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Abstract. Living cells sense and process environmental cues through noisy biochemical
mechanisms. This apparatus limits the scope of engineering cells as viable sensors. Here, we
highlight a mechanism that enables robust, population-wide responses to external stimulation
based on cellular communication, known as quorum sensing. We propose a synthetic circuit
consisting of two mutually repressing quorum sensing modules. At low cell densities the
system behaves like a genetic toggle switch, while at higher cell densities the behaviour of
nearby cells is coupled via diffusible quorum sensing molecules. We show by systematic
coarse graining that at large length and timescales that the system can be described using the
Ising model of a ferromagnet. Thus, in analogy with magnetic systems, the sensitivity of the
population-wide response, or its ‘susceptibility’ to a change in the external signal, is highly
enhanced for a narrow range of cell-cell coupling close to a critical value. We expect that our
approach will be used to enhance the sensitivity of synthetic bio-sensing networks.

1. Introduction

Synthetic biology involves the design and construction of new biological parts, devices, and
systems, as well as the re-design of existing, biological systems for useful purposes [1].
A major application area of synthetic biology is biosensing [2]: engineering systems that
enable cells to sense signals and elicit appropriate, predetermined responses. Such biosensing
modules are crucial for many of the goals of synthetic biology to be achieved, from controlling
bacterial behaviour [3] to the efficient delivery of drugs [4]. Most often biosensing systems
are based on natural processes, such as cell signalling and gene regulation, which the
cell has evolved to sense environmental changes and regulate its behaviour and phenotype.
Biochemical reaction networks are at the heart of these processes, hence stochastic effects
and cell-to-cell heterogeneity limits their capacity to transfer information [5, 6]. Therefore,
from an engineering perspective a major challenge is how to design a reliable synthetic system
using inherently unreliable components. In this article we develop a generic framework for
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Figure 1. Increasing the sensitivity of a synthetic bio-sensing network. An engineered
network responds to an environmental signal h by producing a molecular probe (E). (A)
Parameters in the system dictate the sensitivity of the response, i.e. the range of signal
values over which the system produces a detectable response. (C) Interactions due to cellular
communication (quorum sensing) can be used to increase the sensitivity of the system.

increasing the reliability of a synthetic multicellular biological system by tuning the cell-cell
interactions (which can be done by e.g. controlling the density of a bioreactor).

Let us imagine a population of cells that are engineered to detect an environmental input
h and produce a molecular probe (E) in response. For the sake of simplicity we assume
that the molecular readout is produced through a single catalytic reaction, affected by h,
and degraded through a first order reaction. We model the dynamics of the system using a
stochastic birth–death process:

Production: E
g(h)−→ E + 1; g(h) =

g0h

Kh + h
;

Degradation: E
r(E)−→ E − 1; r(E) = r0E,

where parameters r0, g0 and Kh govern the propensities of the two reactions—or how densely
these reaction events occur over a time interval. The Chemical Master Equation, describing
the dynamics of the probability distribution of the cellular responses is given by:

dP (E, t)

dt
= (E−1 − 1)

g0h

Kh + h
P + (E+1 − 1)r0EP, (1)

where E is the step operator, i.e., Eaf(x) = f(x+ a).
From the equation above we derive the population-average, steady-state response of

the system 〈E〉 = g0
r0

h
Kh+h

[7], which for small values of the input, h � Kh, becomes
〈E〉 ≈ g0h

r0Kh
. Therefore, parameter Kh dictates how sensitive the system is to small input

perturbations. Assuming that the input can be written as h = h̄ + hnoise, where h̄ represents
the true signal, and hnoise is a zero-mean noise term, often one seeks a system where Kh

is large enough to filter out noise (Kh >
√
〈h2

noise〉) but small enough to allow strong
responses to small changes in h̄. However, the intrinsic sensitivity of many naturally occurring
components, used in biosensing applications, is hard to tune and therefore poses an obstacle
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for their use in applications. Our goal is to develop alternative network designs that allow one
to circumvent the limitations of the individual components to enhance the overall sensitivity
of a biosensing system.

Hence, we propose and study a synthetic gene regulatory system that enables a
population of cells to detect with increased sensitivity changes in the external environment.
The system is based on cellular communication, also known as quorum sensing (Fig. 1C).
In brief, the network consists of two mutually repressing, quorum sensing modules. Each
module produces signalling molecules that diffuse across the cell membrane and up-regulate
the expression of their cognate module while down-regulating the expression of the non-
cognate one. After suitable coarse-graining the state of a cell can be assigned two possible
values, corresponding to the predominance of one of the two modules (i.e. ±1). We perform
a statistical mechanical analysis of this system for a population of cells uniformly distributed
in two dimensions. The dynamics of the signalling molecules leads to a coupling of nearby
cells and the behaviour of the population undergoes a dynamics similar to the Ising model
for ferromagnetism [8, 9, 10]. The strength of the coupling can be characterised by a
single effective parameter and for values of the coupling parameter close a critical value the
behaviour of the population of cells exhibits highly sensitive response to small changes in the
environmental variables.

2. Methods

2.1. Synthetic network design

The proposed network consists of two mutually repressing, Quorum Sensing (QS) modules.
Each module incorporates a synthetase (E1 and E2) gene under the control of a synthetic
promoter. In natural QS systems, synthetase enzymes produce small diffusible (signalling)
molecules (here denoted by A1 and A2), which bind to receptor proteins and activate them.
Active receptors are transcriptional activators of the synthetases, giving rise to a positive
feedback loop—hence, QS signalling molecules are often referred to as autoinducers [11].
The design we propose here, uses synthetic promoters that would enable receptor proteins
to function as transcriptional repressors of the non-cognate genes as well. Moreover, one of
the promoters (e.g. the one corresponding E1) is under the control of the external signal of
interest. Fig. 2A gives a schematic illustration of the key interactions in the proposed synthetic
network.

Positive feedback within each QS module and mutual inhibition between them suggest
that the network will function as a toggle switch [12]. This motif produces a bistable
expression profile, where one module is active at any time, and switching between modules
occurs stochastically in time due to random fluctuations (Fig. 2B). At the population level,
QS correlates cellular responses, much like spins in an Ising model (Fig. 2C). The presence
of the external signal should result in a bias towards the corresponding state, which will be
amplified at the population level given that coupling between cells is appropriately tuned.
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Figure 2. Schematic illustration of the proposed biosensing network. (A) The network
consists of two mutually repressing quorum sensing modules. Each module incorporates a
gene coding for an enzyme (E1/2) that produces quorum sensing molecules (A1/2). These
small, diffusible molecules bind to receptor proteins and activate the expression of their
cognate enzyme while repressing the expression of the non-cognate one. The external signal
controls the expression of only on module (e.e., E1). (B) At the single cell level, the
network behaves as a toggle switch (C) After suitable coarse-graining, the population can
be represented as a spin lattice, with each spin corresponding to the state of each cell. (D)
Tuning the coupling between cells results in sensitive population wide responses even to small
levels of external stimulation.

2.2. Model formulation

We formulated a simplified model of the network proposed above and used it to study the
single cell and population dynamics. Vector X = (E1, E2, A1, A2) denotes the state of the
network, that is the levels of the enzymes and the signalling species within a cell. The state of
the entire cellular population is denoted by X = {Xi} where individual cells are indexed by
integer i. The chemical Master Equation describing the dynamics of

P ({xi}, t) ≡ P (X = {xi}, t|X = {xi,0}, 0) ,

the probability to find the population at state {xi} at time t having started at state {xi,0}, is
given by:

dP ({xi}, t)
dt

=
∑

reaction j

∑
cell k

[
Eνkj − 1

]
akjP +

∑
reaction j

∑
neighbours {k, l}

[
Eµ

k,l
j − 1

]
bk,lj P, (2)
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Biochemical reactions within cell k

Index j
Reaction stoichiometry, Propensity,

Description
X → X + νkj akj (X )

1 Ek
1 → Ek

1 + 1 h′ externally stimulated production of
enzyme E1, h′ = g0h

Kh+h
≈ g0h/Kh

assuming h� Kh.

2 Ek
1 → Ek

1 + 1 f(Ak1, A
k
2) regulated production of enzymes

E1 and E1:

3 Ek
2 → Ek

2 + 1 f(Ak2, A
k
1) f(x, y) = βK2+αx2

K2+x2+y2
.

4 Ek
1 → Ek

1 − 1 δ · Ek
1 degradation of enzymes E1 and E2.

5 Ek
2 → Ek

2 − 1 δ · Ek
2

6 Ak1 → Ak1 + 1 αA · Ek
1 production of signalling molecules.

7 Ak2 → Ak2 + 1 αA · Ek
2

8 Ak1 → Ak1 − 1 δA · Ak1 degradation of signalling
molecules.

9 Ak2 → Ak2 − 1 δA · Ak2

Transport of signalling molecules from cell k to neighbouring cell l

Index j
Reaction stoichiometry, propensity

Description
X → X + µk,lj bk,lj (X )

1 (Ak1, A
l
1)→ (Ak1 − 1, Al1 + 1) c · Ak1 exchange of signalling molecules

2 (Ak2, A
l
2)→ (Ak2 + 1, Al2 − 1) c · Al2

Table 1. List of reactions involved in the the biochemical network. All reactions (indexed
by j) are listed along with their corresponding propensities (aj , bj), and how they affect the
state of the system X (vj , µj).

where E is the step operator, i.e., E{ai}f({xi}) = f({xi + ai}) and all reactions (indexed
by j) along with their corresponding propensities (aj , bj) and how they affect the state of the
system (stoichiometries vj , µj) are listed in Table 2.1. Note that in Eq. 2 we split reactions
into two sets: the first set includes all reactions that occur intracellularly, while the second set
includes reactions involving exchange of signalling molecules between cells.

For the sake of clarity we choose to study the dynamics of the system in terms of
X̃ = (S,D, SA, DA), where S is the sum of the levels of the two enzymes, i.e., S = E1 +E2;
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Virtual reactions within cell k
Index j Reaction stoichiometry, X̃ → X̃ + ν̃kj propensity, ãkj (X̃ )

1 (Sk, Dk)→ (Sk + 1, Dk + 1) h′ + f(
Sk
A+Dk

A

2
,
Sk
A−D

k
A

2
)

2 (Sk, Dk)→ (Sk + 1, Dk − 1) f(
Sk
A−D

k
A

2
,
Sk
A+Dk

A

2
)

3 (Sk, Dk)→ (Sk − 1, Dk − 1) δ · Sk+Dk

2

4 (Sk, Dk)→ (Sk − 1, Dk + 1) δ · Sk−Dk

2

5 (SkA, D
k
A)→ (SkA + 1, Dk

A + 1) αA · S
k+Dk

2

6 (SkA, D
k
A)→ (SkA + 1, Dk

A − 1) αA · S
k−Dk

2

7 (SkA, D
k
A)→ (SkA − 1, Dk

A − 1) δA ·
Sk
A+Dk

A

2

8 (SkA, D
k
A)→ (SkA − 1, Dk

A + 1) δA ·
Sk
A−D

k
A

2

Transfer from cell k to neighbouring cell l
Index j Reaction stoichiometry, X̃ → X̃ + µ̃k,lj propensity, b̃k,lj (X̃ )

1 (SkA, D
k
A, S

l
A, D

l
A)→ (SkA − 1, Dk

A − 1, SlA + 1, Dl
A + 1) c · S

k
A+Dl

A

2

2 (SkA, D
k
A, S

l
A, D

l
A)→ (SkA − 1, Dk

A + 1, SlA + 1, Dl
A − 1) c · S

k
A−D

l
A

2

Table 2. List of reactions involved in the the biochemical network. Reaction stochiometries
and propensities are presented in the context of the transformed system, X ′ (see main text).

D is the difference in the corresponding levels, i.e., D = E1 − E2; and SA, DA are defined
similarly in terms of the signalling molecules A1 and A2. Table 2 summarises all reactions
under this linear transformation of the state variables. We use X̃ to denote the transformed
population state and note that the chemical master equation describing the dynamics of
P (X̃ , t) ≡ P (X̃ , t|X̃0, 0) would be equivalent to Eq. 2.

2.3. Stochastic simulations

We simulate the coarse-grained system using a kinetic Monte-Carlo scheme [13] (the Gillespie
algorithm [14, 15]). For all our simulations we use a square array of 50×50 nodes (N = 2500)
with periodic boundary conditions. We study systems where initially the effective potentials
U± and external signal h′ have been tuned so that H (see Eq. 7) is close to zero. Finally, time
is measured in units of 1/k0, the reciprocal of the basal transition rate between the two states
when there is no coupling J1 = 0 and no signal H = 0.

3. Results

3.1. Single cells behave like bistable switches

Here, we focus on the dynamics of a single isolated cell, which corresponds to the case where
the rate of molecular exchange between cells is set to zero, i.e. c = 0. In this case cells behave
independently of each other, hence it suffices to study the dynamics of X̃ = (S,D, SA, DA).
Making the ansatz that X̃ can be written as the sum of a macroscopic part and a random
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fluctuating part, X̃(t) = ΩS̃(t) + Ω1/2Ξ(t), we derive from Eq. 2 the macroscopic behaviour
of the model [7]

dS̃
dt

= M · A(S̃) (3)

whereM is the (4×9) stoichiometric matrix andA is the (9×1) propensity vector (see Tbl. 2).
The macroscopic behaviour is particularly instructive in the limit of strong regulation

(K → 0) and in the absence of external stimulation (h = 0). In this limit, the system exhibits
two stable solutions—corresponding to D,DA > 0 and D,DA < 0—and an unstable one
(D = DA = 0). Quantities S, and SA always attain a unique steady state value irrespective
of the steady state of D and DA. The macroscopic analysis guides our intuition about the
stochastic dynamic behaviour of the system. In particular, we expect that for sufficiently long
times (t� 1/δ), the system will flip between the two meta-stable basins of attractions, owing
to random fluctuations.

To strengthen our intuition we study the stochastic dynamics of a coarse grained
model, which we obtain for sufficiently long times. Our coarse graining procedure involves
decomposing the distribution P as follows:

P (X̃, t) = P (S,D, SA, DA, t) = P1(D, t) · P2(DA, t|D) · P3(S, SA, t|D,DA).

For sufficiently long times, t � 1/δ, allowing S to settle to its steady state, the third
component becomes stationary: that is, P3 becomes narrowly peaked around the macroscopic
steady state values Sss, SssA , which are independent of t, D, and DA (see Appendix). Also,
since signalling molecules change at a much faster timescale (δA � δ) and adapt rapidly to
enzyme levels, one expects that at all times P2 is narrowly peaked around the macroscopic,
quasi steady-state implied by the value of D(t). Under the above assumptions the rate of
change of P becomes

dP (X̃, t)

dt
=
dP1

dt
· P2 · P3.

Replacing the above in Eq. 2 and summing over S, SA, DA we obtain a birth–death process
approximating the dynamics of the system:

dP1(D = n, t)

dt
= gn−1P1(n− 1, t) + rn+1P1(x+ 1, t)

− [gn + rn]P1(n, t), (4)

where g (birth rate) and r (death rate) are given by

gn = h′ + f

(
αA
δA

Sss + n

2
,
αA
δA

Sss − n
2

)
+ δ · Sss − n

2
,

rn = f

(
αA
δA

Sss − n
2

,
αA
δA

Sss + n

2

)
+ δ · Sss + n

2
,

Sss = α
δ

is the macroscopic steady state value of S and function f along with all rate
constants are defined in Tbl. 2.1 The stationary distribution of Eq. 4 can be written as
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P ss
1 (D = n) ∝ exp[−U0(n)], where

U0(n) =



n−1∑
j=0

[− log gj + log rj+1] n ≥ 0,

−1∑
j=n

[log gj − log rj+1] n < 0.

(5)

The potential U0 has two minima: U+ at value D = n+ > 0 and U− at D = n− < 0, with
a peak (Ub) separating them at D = n0. For example, in the absence of external stimulation
(h = 0), one obtains n± = ±α

δ
and n0 = 0. External stimulation h > 0 tilts the potential

towards positive values, hence biasing the stationary distribution. Equation 4 allows us to
calculate the rates of hopping between the two meta-stable states as the mean first passage
time between the two minima. In particular, the mean first passage time from n− to n+ is
τ =

{∑n0

−∞ P
s
1 (n)

}
·
{∑n+

n=n−
[gn · P s

1 (n)]−1
}

and, the rate of hopping from the negative to
the positive state (r+) and vice versa (r−) are (to first approximation) given by [7]:

r± = r0 · exp [Ub − U∓] ,

where r0 = δ
α

1
2π

.

3.2. Coarse-grained model of population (mapping to Ising model)

We start our study of the population dynamics by considering the behaviour of a single cell
within a fixed, static population, focusing on the behaviour of P (X̃j|{X̃i\j}). Following the
same procedure as the one detailed in the section above, we derive an effective potential

Uj({y}) ' U0(yj)− U1

∑
l∈n.neigb.(j)

ylyj + . . . ,

associated with the stationary conditional distribution for the scaled Dj variable, D̂j =

Dj/S
ss, i.e., P ss

1 (D̂j = yj|{yi\j}) ∝ exp[−Uj({y})], and also dictating the switching rates
of the approximating telegraph process. We note that to first approximation the potential is
a function of yj and its nearest neighbours, yl, with the first term U0 given by Eq. 5 and
parameter U1 = c

δ
, capturing the strength of the coupling between neighbouring cells.

The many-particle dynamics for the full population of cells can be translated into a one-
step process in in a high dimensional space y = (y1, y2, . . . , yN) where N is the number
of cells in the population. The dynamics can be further simplified into a model of hopping
between the two minima of each cell i. To do so we set yi = y0+σi ·di, where y0 is the position
of the peak separating the two minima in Uj , di = abs(yi − y0) and σi = sgn(yi − y0) = ±1,
and replace P1({yi}, t) = P1,1({σi}, t) · P1,2({di}, t|{σi}). For times longer than the times
needed for ys to equilibrate in each well P1,2({di}|{σi}) becomes effectively stationary and
hence:

dP1,1[{σi}]
dt

=
∑

{σn}∈{{σi}−↑↓}

k{σn}→{σi}P1,1[{σn}]− k{σi}→{σn}P1,1[{σi}] , (6)

where the sum is over all states {σn} which differ from {σi} by one transition between the
states of a single node and k{σn}→{σi} denotes the corresponding transition rate. The transition
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rate for a transition where a node i that is in state σi (either 1 or −1) switches to −σi is given
by

k = k0 exp

Hσi + J1

∑
j∈n.neigh(i)

σiσj

 = k0e
−∆E , (7)

where, J1 = U1 and H = h measures the presence of the external environment (and possibly
other factors or chemical species) that affects the equilibrium between the ± states. The
rate k0 is the inverse of the timescale for the signalling molecules to diffuse a length scale
corresponding to the coarse-graining scale, L, and the class of models we consider here are
valid only for systems of size much greater than L. We can give estimates of (lower bounds
on) the lengthscale, L, in terms of the density of cells, ρcells. In a bioreactor, assuming bulk
conditions, we have L ∼ ρ

−1/3
cells , or L ∼ h−1/2ρ

−1/2
cells assuming a biofilm of height h; and the

associated timescale of diffusion is given by L2/D, where D is the diffusion constant of the
signalling molecules—roughly 10−9m2/s for 1nm-sized molecules at 25◦C. For a high cell
density environment, such as a biofilm, where L is limited by the size of the cells (∼ 1µm),
one obtains an approximate bound on the rate, 1/k0 ∼ 10−3sec.

This is mathematically equivalent to the Ising model of a ferromagnet. If we tune h such
that H = 0, this corresponds to a magnet with equal internal energy to each state (−,+)
so that an isolated node is equally likely to be in either one of the two possible states. We
note that the rate determining parameter ∆E is altered by two factors: (i) the presence of an
external signal (field) and (ii) the coupling between nodes mediated through quorum sensing.
We emphasise also that for each nearest neighbour j that is changed from the same to the
opposite state as i, the rate of transition of the node is increased by a factor e+J1 .

4. Discussion

To examine the effect of quorum sensing on the ability of the population to sense and respond
to changes in the concentration of the chemical signal we run a series of computational
experiments using the coarse-grained model. Figure 3 shows the response of a single copy
of the system—quantified as the fraction of the nodes in the active (+) state—to a stepwise
increase in the concentration of the chemical signal. Initially, each node in the lattice is
initialised randomly and the system is allowed to reach steady state in the absence of external
stimulation (h = 0). At t = 0 a step-change in the signal is introduced (setting H = 0.0316)
and the state of the system is recored up to time t = 200. In the absence of coupling
(quorum sensing) the system’s response is weak. As the coupling is increased the magnitude
of the system response to the signal increases monotonically. Stronger coupling gives rise to
longer range interactions between nodes in the lattice, giving rise to a strong population-wide
response when the signal is introduced.

Figure 4 illustrates the average response of the system to various intensities of external
stimulation as a function of time. Here, external stimulation is applied at t = 0 to a randomly
initialised lattice and averaging is performed over 200 independent runs. We focus on the
longtime response of the system to an applied signal. With cell communication, the response
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Figure 3. Population responses to a stepwise change of the chemical signal. The mean
activity cells over the lattice is plotted as a function of time when (A) there is no intercellular
coupling (J1 = 0), (B) the coupling strength is close to the critical value, J∗1 (J1 = 0.4

with J1/J∗1 = 0.91), and (C) the coupling strength is high (J1 = 0.8 with J1/J∗1 = 1.82).
The chemical signal is introduced at time t = 0 by setting H = 0.0316. Insets illustrate
the state of each site (Si) in the lattice before (t = −100) and after (t = 200) the signal is
introduced . Active and inactive sites are shown as white and black squares respectively. Data
we collected from a single run of the coarse grained model using a 50×50 lattice with periodic
boundary conditions. Time is measured in units of 1/k0 the reciprocal of the basal transition
rate between the two states when there is no coupling J1 = 0 and no signal H = 0.
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Figure 4. Average population response to a stepwise change in the concentration of the
chemical signal. The average fraction of active sites as a function of time for different
magnitudes of the step change (coloured lines) and for different strengths of intercellular
coupling. (A) No intercellular coupling (J1 = 0), (B) coupling strength J1 = 0.159 and
(C) coupling strength J1 = 0.4. The data shown here were generated using a 50 × 50 lattice
with periodic boundary conditions and averaging was performed over 200 independent runs.
Time is measured in units of 1/k0, the reciprocal of the basal transition rate between the two
states when there is no coupling J1 = 0 and no signal H = 0.

of the population is as discussed above stronger than in populations without communication.
It is however interesting to study its sensitivity to small values of signal as the coupling is
increased, there one finds that the sensitivity first increases, then however beyond a critical
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value it decreases again. The sensitivity is quantified by the susceptibility of the system
to external stimulation, defined by measuring the relative change in the magnitude of the
response to changes in the applied signal. For uncoupled systems, this shows linear behaviour
independent of the applied signal while for coupled systems it shows non-linear behaviour.
In particular for specific values of the coupling constant, J1 close to a critical value, the
sensitivity of the system becomes greatly enhanced by several orders of magnitude. We
quantify the susceptibility of the system to external stimulation change by measuring the
change of the magnitude of the response with respect to the change in the external stimulation
as the coupling parameter approaches the critical value. Figure 5 illustrates the the strong
nonlinear behaviour of the susceptibility as a function of coupling parameter when the system
is close to criticality. The susceptibility diverges as power law of the difference of the coupling
parameter from its critical value as one approaches the critical value of the couplings.

Finally we close with a discussion of parameters and how they may be optimised. The
response is most sensitive for the background signal close to zero and the coupling close to a
critical value so it is interesting to consider how that may be engineered. A natural way to tune
the coupling is to control the number density of cells which will change the rates of diffusion
of the active molecules between cells and hence the communication between nearby cells.
The coupling can also be tuned by varying properties of the buffer that the cells are growing
in which will also change the rates of diffusion and hence the cell-cell communication. In
addition it can also effectively be changed by varying the amount of ’noise’ or fluctuations
in the chemical reaction. These will in general be due both to thermal fluctuations as well as
fluctuations in the copy number of the chemical species. The background signal can be kept
close to zero by tuning the reaction rates within the cells. All of these requirements seem
feasible within the current parameters of modern molecular biology [16].

5. Appendix

5.1. Quasi steady state approximation for the macroscopic system

In our analysis of the macroscopic behaviour of the system (see Eq. 3) we assume that the
dynamics of the signalling species A1 and A2 are sufficiently faster than those of the enzymes
E1 and E2. This assumption allows us to simplify the macroscopic system using the quasi-
steady-state approximation (QSSA). Denoting the macroscopic concentration of the species
with mA1 ,mA2 ,mE1 ,mE2 , the QSSA approach involves: setting dmA1

dt
=

dmA2

dt
= 0; solving

these equations for the quasi-steady states mqss
A1

and mqss
A2

; and substituting these values into
the equations for mE1 and mE2 . The simplified system takes the form:

dmE1

dt
= h′ + f

(
mqss
A1
,mqss

A2

)
− δmE1 ,

dmE2

dt
= + f

(
mqss
A2
,mqss

A1

)
− δmE2 ,



12

10−3 10−2 10−1

0

0.1

0.2

0.3

0.4

0.5

Step change magnitude

Av
er

ag
e 

fra
ct

io
n 

of
 a

ct
iv

e 
ce

lls

 

 

0.41
0.38
0.35
0.3
0.22
0.09

10−1 100
10−1

100

101

102

103

1 − J 1/J ∗
1

κ

Coupling strength

A B

Slope = −1.72

Su
sc
ep
tib
ilit
y

Figure 5. The effect of intercellular coupling on the average steady-state population
response to a stepwise increase in the concentration of the chemical signal. (A) The
average steady-state population response is shown as a function of the applied change for
different coupling strengths (coloured lines). Results shown are averages over 200 independent
runs. (B) The change of the magnitude of the response with respect to the applied change
is plotted a function of distance from the critical value. The ’susceptibility’ exhibits highly
nonlinear behaviour as the coupling parameter approaches the critical value. The data shown
were generated using a 50× 50 lattice with periodic boundary conditions.

where mqss
A1

= mE1αA/δA and mqss
A2

= mE2αA/δA. Rewriting the above equations in terms of
mS = mE1 +mE2 and mD = mE1 −mE2 we obtain:

dmD

dt
= h′ + f

(
mS +mD

2

αA
δA
,
mS −mD

2

αA
δA

)
− f

(
mS −mD

2

αA
δA
,
mS +mD

2

αA
δA

)
− δmD,

dmS

dt
= h+ f

(
mS +mD

2

αA
δA
,
mS −mD

2

αA
δA

)
+ f

(
mS −mD

2

αA
δA
,
mS +mD

2

αA
δA

)
− δmS.

In the limit of strong regulation (K → 0) the above equations simplify into
dmD

dt
= h′ +

2αmDmS

m2
D +m2

S

− δmD,

dmS

dt
= h′ + α− δmS,

which for relatively low values of the signal, h′ < α(
√

5−1)
2

, yield two stable steady state
solutions

(mss,+
D ,mss

S ) =

(
α + h

δ
,
α + h

δ

)
(mss,−

D ,mss
S ) =

(
−α−

√
α2 − 4αh− h2

2δ
,
α + h

δ

)
and an unstable manifold defined by the line mD = −α+

√
α2−4αh−h2

2δ
.
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