 

4
4

4

( ) ( )4 ( ) ( )
p p

d Y z f zz
dz E I

λ ω+ Υ =          (17) 

where, ( )f z  are the distributed forces along the pile at each depth z. For earthquake excitation 

consisting of vertical S waves, the distributed forces along the pile, ( )f z , is proportional to the free-

field horizontal displacements of the soil, ffu , which is determined from one-dimensional wave 

propagation theory, with boundary conditions of zero shear stresses at the free surface and 

displacement at the base equal to the induced rock displacement, ru [21]. 

Finally, the kinematic response coefficients, ( )uI ω  and ( )Iθ ω  in eq. (5a) and (5b) corresponding to 

the translational and rotational motion of a free head single pile, are written as [29]: 

2

4 4 2

1( ) 1
( 4 ) 2u

p p p s

k i cI
E I q m V

ω ωω
λ ω λ

  +
= +  + −    

       (18) 

2

4 4 2
( )

( 4 ) p
p p p s

k i cI d
E I q m Vθ

ω ωω λ
λ ω λ

 +
=  + −  

        (19) 

where sq Vω=  is the wave number of the vertically–propagating S waves. The total excitation of the 

superstructure (F.I.M.) is a linear combination of the pile head translational motion (i.e. the 

kinematically altered surface free-field motion), ( 0)( )u ff zI uω =⋅ and the pile head rotation, pθ  derived 

from Eq. (6). 
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3.3 Inertial interaction 

The dynamic response of a head-loaded pile has been studied in the literature far more extensively 

than the corresponding kinematic response to seismic waves. Much of the published work has treated 

the soil as a continuum and developed numerical and semi-analytical methods to derive the dynamic 

impedances at pile head. Simple algebraic expressions have also been derived for directly estimating 

the dynamic impedance of single piles in idealised (homogeneous and inhomogeneous) soil profiles. 

In this work, use is made of the following solution as derived by Novak [32] and applied in [26]: 

2
* 2

2
1g p pK E I

λ λ
λ

λ
 

=  
 

          (20) 

By means of the aforementioned eccentricity transformation, the swaying and rocking stiffness are 

uncoupled: 

* 2
*

, * * * 2

0 2 0
2

0 2 0 1/ 2
xx

g e p p
rr xr xx

K
K E I

K K e K e
λ

λ
   

= =   − +   
       (21) 

Note that the eccentricity e  is the length of the rigid link introduced in eq. (8), which usually varies 

between one to three pile diameters depending primarily on ( )/p sE E  and that the translational 

stiffness * *
,xx e xxK K= , while *

,rr eK  denotes the uncoupled rotational stiffness and is one half the 

corresponding dynamic rotational stiffness term of the coupled system.  

4. DYNAMIC RESPONSE OF THE CIDH PILE-BRIDGE SYSTEM FOR 
TRANSLATIONAL AND ROTATIONAL EXCITATION 

4.1 Time domain solution  

Linear-elastic response 

Having defined the translational and rotational foundation input motion (F.I.M.) of the system, the 

response of the bridge deck in terms of total displacements and rotations can be determined by the 

differential equation of motion in the matrix form of a MDOF system subjected to multiple support 

excitation [33] while being flexibly supported (Figure 1). In the time domain it can be written as: 

, ,

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

s c s s c s s c s s
T T T
c g g c g e g C g e g g

M M u t C C u t K K u t P t
M M u t C C u t K K u t P t
             

+ + =            
             

 

 

   (22) 
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where: 

0 0 0
0 0 0
0 0 0
0 0 0

b

mb
s

p

mp

m
J

M
m

J

 
 
 =
 
 
  

      (23)  

is the 4 4n n× = ×  mass matrix, 4n =  being the free (i.e., unconstrained) degrees of freedom, gM  is 

the 2 2m m× = ×  zero mass matrix, of the 2m =  support degrees of freedom, cM  is the n m×  null 

coupling mass matrix, { } { }( ) ( ), ( ), ( ), ( )deck deck base base
s u uu t t t t tθ θδ θ δ θ

Τ

+ +=  is the 1n×   vector of the total 

displacements corresponding to non-support degrees of freedom (Figure 1), which is written as 

{ } { }( ) ( ), ( ), ,0deck deck base
s u uu t t tδ θ δ

Τ
= for the case of purely translational excitation, 

{ } { }( ) ( ), ( )g p pu t u t tθ
Τ

=  is the 1m×  vector of the input ground displacements and rotations at the 

support degrees of freedom, which is essentially the Foundation Input Motion (F.I.M.) in the time 

domain and is equal to { } { }( ) ( ),0g pu t u t
Τ

= when the rotational component of excitation is neglected, 

{ }( )gP t  is the 1m×  vector of the reaction forces developed at the support degrees of freedom and 

{ } { }( ) 0,0,0,0 T
sP t = .  

Stiffness and damping matrices of the non-support DOFs ( sK  and sC ) are defined similarly to the 

mass terms where as the support DOF stiffness and damping ( ,g eK  and ,g eC ) are derived by eq. (21) 

by assuming frequency-independent stiffness (which is a reasonable approximation of a CIDH single 

pile) and damping corresponding to the predominant  (mean) frequency mf  of the free-field excitation 

computed by weighting the amplitudes over a specified range of the Fourier Amplitude Spectrum 

(FAS) [34]: 

               
2

2

2
1

i
m

m
i

i

C
f

C
f

π
ω= = ∑

∑
         (24)  

for 0.25 Hz ≤ fi ≤ 20 Hz with Δf ≤ 0.05 Hz, where Ci are the Fourier amplitude coefficients, fi are the 

discrete FFT frequencies between 0.25 and 20 Hz and Δf is the frequency interval used in the FFT 
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algorithm.  Similarly, the kinematic interaction factors required to define the excitation vector 

{ } { }( ) ( ), ( )g p pu t u t tθ
Τ

= are derived at the mean circular frequency as ( )u mI ω  and ( )mIθ ω .  

Therefore, the deck displacements vector is a ( ) 1 6 1n m+ × = ×  vector, which can be decomposed to 

a pseudo-static and a dynamic component as follows: 

0

s d
s s s

g g

u u u
u u

     = +     
      

        (25) 

where { }ssu  is the 1 4 1n× = ×  pseudo-static displacements of the non-support DOFs resulting from 

the solution of the equation of motion ignoring the inertia and damping effects: 

   
,

0
( )

t
s c
T
c g e gg

K K u
K K P tu

      =    
     

      (26)  

and { }d
su is the corresponding 1 4 1n× = × dynamic displacement vector. It can be shown that eq. 22 

can be written with respect to the non-support DOFs only as:  

                                   [ ]{ } [ ]{ } [ ]{ } { } [ ][ ]{ }( ) ( )d d d
s s s s s s g s gM u C u K u P t M r u t+ + = = −         (27) 

with { } [ ]{ }s
s gu r u=  , where [ ]r  is an 4 2n m x× =  influence coefficient matrix of the ground motion 

influence on the structure representing the static displacement deck
u θδ +  and rotation  deck

u θθ +   at the deck 

level and the respective displacement and rotation at the foundation level ( ),base baseδ θ , that will result 

when a static unit ground displacement 1pu =  or a static ground rotation 1pθ = , of the same direction 

as pu  and pθ  will be applied to the undeformed (absolutely rigid) model of the structure. In this case:  

[ ] 1 0 1 0
1 0 1

T

r
h

 
=  − 

       (28) 

It is noted that eq. 22-28 consist a simpler case of the general multi-support excitation problem, 

typically met in the case of non-synchronously excited extended structures [35], because the two 

exciting support degrees of freedom have identical coordinates, extended however to account for 

dynamic SSI.  



Accepted Manuscript

13  

By assuming that the damping of the MDoF system is classical, the response of the system for the 

case of the dual (translational and rotational excitation) can be written in the following form of n  

decoupled modal equations, where 4n =  is the number of modes of the system:  

       [ ]{ }{ }
2

* * *
,

1
( )

m
T

n n n n n n n k g k
k

m q c q k q M r u tϕ
=

=

+ + = −∑        (29) 

where [ ]* T
n n nm Mϕ ϕ= is the modal mass, [ ]* 2 *T

n n n n nk K mϕ ϕ ω= =  is the modal stiffness, nϕ  is the nth 

eigenvector, ( )nq t  is the nth modal coordinate and nω  is the nth modal frequency of the MDOF system. 

The time-history response function of interest can be ultimately written as: 
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Γ = =  is the modal participation factor and , ( )i kD t  is the response of the 

SDOF oscillator, with the dynamic characteristics of mode i , subjected to the accelerations , ( )g ku t  of 

the supports. The above formulation can be used for linear elastic analysis of the system in the time 

domain for the case of a non-harmonic excitation (i.e., using recorded earthquake ground motions, 

Section 6.3) with and without the assumption of the rotational component of excitation. The key 

normalized Engineering Demand Parameters (EDP) of Eq. (4) were then derived as the ratio of the 

two maxima in time: 
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           (31)  

This solution is used in Section 6.3 to derive the elastic displacement demand response history of the 

system for a set of recorded ground motion excitations. 

Non-linear structural response 

To assess the non-linear response of the structure, non-linear analyses were performed numerically 

using a “holistic” finite element model of both the foundation and the superstructure so that the 
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translational and rotational F.I.M. where inherently considered by the FE model, after appropriate 

validation against the above solution for the elastic problem. Results were also plotted with the 

normalized Engineering Demand Parameters (EDP) of eq. (31) versus the normalised frequency a0 of 

excitation after appropriate filtering of the transient extremes. This approach is followed in Section 

6.4 where the rotational ductility demand of the pier is sought for a set of sinusoidal pulses. 

4.2 Frequency domain solution 

Given that the problem studied is inherently frequency dependent, the response of the CIDH-pier 

system is also derived in the frequency domain in order to facilitate the parametric investigation 

without the simplifying assumptions inevitably made in the time domain formulation. By applying the 

Fourier Transformation, eq. 27 can also be written in the frequency domain as: 

{ } { }{ }( ) ( ) ( )gj j jP i H i U iω ω ω=         (32) 

where{ } [ ][ ]{ }( ) ( )g s gP i M r u iω ω= −  ,{ } [ ] [ ] [ ]( ) 12( )j s j j s sH i M i C Kω ω ω
−

= − + +  is the frequency 

response function matrix and { }( )jU iω  is the frequency component of the displacement response 

vector due to the jth frequency of the excitation vector { }( )gP iω . It is noted that in this case, the global 

stiffness matrix of the 4x4 DOF system is also frequency-dependent due to the ( )xxK ω  and ( )rr ωΚ  

terms of the 2x2 ground support matrix ,g eK    (eq. 21).  
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(33) 

The same applies to the excitation terms ( 0)( ) ( )p u ff zu I uω ω ==  and ( 0)( ) ( ) /p ff z pI u dθθ ω ω ==  which 

are also frequency-dependent according to equations 5a and 5b. The above solution in the frequency 

domain has been used for the parametric analysis of Section 5 and 6.2 where the input is harmonic 

and the structural response linear elastic. 
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5. CORRELATION OF ROTATIONAL EXCITATION EFFECTS WITH SOIL 
STIFFNESS & PIER HEIGHT 

5.1 Parametric analysis framework  

The parametric study was performed considering a reinforced concrete pier resting on a CIDH pile 

foundation. Parametric analyses explore the variation of the most important problem parameters, 

namely, soil stiffness (expressed in terms of the shear wave propagation velocity sV ), height of bridge 

pier bph  and frequency of excitation (i.e., harmonic pulses used in the range 0.5-10Hz at a step of 

0.5Hz). Three types of excitation were considered: (a) conventional translation F.I.M., (b) rotational-

only excitation and (c) coupled translational/rotational ground motion, leading to a set of 480 analyses 

(2 soil profiles x 20 frequencies x 4 pier heights x 3 excitation types) as summarised in Table 2. 

Excitation is considered along the (more critical), transverse direction. Calculations about all analysis 

steps are implemented computationally through a specifically developed graphical MatLab 

environment. The results are portrayed in Figures 2 – 9 in two sets. Set A on the left of each figure, 

shows the normalised Engineering Demand Parameters ( )uI ω


 and ( )uI θ ω+



 for conventional (i.e., 

translational only) and combined (translational and rotational) foundation input motions, respectively, 

both plotted in terms of dimensionless frequency 0a . Set B on the right illustrates the corresponding 

relative displacements of the deck ( deck
u θδ +  in Figure 1) which account for both the displacements that 

are due to pier bending deck
uδ  and the rigid body displacements p bhθ due to foundation rotation. It is 

noted that as the response of the system is linear elastic, there are no plastic rotations plθ  (and 

subsequent pier top displacements) while the ground movement gu  is also neglected since it does not 

induce strain on the structure.  

5.2 Soft soil (Vs=100m/s) 

In Figures 2a to 5a, ( )uI ω


 and ( )uI θ ω+



 are plotted for the case of a uniform soil profile with 

100 /sV m s=  and four different pier heights {20, 12.5, 7.5 and 5m}. For the tallest pier (h=20m), 

( )uI θ ω+



 under combined (translational and rotational) foundation input motion exceeds 10 at specific 

frequencies (i.e. ( ) 14uI θ ω+ =


 at / 0.75p sd Vω = ), while remaining considerably high for the entire 

frequency range examined ( 0 / 1.4p sd Vω< < ). Clearly, however, this case corresponds to the absolute 

upper bound of the rotational ground motion excitation influence since:  
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  Excitation                           Soil  Pile                                     Superstructure 

Case Type f 
(Hz) 

Vs 
(m/s) 

Es 

(MPa) 
ρs 

(t/m3) ζs 
dp 

(m) 
Lp 

(m) 
ρp 

(t/m3) 
hb 

(m) 
mb 

(Mg) 
Jmb 

(Mgm2) 
Eb 

(GPa) 
db 

(m) ζb 

A Translational {0.5,1.0, 
1.5,2.0, 
2.5,3.0, 
3.5,4.0, 
4.5,5.0, 
5.5,6.0, 
6.5,7.0, 
7.5,8.0, 
8.5,9.0, 

9.5,10.0} 

100 6.0 1.7 

0.07 2 20 2.4 

{5.0, 
7.5, 
12.5, 
20.0} 

900 14700 29 1.5 0.05 

B Rotational 100 6.0 1.7 

C Combined 100 6.0 1.7 

D Translational 250 10.0 1.8 

E Rotational 250 10.0 1.8 

F Combined 250 10.0 1.8 

 
Table 2: Cases of soil–pile–structure systems considered. 



Accepted Manuscript

 

17 
 

  
Figure 2a: ( )uI ω



 and ( )uI θ ω+



 with 0a  for 
translational (u) and combined translational-rotational 
(u+θ) excitation. Soft soil (Vs=100m/s), tall pier 
(h=20m). 

Figure 2b: Deck displacements with 0a  for 
translational (u) and combined translational-rotational 
(u+θ) excitation. Soft soil (Vs=100m/s), tall pier 
(h=20m). 

  

Figure 3a: ( )uI ω


 and ( )uI θ ω+



 with 0a  for 
translational (u) and combined translational-rotational 
(u+θ) excitation. Soft soil (Vs=100m/s), moderately 
tall pier (h=12.5m). 

Figure 3b: Deck displacements with 0a  for 
translational (u) and combined translational-rotational 
(u+θ) excitation. Soft soil (Vs=100m/s), moderately 
tall pier (h=12.5m). 

  
Figure 4a: ( )uI ω



 and ( )uI θ ω+



 with 0a  for 
translational (u) and combined translational-rotational 
(u+θ) excitation. Soft soil (Vs=100m/s), moderately 
short pier (h=7.5m). 
 

Figure 4b: Deck displacements with 0a  for 
translational (u) and combined translational-rotational 
(u+θ) excitation. Soft soil (Vs=100m/s), moderately 
short pier (h=7.5m). 
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Figure 5a: ( )uI ω



 and ( )uI θ ω+



 with 0a  for 
translational (u) and combined translational-rotational 
(u+θ) excitation. Soft soil (Vs=100m/s),short pier 
(h=5.0m). 

Figure 5b: Deck displacements with 0a  for 
translational (u) and combined translational-rotational 
(u+θ) excitation. Soft soil (Vs=100m/s), short pier 
(h=5.0m). 

  
Figure 6a: ( )uI ω



 and ( )uI θ ω+



 with 0a  for 
translational (u) and combined translational-rotational 
(u+θ) excitation. Moderately stiff soil (Vs=250m/s), 
tall pier(h=20m). 

Figure 6b: Deck displacements with 0a  for 
translational (u) and combined translational-rotational 
(u+θ) excitation. Moderately stiff soil (Vs=250m/s), 
tall pier (h=20m). 

  
Figure 7a: ( )uI ω



 and ( )uI θ ω+



 with 0a  for 
translational (u) and combined translational-rotational 
(u+θ) excitation. Moderately stiff soil (Vs=250m/s), 
moderately tall pier (h=12.5m). 

Figure 7b: Deck displacements with 0a  for 
translational (u) and combined translational-rotational 
(u+θ) excitation. Moderately stiff soil (Vs=250m/s), 
moderately tall pier (h=12.5m). 
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Figure 8a: ( )uI ω



 and ( )uI θ ω+



 with 0a  for 
translational (u) and combined translational-rotational 
(u+θ) excitation. Moderately stiff soil (Vs=250m/s), 
moderately short pier (h=7.5m). 

 

Figure 8b: Deck displacements with 0a  for 
translational (u) and combined translational-rotational 
(u+θ) excitation. Moderately stiff soil (Vs=250m/s), 
moderately short pier (h=7.5m). 

 

  
Figure 9a: ( )uI ω



 and ( )uI θ ω+



 with 0a  for 
translational (u) and combined translational-rotational 
(u+θ) excitation. Moderately stiff soil (Vs=250m/s), 
short pier (h=5.0m). 

Figure 9b: Deck displacements with 0a  for 
translational (u) and combined translational-rotational 
(u+θ) excitation. Moderately stiff soil (Vs=250m/s), 
short pier (h=5.0m). 
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(a) soil is very soft (Vs=100m/s), (b) excitation is monochromatic, thus imposing higher seismic 

demand compared to an actual earthquake motion with a broad frequency content, (c) transverse 

displacements are sensitive to base rotation since the pier acts as a SDOF system. Furthermore, in 

very soft soil conditions, pile foundations are designed and a single CIDH pile is a non-compliant 

solution in most cases. It is interesting however to notice that even for the shorter pier (h=5m), 

( )uI θ ω+



 is reduced to 6.5 but this is still significantly higher compared to the normalised EDP 

( )uI ω


 of the conventional approach, which does not exceed 2 in the entire frequency range. 

Similarly, the deck displacements resulting from the combined excitation (translational + 

rotational), are dominated by the base rotational excitation, as shown in Figures 2b to 5b. Again, 

the above critical combinations of a soft soil and a harmonic excitation also hold, however, the 

results illustrate a distinct contribution of the rotational excitation on the displacement demand of 

the pier, primarily due to the rigid body rotation. 

5.3 Soil of moderate stiffness (Vs=250m/s) 

Following the same approach, the normalised EDPs and the deck displacements are plotted for 

the case of moderately stiff soil with Vs=250m/s in Figures 6a-9a and 6b-9b, respectively. The 

CIDH pile dimensions are kept identical for comparison purposes. Once again, the impact of the 

rotational excitation of earthquake ground motion on the overall deck displacement demand is 

evident: the combined response factor ( )uI θ ω+



 ranges from 3.8 to 8, being always considerably 

higher than the conventional factor ( )uI ω


, which does not exceed 1.1 along the entire frequency 

range examined, for all pier heights. 

As anticipated, the effect of the rotational component of foundation input motion, although 

significant, is lower than the one observed for soft soil, and as such it is expected to be smaller for 

the case of stiff soil formations (Vs>250m/s). However, the mechanism described previously in 

which the rotational excitation affects the transverse bridge deck displacements, is again confirmed. 

6.0 LINEAR AND NONLINEAR ROTATIONAL EXCITATION EFFECTS 
ON A CASE STUDY BRIDGE 

6.1 Overview of the bridge structure 

To further explore the effect of coupled translational and rotational earthquake ground motion 

excitation on the transverse dynamic response of bridges, a well-studied bridge structure [36] is 

employed to be studied under both harmonic and transient excitations, in the linear and nonlinear 

range, respectively. The particular bridge (Figure 10), initially designed with a pile foundation and 
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redesigned with a CIDH pile to the Eurocodes [3] is a nine-span structure, curved in plan at a 

radius of 200 m, with a total length of 244 meters. Piers of height varying from 6 to 15 meters are 

supporting a twin-box girder superstructure with a mass of 3.77 Mg/m and rotational inertia of 

Jm=15080 Mgm2. The modulus of elasticity of the reinforced concrete used for both the 

superstructure and the foundation is E=27.8GPa. The 9m tall, circular pier with a diameter of 

1.5bpd m=  is studied herein, deemed as previously, as a 4-DOF system along the transverse 

direction. The pier is reinforced with 48Φ32 longitudinal bars, while the transverse reinforcement 

is Φ12/70mmm for the critical top and bottom 20% of the height and Φ12/140 for the remaining 

length. The cast-in-drilled-hole pile foundation has a diameter 2.0pd m=  and length 15.0pL m=  

and is embedded in a uniform soil deposit with density and stiffness linearly increasing with depth. 

For this study, the stratum is considered to be homogenous, characterised by 360 /sV m s= .  

 
Figure 10: Overview of the bridge plan. 

 

6.2 Elastic displacement demand under harmonic excitation 

The results, obtained with the procedure presented in Section 2, are illustrated in Fig. 11a and b 

portraying the normalised EDPs, ( )uI θ ω+



 and ( )uI ω


 (on the left) and the transverse displacements 

at the deck level (on the right) as a function of the normalised frequency of the excitation 

0 p sa d Vω= . The natural frequencies of the 4-DOF system are 1 0.55 ,f Hz=   

2 32.29 , 32.74f Hz f Hz= = and 4 61.72f Hz= . It is observed that while the translational-only 

excitation factor remains practically constant ( ( ) 1.0uI ω =


, Fig.10a) over the entire frequency range 

of interest, the combined translational-rotational factor ( )uI θ ω+



 increases almost proportionally 

with the dimensionless frequency 0a  for 0 0.1a > . The maximum value of ( )uI θ ω+



 is, as anticipated, 

smaller than the one observed in the case of the moderately stiff soil, due to the higher soil stiffness 

(Vs=360m/s) and pier height (h=9m). Once more, the triggered rigid body mechanism described 
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previously significantly contributes to the displacement demand at the pier top leading to up to 2.5 

times in relatively high frequencies 0 0.35a =  ( 10f Hz≈ ). It is noted that pier top displacements 

are amplified at the fundamental frequency of the soil profile 4 4 15 / 360 6s sH V Hz= ⋅ =

( 0 0.20a ≈ ), as shown in Fig. 11b. 

  

Figure 11a: ( )uI ω


 and ( )uI θ ω+



 with 0a  for 
translational (u) and combined translational-
rotational (u+θ) excitation. Stiff soil (Vs=360m/s), 
pier height h=9m. 

Figure 11b: Deck displacements with 0a  for 
translational (u) and combined translational-
rotational (u+θ) excitation. Stiff soil (Vs=360m/s), 
pier height h=9m. 

  

Figure 12a: ( )uI ω


 and ( )uI θ ω+



 with 0a  for 
translational (u) and combined translational-rotational 
(u+θ) excitation considering deck stiffness. Stiff soil 
(Vs=360m/s), pier height h=9m. 

Figure 12b: Deck displacements with 0a  for 
translational (u) and combined translational-rotational 
(u+θ) excitation considering deck stiffness. Stiff soil 
(Vs=360m/s), pier height h=9m. 

Influence of deck stiffness 

One of the major assumptions made in employing the 4-DOF stick model in the transverse 

direction is that the bridge is considered adequately long so that the deck does not impose any 

significant restrain in the transverse movement of the piers. Given that in the case studied, the 

deck stiffness dk  limits, to some extent, the transverse deformation of the structure and affects the 
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dynamic characteristics of the system, it was deemed necessary to repeat the analytical procedure 

considering an additional term associated with the translational DOF of the deck in the stiffness 

matrix of the 4-DOF system. The deck transverse stiffness dk  was estimated at 63.06 10 /kN m⋅  

after modelling the entire bridge using the commercial software SAP2000 (ver. 14) [37].  

As anticipated, the stiffness of the soil-bridge system was increased, and the first and second natural 

frequencies were shifted to 1 21.95 , 9,25f Hz f Hz= = , while 3f  and 4f  remained unaffected. It is 

notable, however, that the normalised EDP ( )uI θ ω+



 was found approximately equal or higher to 

the corresponding one derived for 0dk = (Fig. 12a). It is also evident that the maximum elastic 

displacement demand at the pier top along the transverse direction was also shifted to higher 

frequencies ( 0 0.30, 10a f Hz≈ ≈ ) associated with the (updated) second mode of vibration. 

Significant displacements are observed for 0 0.20a ≈ , which again, correspond to the fundamental 

frequency of the soil profile. It is concluded that it is important to account for deck stiffness to 

obtain a more accurate estimate of the seismic displacement along the transverse direction, but the 

(normalized) effect of rotational excitation of earthquake ground motion remains significant 

independently of lateral restraint conditions at deck level.  

6.3 Elastic displacement demand under transient excitation 

Further to the harmonic analysis, a set of 22 accelerograms was selected for studying the transient 

linear and nonlinear response of the soil-bridge system under purely translational and combined 

translational-rotational excitations. The ground motions were retrieved by the Pacific Earthquake 

Engineering Research (PEER) strong motion database [38] using the specialised software ISSARS 

[39] to cover a broad range of possible earthquake motions with a horizontal peak ground 

acceleration ranging within 0.16-0.36g. An effort was made to select motions with a breadth of 

seismological parameters, notably as earthquake magnitude, M, source-to-site distance, R (both 

near-and-far field motions were adopted), rupture mechanism and directivity of seismic waves, to 

keep the frequency content deliberately wide. More precisely, both strong, far-field events (source-

to-site distance R>20km, M>6.5) and near-field excitations of moderate intensity (R<20km, 

magnitude M<6.5) were selected as summarised in Table 3. The small size of the earthquake record 

sample is due to the deterministic nature of the approach.  

The solution (i.e., displacement demand at the pier top) was obtained numerically by modelling the 

bridge pier - CIDH pile systems as a whole, the latter being laterally supported on vertically 

distributed springs and dashpots with properties identical to the ones derived analytically (Eq. 14, 

15) and attached at an interval of 1m along the pile length. In such a way, kinematic interaction 
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between the soil and the CIDH pile is inherent in the analysis and the bridge pier is simultaneously 

subjected to the F.I.M. resulting from translation and rotation of the pile. The purely translational 

excitation of the bridge pier, required for defining ( )uI ω , was derived by uncoupling the kinematic 

and inertial interaction and applying solely the translational response of the CIDH pile head as 

input to the superstructure.   

Table 3: Ground motions used in time–domain analyses. 

ID Event Date Mw Station 
Source-to-

site distance 
(km) 

PGA 
(g) 

1 Whittier 
Narrows 10/1/1987 5.7 90032 LA-N Figueroa St 11.4 0.166 

2 Coalinga 7/22/1983 5.7 1608 Oil Fields Fire Station 
FF 10.9 0.219 

3 Parkfield 28/6/1966 6.1 1438 Temblor pre-1969 9.9 0.357 
4 Parkfield 28/6/1966 6.1 1438 Temblor pre-1969 9.9 0.272 
5 Coyote Lake 6/8/1979 5.6 57383 Gilroy Array #6 3.1 0.316 
6 Morgan Hill 24/4/1984 6.1 57383 Gilroy Array #6 11.8 0.222 
7 Morgan Hill 24/4/1984 6.1 57383 Gilroy Array #6 11.8 0.292 
8 Palm Springs 8/7/1986 6.0 12149 Desert Hot Springs 8.0 0.331 
9 Palm Springs 8/7/1986 6.0 12149 Desert Hot Springs 8.0 0.271 
10 Livermore 27/1/1980 5.5 57T02 Morgan Terr Park 8.0 0.198 
11 Livermore 27/1/1980 5.5 57T02 Morgan Terr Park 8.0 0.252 

12 Loma Prieta 18/10/1989 7.1 1652 Anderson Dam 
(Downstream) 21.4 0.244 

13 Northridge 17/1/1994  6.7 24389 LA-Century City CC 
North 25.7 0.222 

14 Kern County 21/7/1952 7.7 1095 Taft Lincoln School 41 0.178 

15 Cape 
Mendocino 25/4/1992  7.1 89509 Eureka-Myrtle & West 44.6 0.178 

16 San Fernando 9/2/1971  6.6 126 Lake Hughes #4 24.2 0.192 
17 Landers 6/28/1992  7.4 23559 Barstow 36.1 0.132 
18 Imperial Valley 15/10/1979  6.9 6604 Cerro Prieto 26.5 0.169 
19 Taiwan 11/14/1986 7.8 29 SMART1 M07 39.0 0.160 
20 Superstitn Hills 11/24/1987  6.6 5052 Plaster City 21.0 0.121 

21 Northridge 17/1/1994  6.7 24303 LA-Hollywood Stor 
FF 25.5 0.358 

22 Loma Prieta 18/10/1989  7.1 1678 Golden Gate Bridge 85.1 0.233 
 

The normalised EDPs ( )uI ω


 and ( )uI θ ω+



 are defined according to Eq. 31 as the ratio of the 

maximum pier top displacement in time due to purely translational and combined translational-

rotational excitation respectively, and the maximum pier top displacement in time due to free field 

ground motion for both moderate intensity near-field excitations and strong far-field events. The 

variation with mean normalised frequency 0m m p sa d Vω=  is plotted in Fig. 13, while Table 4 

summarises the maximum displacements in time at bridge deck level along with the values of the 

above normalised factors for each earthquake record.  

Several interesting trends are worth noting.  First, as in the case of harmonic excitation, ( )uI θ ω+



 is 

significantly higher (i.e., at least 1.5 times) than ( )uI ω


 ranging from 2.0 to 4.35. It is also more 
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sensitive to normalised frequency of excitation as evident by the slope of the fitted line. This 

indicates that rotational excitation attributed to the bending of the CIDH pile has a non-negligible 

effect independently of the frequency content of the ground motion than the soil–pile system as a 

result of the aforementioned rigid body and inertial mechanism.  

Secondly, no record exists that is simultaneously the most critical for both types of F.I.M. (i.e., 

translational or combined translational-rotational excitation). As shown in Table 4, peak value of 

( )uI ω


=1.77 occurs for the #5 Coyote Lake record, whilst peak ( )uI θ ω+



 =4.34 results from the 

#16 San Fernando motion. While it is the amplitude of ground acceleration that controls the 

rotational acceleration amplitude, it is also the frequency content of input motion that dominates 

impact of rotational component of ground motion on the transverse response of the bridge. This 

is further illustrated by examining the Fourier spectra of the two ground motions that lead to the 

extreme, higher and lower values of ( )uI θ ω+



, in particular of records #16 and #22, respectively.  

Figure 14 illustrates clearly this relation between the frequency content and the impact of rotational 

excitation: record #22 is dominated by low frequencies (0<f<2.05Hz), which do not resonate with 

the dynamic characteristics of the system (fi>1.95Hz, i=1..4), thus not only minimising the absolute 

response under translational excitation but also the additional effect of rotational excitation 

( )uI θ ω+



.  

6.4 Rotational ductility demand under sinusoidal pulses 

To improve current understanding of the rotational excitation effects on the inelastic seismic 

performance of the CIDH pile supported bridge studied herein, the rotational ductility demand 

( )deck base
u yθ θµ θ θ θ+= −  of the system was further explored, where yθ  is the yield rotation of the 

circular R/C section of the pier. Assuming a steel nominal yield and ultimate strength

430ykf MPa= , 645uf MPa=  and characteristic compressive concrete strength 35ckf MPa=  for the 

2.0bd m=  circular pier section, the yield moment was derived equal to 11.3yM kNm= . The system 

was again excited with sinusoidal pulses in the time domain ( i t
gu u e ω= ) within the frequency range 

0.5 –10Hz, after applying a scale factor of 3.0 on the bedrock amplitude gu  to illustrate more clearly 

the impact of rotational excitation in nonlinear regime. Note that both the pile and the soil were 

considered as linearly visco-elastic. 
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Table 4: Maximum deck displacements and corresponding EDPs for purely translational and combined 
translational-rotational (u+θ) excitation. Stiff soil (Vs=360m/s), pier height h=9m. 

ID Event Station max
( )deck

u tθδ +  
(cm) 

( )uI θ ω+



 
( )uI ω


 

1 Whittier Narrows 90032 LA-N Figueroa St 3.26 2,96 1,34 
2 Coalinga 1608 Oil Fields Fire 

Station FF 6.37 3,64 1,53 
3 Parkfield 1438 Temblor pre-1969 3.75 2,55 1,14 
4 Parkfield 1438 Temblor pre-1969 3.67 3,24 1,18 
5 Coyote Lake 57383 Gilroy Array #6 3.84 2,93 1,77 
6 Morgan Hill 57383 Gilroy Array #6 7.55 4,17 1,63 
7 Morgan Hill 57383 Gilroy Array #6 3.96 2,91 1,34 
8 Palm Springs 12149 Desert Hot Springs 7.91 3,96 1,48 
9 Palm Springs 12149 Desert Hot Springs 6.75 3,99 1,58 
10 Livermore 57T02 Morgan Terr Park 3.34 3,10 1,50 
11 Livermore 57T02 Morgan Terr Park 5.22 3,84 1,61 
12 Loma Prieta 1652 Anderson Dam 

(Downstream) 4.04 3,31 1,34 
13 Northridge 24389 LA-Century City 

CC North 3.88 2,71 1,19 
14 Kern County 1095 Taft Lincoln School 3.39 3,02 1,40 
15 Cape Mendocino 89509 Eureka-Myrtle & 

West 2.73 2,25 1,14 
16 San Fernando 126 Lake Hughes #4 6.47 4,34 1,66 
17 Landers 23559 Barstow 1.99 3,79 1,52 
18 Imperial Valley 6604 Cerro Prieto 5.58 4,29 1,58 
19 Taiwan 29 SMART1 M07 1.33 2,66 1,21 
20 Superstitn Hills 5052 Plaster City 2.94 3,37 1,40 
21 Northridge 24303 LA-Hollywood Stor 

FF 9.53 3,56 1,49 
22 Loma Prieta 1678 Golden Gate Bridge 2.70 2,10 1,15 

 

 
Figure 13: Response influence factor as a function of normalised mean frequency a0m for translational (u) 
and combined translational/rotational (u+θ) excitation. Stiff soil (Vs=360m/s), pier height h=9m. 
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Figure14: Fourier acceleration spectra for extreme (maximum and minimum) factor ( )uI θ ω+



. Stiff soil 
(Vs=360m/s), pier height h=9m. 
 

 
Figure 15: Rotational ductility demand, μθ, versus dimensionless frequency for translational (u) and 
combined translational-rotational (u+θ) excitation. Stiff soil (Vs=360m/s), pier height h=9m. 
 
 
Figure 15 illustrates the variation of the computed rotational ductility demand, θµ , again as a 

function of normalised frequency a0. It is shown that in case of translational-only excitation with 

harmonic pulses, the system remains essentially elastic independently of excitation frequency, 

except for the characteristic normalised frequencies 0 0.22α =  and 0 0.32α =  where 4.8θµ =  and 

6.4., respectively, which coincide with the predominant frequencies of the second mode of 

vibration of the system and the fundamental period of the subsoil. Combined translational and 

rotational F.I.M., on the other hand, leads to constantly higher rotational ductility demand which 

ranges between 1-13 for 0 0.17α > , notably with peaks at the same characteristic normalised 

frequencies.  The above indicate that neglecting the rotational component of earthquake excitation 

might significantly underestimate the rotational ductility demand imposed on the superstructure, 

essentially for all ground motions with frequency content in the vicinity of the dynamic properties 

of the soil-structure system and the subsoil domain.   
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7. CONCLUSIONS 

An analytical and numerical study was presented to quantify the effect of the rotational component 

of Foundation Input Motion on the elastic and inelastic seismic demand of bridges supported on 

cast-in-drilled-hole (CIDH) piles in homogeneous soil. It is recalled that such a rotational excitation 

at the level of the pile head, arises from the bending of single pile during vertical propagation of 

shear waves and is commonly neglected in design. The study reported herein considers a four-

degree-of-freedom spring- and dashpot-supported stick model, representing a bridge pier, 

subjected to translational-only and combined translational-rotational F.I.M. derived from 

kinematic interaction analysis. The analytical approach is applied to a set of linear, elastodynamic 

systems of different height on soft and medium-stiffness soil and is extended for the case of a well-

studied bridge subjected to harmonic and actual earthquake records in both the linear and 

nonlinear range. The main conclusions of the study can be summarised as follows: 

The combined translational and rotational seismic input produced by kinematic response of the 

pile foundation, may substantially amplify (by a factor of more than 1.5), the elastic and inelastic 

demand of a bridge in the transverse direction, wherein the system is more prone to rigid body 

rotations compared to the inertial response caused from the translational motion. The 

amplification, however, is not uniform over the whole frequency spectrum. 

The effect of rotational component of seismic input on the dynamic response of the bridge is 

strongly dependent on pier height, soil stiffness and predominant frequency of earthquake ground 

motion. Clearly, tall piers resting on soft soils through CIDH pile foundations are more sensitive 

to rotational excitation effects by a factor 2 to 3. In such cases, a pile group foundation shall be 

providing a better design, unless the safety factor of the soil-pile system is verified considering the 

rotational component of ground motion.  

It is noted that the proposed analytical approach refers to the linear elastic response of a single, 

long pile and its surrounding soil, the latter assumed homogenous. Further research is required on 

quantifying the importance of the rotational excitation for cases of more complex bridge types, 

foundations and soil conditions.  
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