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Abstract 8 

Pb-Co nanowires were electrodeposited in 100 nm nominal pore diameter polycarbonate membranes. 9 

Above the TC of Pb we modelled the behaviour of the wires with a Langevin function, obtaining a Co 10 

volume of (1.06±0.01)×10-7 cm3 divided into clusters of  ≈10 atoms in size. The magnetic response 11 

of the wires in the 3 K to 10 K interval, which comprises TC, was modelled by adding spherical 12 

superconducting Pb grains to the Co clusters; the Pb grains were found to be (87±6) nm in diameter. 13 

The Co clusters were not interacting and were not magnetically screened by the superconducting Pb. 14 

Introduction 15 

The interplay between ferromagnetism and superconductivity has received great attention in recent 16 

years, both for its fundamental interest [1]–[10] and potential applications in superconducting 17 

electronics and quantum computation[11], [12].  Ferromagnetic grains can be embedded in a 18 

superconducting matrix [13]–[15], with consequences for the magnetic and microstructural properties 19 

of the system. The latter are of special interest, since superconducting properties are strongly affected 20 

by microstructure: if a system is granular, the superconductivity can be either intragrain or intergrain 21 

[16]. In the former case the grains superconduct separately whereas in the latter the superconductor 22 

behaves as a whole, with the grains being linked by Josephson junctions [17], [18]. A small magnetic 23 

field (<20 Oe) can destroy the phase coherence between grains and make the superconductor 24 

effectively behave as an intragrain one[19]. The incorporation of ferromagnetic impurities between 25 

the grains can lead to further interesting effects, ranging from a decrease of the critical temperature 26 
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TC[6], [20] of superconductivity due to the proximity effect[7], [8], to superparamagnetism. The latter 1 

refers to the magnetic properties of single-domain clusters of a ferromagnetic metal [21]. At 2 

sufficiently low temperatures the magnetic moment of each cluster is pinned in a particular direction 3 

by anisotropy. The blocking temperature TB can then be defined as the temperature at which there is 4 

a transition to the superparamagnetic state, in which the thermal energy is sufficient to overcome the 5 

anisotropy energy and the direction of the magnetic moment of each grain is free to rotate.  6 

Electrodeposition can be used to fabricate a diverse range of structures such as multilayers[22], [23] 7 

and nanowires[24]–[28]; it lends itself naturally to the fabrication of binary granular systems[29] 8 

because different metal ions can be deposited simultaneously from the same solution and because the 9 

microstructure can be controlled by the growth parameters.  10 

In this work Pb-Co wires were grown in commercially available polycarbonate nanoporous 11 

membranes by electrodeposition. The wires were free standing so that interaction with the substrate 12 

could be neglected. By assuming that the Pb was made of identical spherical grains, we were able to 13 

model their magnetic response. The calculated size of the superconducting grains in Pb-Co wires was 14 

found to be similar to that for pure Pb wires. Furthermore, it was possible to calculate the size of the 15 

superparamagnetic Co clusters. We found that no magnetic interaction occurred among them and that 16 

their magnetic field was not shielded by the superconducting Pb; no evidence of the proximity effect 17 

was detected. 18 

EXPERIMENTAL 19 

The Pb-Co nanowires were grown from a 0.5 M Co(H2NSO3)2, 0.5 M Pb(H2NSO3)2, pH= 4.3 aqueous 20 

solution in commercially available polycarbonate membranes with a 100 nm nominal pore diameter, 21 

at 27˚C. A 200 nm thick film of Au was evaporated onto one side of the polycarbonate membrane to 22 

act as a working electrode (WE). Care was taken to make sure that this film was continuous. 23 

The growth was carried out in a standard electrochemical cell. We used a saturated calomel reference 24 

electrode (RE) and a platinum plate as the counter electrode (CE). Growth was carried out 25 
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potentiostatically at -0.9 V. The distance between WE, CE and RE was kept constant between each 1 

deposition run. 2 

After growth, some of the nanowires were freed from the membranes by dissolving the latter in 3 

chloroform, and were studied using a Philips 430 TEM with 250 kV accelerating voltage. For the 4 

magnetic characterization, we used a Quantum Design magnetic property measurement system 5 

(MPMS) superconducting quantum interference device (SQUID) magnetometer. Samples for SQUID 6 

characterization were prepared by cutting an area of 3 × 4 mm2 from the membrane. Excess Pb and 7 

Co, deposited after the pores had been filled, and the Au substrate were removed by gentle scraping 8 

with cotton wool soaked in ethanol. In order to eliminate any possible trapped magnetic flux prior to 9 

measurement with the SQUID, the samples were demagnetized by bringing them above TC in zero 10 

applied magnetic field. 11 

 12 

RESULTS AND DISCUSSION 13 

The wires were thick enough to be mostly opaque to the TEM electron beam, as shown in Figure 1. 14 

They were cigar-shaped, due to the shape of the pores in which they were deposited. Typically, the 15 

minimum diameter along a wire was 130 nm and the maximum was 200 nm. The image quality was 16 

insufficient to discriminate Co grains from Pb ones. Pb and Co are reported to be immiscible and Co 17 

is expected to be present in the Pb matrix in its Co phase (disordered hcp) [30]. When Pb-Co granular 18 

films were grown by e-beam coevaporation in UHV by Luby et al.[31], no alloying was detected. 19 

Measurements of the magnetic moment of arrays of wires were made both at a constant applied field 20 

Ha by sweeping the temperature and at constant temperature by sweeping the field. The field was 21 

applied perpendicular to the wires’ axis.  22 

Above the blocking temperature TB a superparamagnetic system is expected to follow the Langevin 23 

law, with the magnetic moment given by[32]: 24 

𝑚 = 𝑉𝑀𝑛 𝜇 [𝑐𝑜𝑡ℎ (
𝜇𝐻𝑎

𝑘𝐵𝑇
) −

𝑘𝐵𝑇

𝜇𝐻
]         (1) 25 
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where VM is the volume of the superparamagnetic fraction, n is the number of nanoparticles per unit 1 

volume, µ is the magnetic moment of a grain, kB is Boltzmann’s constant, Ha is the applied magnetic 2 

field and T is the absolute temperature; VMn is the total number of superparamagnetic particles. 3 

Equation (1) shows that scaling of the magnetization curve with Ha/kBT is a strong indication of 4 

superparamagnetism.  5 

Above TC, that is at a temperature greater than 7.18 K, the screening effect due to the superconducting 6 

Pb matrix must vanish almost completely (a faint screening is still present due to the weak 7 

diamagnetism of Pb, which has a volume susceptibility of -1.25910-6 emu/cm3 above TC). In order 8 

to confirm the superparamagnetic behaviour of the Co grains above TC, we performed M-H 9 

measurements by sweeping the field at a fixed temperature. The graph in Figure 2 shows the data 10 

measured at 10 K. Pb was in its normal state at this temperature and its contribution to the 11 

magnetization of the sample could be neglected.  12 

By fitting the curve in Figure 2 with equation (1), we obtained the following values for the Langevin 13 

function parameters: µ= (17.8±0.1)µB and VM n = (9.28±0.04)1014, which correspond to a total Co 14 

volume of (1.06±0.01)×10-7 cm3. Since the magnetization of Co is 1.71 µB per atom[33], this value 15 

for µ amounts to 10 atoms per cluster, if we neglect surface effects. 16 

Below TC, both the diamagnetism due to superconducting Pb and the superparamagnetism of Co can 17 

be present at the same time. Figure 3a) shows the magnetic moment as a function of temperature at 18 

several constant applied magnetic fields. These curves may be understood as the superposition of a 19 

superconducting and a superparamagnetic signal. 20 

To fit the data in Figure 3a), the following equations for the measured magnetic moment m were used: 21 

{
 
 

 
 𝑚 = −

3

8𝜋
𝑉𝑆 𝐻𝑎 [1 −

3𝜆𝐿(𝑇)

𝑎
coth (

𝑎

𝜆𝐿(𝑇)
) +

3𝜆𝐿(𝑇)
2

𝑎2
] + 𝑉𝑀 𝑛 𝜇 [𝑐𝑜𝑡ℎ (

𝜇𝐻𝑎
𝐾𝐵𝑇

) −
𝑘𝐵𝑇

𝜇𝐻
] 𝑖𝑓 𝑇 < 𝑇𝐶   (2)

𝑚 = 𝑉𝑀 𝑛 𝜇 [𝑐𝑜𝑡ℎ (
𝜇𝐻𝑎
𝑘𝐵𝑇

) −
𝑘𝐵𝑇

𝜇𝐻𝑎
] 𝑖𝑓 𝑇 ≥ 𝑇𝐶                                                                                                     (3)

 22 
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where VS is the volume of the superconducting fraction of the sample, Ha is the applied magnetic 1 

field, L(T)= L(0)/√1 − (𝑇/𝑇𝐶)4 , L(0)= 40 nm  is the penetration depth of Pb, and a is the radius 2 

of the spherical superconducting grains. The first term of the sum in equation (2) represents the 3 

magnetic moment of the superconducting fraction[34]  while the second term represents the 4 

superparamagnetic fraction of the sample. Above TC only the superparamagnetic component is 5 

present, as indicated by equation (3). 6 

To fit the data above TC in Figure 3a), we used the value for µ that was obtained from the fit to the 7 

data in Figure 2. We obtained VM n = (14±1)1014 , which was in fair agreement with the same 8 

parameter obtained from the data in Figure 2. These parameters, together with a superconducting 9 

volume VS of (7±1)×10-7 cm3[35], were used to fit the data below TC in Figure 3a) with equation (2). 10 

We obtained a superconducting grain diameter of 2a = (87±6) nm, which was similar to that of pure 11 

Pb nanowires grown with the same technique[35].  12 

The values for VMn and µ obtained above, together with a VS=7×10-7 cm3, correspond to a Co volume 13 

concentration of CCo= 15 v\v%. These figure confirms that the volume concentration is well below 14 

the percolation limit (29% volume fraction [36]). 15 

When the superparamagnetic component was subtracted from the data in Figure 3a), the data in Figure 16 

3b) were obtained. In order to do this, we used the same parameters for the superparamagnetic 17 

component for all applied magnetic fields, to demonstrate that they capture the underlying physical 18 

quantities. The resulting data are similar to those one would expect from a sample of pure Pb.  Below 19 

TC, the magnetic moment as function of the magnetic field can be understood by considering that 20 

there are two limiting magnetic field values that cause a superconductor to have a small magnetic 21 

moment: 0 Oe and very high (1200 Oe in this case) applied magnetic field; the maximum magnetic 22 

moment is reached at intermediate values of Ha (at 200 Oe in our case). Departures from this trend in 23 

Figure 3b) are due to noise. The proximity effect was not detected in our measurements since there 24 
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were no measurable changes in the TC of Pb; this could be due to oxidation of the intergrain 1 

boundaries.  2 

At high enough fields, superconductivity in Pb was disrupted, since the critical field of Pb is HC(3 3 

K)  670 Oe[37]. Therefore, at higher fields, magnetization curves measured at temperatures above 4 

and below TC can be compared directly. Figure 4 shows two M-H curves measured at 3 K and 10 K. 5 

Since the Langevin function has µHa/(kBT) as an argument, plotting the magnetic moment as a 6 

function of Ha/kBT should give two identical curves for a superparamagnetic system. This is exactly 7 

what happens in Figure 4, apart from a small superconducting contribution below HC.  This 8 

demonstrates that the sample is superparamagnetic. The fact that the sample is superparamagnetic 9 

implies that the Co grains do not interact with each other so that they must be distributed fairly 10 

homogeneously along the wire.  More importantly, the absence of a change in amplitude of the curves 11 

means that there is no significant screening of the Co magnetic signal due to the Meissner effect 12 

below TC and confirms the validity of the procedure. The lack of screening might be due to several 13 

reasons. The penetration depth of the applied magnetic field in Pb (40 nm) was of the same order of 14 

magnitude as the radius of the wires (100 nm at most) so that the total screening effect will be 15 

significantly less than if the Co grains were surrounded by bulk Pb. Also, the Co could be distributed 16 

preferentially at the surface of the wires. The inset in Figure 4 shows the data taken at 3 K after the 17 

superparamagnetic contribution was subtracted. The behaviour is similar to that of pure Pb 18 

nanowires[35]. Some hysteresis was present, and can be attributed either to magnetic flux trapped 19 

into the superconductor or to supercooling of the intermediate state[38], [39]. 20 

  21 

Conclusions 22 

We have electrodeposited Pb-Co granular nanowires and proposed a model for the behaviour of their 23 

magnetic moment in the presence of an applied magnetic field. We were able to model the 24 

superparamagnetic response of the sample by considering Co grains 10 atoms in size, confirming 25 

that Co was not dispersed into the Pb but that it formed clusters. We further estimated the Pb grain 26 
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size from the magnetic response in the superconducting state, obtaining a value of (87±6) nm, with 1 

no evidence of the proximity effect. We estimated that a Co concentration of 15 v\v% was present. 2 

Finally, we found that the Co clusters were non interacting and were not magnetically screened by 3 

the superconducting Pb. The fact that both the magnetic properties of the Co and the superconducting 4 

ones of Pb were well preserved in our samples, bodes well for the application of this technique to the 5 

fabrication of devices based on superconducting/ferromagnetic systems, which have possible 6 

applications in quantum computing. 7 
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Captions 

Figure 1: Transmission electron microscope (TEM) image of the nanowires. The wires were cigar-

shaped, reflecting the shape of the pores in which they grew. On average the minimum diameter along 

a wire was 130 nm and the maximum was 200 nm. 

 

Figure 2: M-H curve for the Pb-Co wires measured at 10 K. At this temperature the Pb is not 

superconducting and only the superparamagnetic signal is present. 

 

Figure 3: a) Temperature sweeps at different magnetic fields. The signal consists of two superimposed 

components: a superparamagnetic one and a superconducting one. Pb becomes superconducting 

below 7.18 K at 0 Oe applied field and its superconducting transition is responsible for the kinks 

observed in the curves at that temperature. The red lines represent the fits carried out with equation 

(2) below 7.18 K and with equation (3) above it. b) Data from a) after subtraction of the 

superparamagnetic signal, calculated with the fitting parameters for the data in Figure 2. The 

superconducting transition at 7.18 K becomes apparent. The superconducting transition is not sharp 

because the grains forming the wire have a finite size distribution. At a given field, smaller grains 

have a higher TC [40]. The magnetic moment of the superconductor has maximum magnitude at 200 

Oe, and decreases for lower and higher fields. 

 

Figure 4: M-H curves for Pb-Co wires measured at 3 K and 10 K. The superposition of the two curves 

(apart from the deviation caused by superconductivity below HC(3 K)670 Oe, that is for |H/kBT| 

<1.62×1018 Oe/erg) is a signature of superparamagnetism. Also, the superposition shows that the 

superparamagnetic signal is not screened by the superconducting Pb. The inset shows the data at 3 K 

after the superparamagnetic contribution was subtracted; the noise is due to the large contribution to 

the magnetic signal coming from superparamagnetic phase. The behaviour is similar to that of pure 

Pb nanowires[35], including the hysteresis.   
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Figure 3 
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Figure 4 
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