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Abstract 18 

 19 

Objective: To explore indirect evidence of reporting biases by examining the distribution of P-20 

values/z-scores reported in published medical articles, and to compare P-values/z-scores 21 

distributions across different contexts. 22 

Methods: We selected a random sample (n=1500) of articles published in PubMed in March 23 

2014, and included articles that reported sufficient details of the results of inferential 24 

statistics. Additionally, we extracted information on study type, design, medical discipline and 25 

P-values/z-scores for the first-reported outcome and primary outcome (if specified) from 26 

each article.  27 

Results: Out of the 1500 randomly selected records, 758 (50.5%) were included. We retrieved 28 

or calculated 758 P-values/z-scores for first-reported outcomes and 389 for primary 29 

outcomes (specified in only 51% of included studies). The first-reported and the primary 30 

outcome differed in 28% (110/389) of the included studies. The distributions of P-values/z-31 

scores for first-reported outcomes and primary outcomes showed a notable discontinuity at 32 

the common threshold of statistical significance (P-value=0.05/z-score=1.96). A caliper test 33 

showed an imbalance in the z-scores around the common significance threshold using 5% and 34 

10% caliper sizes for the first reported outcomes as well as primary outcomes. We also found 35 

marked discontinuities in the distributions of z-scores across various medical discplines, study 36 

designs and types. 37 

Conclusions: Reporting biases are still common in medical research. We discuss its 38 

implications, strategies to detect it and recommended practices to avoid them. 39 

 40 
Keywords: bias, p-curve, p-hacking, methodology, reporting bias, publication bias 41 

Work count: Abstract: 219, Main text: 2944, Tables: 2, Figures: 4, References: 40, Appendices: 42 
2. 43 
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What is new? 
Key finding 

• There are discontinuities of the distribution of p-values/z-values at the 
typical thresholds of statistical significance that may provide indirect 
insights on reporting bias 

• Similar results were observed across various study designs and types.  
 
What this study adds to what is known?  

• Notable peaks in the distributions at common thresholds of statistical 
significant are consistent with either suppression of non-statistically 
significant results or ‘manipulation’ of reported findings to reach 
statistical significance. 

• The outcome that is reported earliest in an article is more prone to this 
phenomenon than the primary outcome. 
 

 
What is the implication, and what should change now?  

• The present investigation underpin the importance of the efforts and 
initiatives to tackle the mechanisms causing reporting biases (e.g. 
registration of studies, protocols and statistical analysis). 

• Researchers should continue to be encouraged to emphasize confidence 
intervals and effect sizes, rather than P-values, in the interpretation of 
results. 

• There is a need for advocating the importance of replication, as well as 
the benefits of complete publication of research findings to reduce the 
prevalence of reporting biases in scientific literature 
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Introduction 46 

Complete publication of study results is essential to allow healthcare professionals and policy 47 

makers to make informed decisions. However, selective or distorted reporting is frequent in 48 

medical research.[1] Reporting biases arise if dissemination of research findings is influenced 49 

by the nature of the results. If undetected, reporting biases can lead to inaccurate conclusions 50 

and inappropriate decisions about health care and resource allocation, with potentially 51 

serious implications.[2] Failure to publish research findings honestly is unethical and a form of 52 

research misconduct.[3, 4] Furthermore, research inaccessibility leads to waste of limited 53 

resources, unnecessary duplication, and loss of trust in scientific integrity.[5] 54 

 55 

Reporting biases may impact scientific reports in different ways.[6-9] First, a whole study may 56 

be suppressed, or harder to find, or published with delay, if its results are not considered to 57 

be interesting. The label ‘publication bias’ is typically used to refer to this phenomenon.[10] 58 

Publication bias is the form of reporting bias that has been most extensively discussed in the 59 

literature over the last 60 years. [11-13] Second, results within a report of a study may be 60 

biased if the authors report the most interesting findings. For example, they may report the 61 

finding with smallest P-value or largest effect estimate after performing several analyses on 62 

the same outcome. Several terms have been coined to refer to such practice, including 63 

selective analysis reporting, data dredging and p-hacking.[14] Alternatively, some outcomes 64 

that were measured and analysed may be missing if the authors did not consider the results 65 

to be interesting.  66 

 67 

Although these reporting biases are likely to have been always present in the dissemination of 68 

research findings, more attention has been drawn to them recently due to the widespread 69 

use of systematic reviews. The validity of conclusions drawn from systematic reviews, 70 

intended to summarize the state of the art in a scientific area, is threatened if published 71 

results are not representative of the population of all conducted studies and analyses. Meta-72 

analysis provides researchers with several graphical methods and statistical tests to assess the 73 

possible presence of reporting biases.[6, 10, 13, 15] The exponential growth of published 74 

meta-analyses, many of them including some assessment of reporting biases, is likely to have 75 

increased the concern of incomplete publication of results as an ubiquitous problem in the 76 

scientific literature.[8]  77 
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 78 

Evidence of reporting biases can be direct or indirect. Direct evidence includes tracking of 79 

cohorts of registered studies or conference proceeding abstracts and comparing the results of 80 

published and unpublished findings. For instance, studies have provided empirical evidence 81 

that studies with significant or positive results were more likely to be published, or more likely 82 

to be published earlier, than those with non-significant or unimportant results. [5, 8] Direct 83 

evidence may also come from the acknowledgement of bias by those involved in the 84 

publication process, such as researchers, referees and editors.[16] 85 

 86 

Indirect sources of evidence of reporting biases include the observation of a 87 

disproportionately high percentage of statistically significant findings in the published 88 

literature, as well as notable discontinuities in the P-value/z-score distribution curve just 89 

above the main significance thresholds (p=0.05/z-score=1.96). Several papers have been 90 

published illustrating similar approaches in psychology, sociology and natural science.[14, 17-91 

19] Here we aim to explore indirect evidence of reporting biases by examining the empirical 92 

distribution of P-values/z-scores reported in a large set of medical research studies, and to 93 

compare this distribution across different contexts. 94 

 95 

  96 
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Methods 97 

Study eligibility and selection 98 

We conducted a descriptive cross-sectional survey of peer-reviewed, published, medical 99 

research articles. We sought original, primary and quantitative research articles, and searched 100 

the PubMed database using a simple search strategy that would identify most of these 101 

(Appendix 1). We restricted the search to articles published in March 2014, and selected a 102 

random sample of 1500 of the identified articles. To be included in the analyses, articles had 103 

to be written in English and had to involve only human participants. Articles had to include 104 

inferential statistics that investigated the efficacy or side effects of a medical or surgical 105 

intervention; or investigating risk factors, exposures or prognostic factors (epidemiological 106 

associations). We considered a wide range of study designs including randomized clinical 107 

trials, controlled clinical trials, before-after trials, cohort studies, case-control studies and 108 

cross-sectional studies, and we considered a wide range of estimates including differences in 109 

means, risk ratios, odds ratios, hazard ratios, correlations and regression coefficients. We 110 

included only articles that either reported the P-value or provided sufficient information to 111 

calculate a P-value for either the first reported or the primary outcome. We excluded 112 

duplicate reports of the same study as well as inaccessible full-text articles (e.g. published 113 

abstracts without full articles, or study protocols). 114 

 115 

Data screening and extraction 116 

We developed a standardised data extraction form, which was pilot-tested by all members of 117 

the research team.  We extracted data based on the first reported outcome in the abstract 118 

(preferentially) or in the results section. For each included article, we extracted the following 119 

information:  120 

• Author list and citation details. 121 

• Medical speciality: we used the categories suggested by Davey et al.[20] 122 

• Study type: therapeutic/intervention, prognostic, aetiological/risk factor. 123 

• Study design: we used the classification used by Grimes et al:[21] randomized 124 

controlled trial (RCT), non-RCT, cohort, case-control, cross-sectional. 125 

• Sample size: total sample size used in the analysis which yielded the P-value. 126 
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• Whether the primary outcome was specified (Yes/No) and whether it was the same as 127 

the first reported outcome (Yes/No/Unclear). 128 

• 2-sided P-value, or information sufficient to calculate it, for the first reported outcome 129 

and for the primary outcome (if specified). We used the following hierarchy to 130 

determine each P-value, where only one of the following types of information was 131 

required: 132 

1. Exact 2-sided P-value: from the hypothesis test. 133 

2. Effect estimate with standard error or confidence limits: We used methods 134 

described by Altman and Bland to calculate P-values[22] from these measures. 135 

3. Test statistics: Z, chi-squared, t or F statistic, with degrees of freedom if 136 

applicable. 137 

4. For two-group designs reporting continuous outcome data: sample size, mean 138 

and standard deviation (or standard error) for each group. 139 

5. For studies reporting dichotomous outcome data: contingency table (e.g. 2×2 140 

table). 141 

Where a specified primary outcome differed from the first reported one, we implemented 142 

the same hierarchy to extract a P-value for each of the two outcomes. 143 

 144 

Data analysis 145 

As a first step, we transformed the two-sided p-values into z-scores, and used the latter as 146 

our main dependent variable. We plotted the distribution of z-scores across all included 147 

studied, both for first reported outcomes and for primary outcomes, using histograms. In the 148 

absence of any bias and if all effects are truly null, these z-scores would be uniformly 149 

distributed. We repeated these plots with subsets of the studies to explore the distributions 150 

of z-scores stratified by medical specialty, study design and study type. Moreover, we used 151 

the caliper test described by Gerber and Malhotra  to explore the existence of discontinuities 152 

in the distribution of z-scores around the critical value of 1.96[19]. With regards to p-values, 153 

we compared the frequency of values in equal sized intervals just below and just above the 154 

threshold values commonly used for statistical significance (0.01 and 0.05), using a chi-155 

squared test. We performed all analyses using the R statistical software (version 3.2.3).[23] 156 

  157 
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Results 158 

Description of included studies 159 

Figure 1 displays the study selection process in a flow chart. Of the 1500 randomly selected 160 

articles, we included 758 (50.5%). Among these included articles, 422 (56%) described 161 

therapeutic/intervention studies, 207 (27%) were aetiological/risk factor studies, and 129 162 

(17%) were prognostic studies. With regards to study design, 264 (35%) were RCTs, 53 (7%) 163 

were non-RCTs, 145 (19%) were cross-sectional, 238 (32%) were cohort and 55 (7%) were 164 

case-control studies.  165 

The medical disciplines of the included articles were cancer (105; 14%), cardiovascular (116; 166 

15%), central nervous system/musculoskeletal (97; 13%), digestive, endocrine, nutritional and 167 

metabolic (98; 13%), gynaecology/pregnancy/birth (58; 8%), infectious (44; 6%), mental 168 

health/behavioural (75; 10%), urogenital (33; 4%), respiratory (21; 3%) and other disorders 169 

(111; 14%). The sample size of all included studies ranged from 6 to 375,888, with a median 170 

of 142 participants (range 55-525; IQR=470).  171 

Out of the 264 included RCTs, the primary outcome was specified in 190 (72%). The primary 172 

outcome was also the first reported outcome in 143 (75%) studies, while it was not the first 173 

reported outcome in 45 (24%) and unclear in 2 (1%). In studies other than RCTs, the primary 174 

outcome was specified only in 199 out of 494 included studies (40%). The primary outcome 175 

was also the first reported outcome in 133 (67%) studies, while it was not the first reported 176 

outcome in 65 (33%) and unclear in one study. 177 

The 742 excluded articles comprised 245 (33%) with only descriptive statistics, 144 (19%) with 178 

no original data, 121 (16%) with inaccessible full texts, 84 (11%) that were diagnostic or cost-179 

analysis studies, 58 (8%) without sufficient information to extract or calculate a P-value, 48 180 

(7%) with non-human research participants and 42 (6%) that were qualitative. 181 

 182 

Empirical distribution of z-scores and p-values 183 

We retrieved 758 results for first reported outcomes, with a median P-value of 0.011[0.0006 - 184 

0.45] (z-score: 2.29[3.24-0.126]). Figure 2 shows the distribution of z-scores for first reported 185 

outcomes and primary outcomes, with dashed vertical lines for the common threshold of p = 186 

0.05/z = 1.96 for statistical significance. In both distributions, there is a  clear majority of z-187 

scores above 1.96. Of particular note is the dramatic spike in the frequency of z-scores just 188 
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over the significance threshold z-score of 1.96 (P-value = 0.05). The results of the caliper tests 189 

using 5% and 10% caliper sizes for the first reported outcomes as well as primary outcomes 190 

showed a notable imbalance in the numbers of findings around the common significance 191 

threshold of 1.96 (P-value = 0.05), which is evident across the two caliper sizes (5% and 10%) 192 

in both first reported outcomes and primary outcomes (Table 1).  193 

Table 2 shows that the majority of the retrieved P-values (both for first reported and primary 194 

outcomes) were smaller than common significance thresholds (0.05 and 0.01) with a total of 195 

592 (78%) P-values of first reported outcomes were equal to or smaller than 0.05, and 376 196 

(50%) were also equal to or smaller than 0.01. 197 

The distribution of P-values reported in included studies for the first reported outcomes 198 

compared with the primary outcomes and grouped by study design (RCTs vs. studies other 199 

than RCTs). It shows that P-values more likely to be significant for the first reported outcomes 200 

than for the primary outcomes in RCTs only (p-value = 0.02391) (Table 3). 201 

 202 

Stratified analyses 203 

Figure 3 shows the histograms of z-scores for first reported outcomes stratified by medical 204 

speciality, annotated by median sample sizes within specialties. All figures reflect the same 205 

pattern of a majority of z-scores over the threshold of statistical significance, but the 206 

distributions appear less skewed in some of the disciplines with larger average sample sizes, 207 

namely infectious diseases (n=28; 63.6% of z-scores above 1.96), urogenital (n=21;  63.6%) 208 

and cancer (n=75; 71.4%). The most extreme patterns appeared in the area of respiratory 209 

diseases (n=19; 90.5% of z-scores above 1.96), cardiovascular (n=97; 83.6%) and central 210 

nervous system or musculoskeletal disorders (n= 78; 80.4%). Similar trends were observed in 211 

the histograms of z-scores for primary outcomes stratified by medical speciality, which are 212 

provided in Appendix 2. 213 

 214 

Histograms of z-scores for first reported outcomes did not show major differences in the 215 

distribution according to study design (Figure 4). Likewise, we obtained similar histograms 216 

when exploring the distributions of z-scores for first reported outcomes stratified by study 217 

type, and also when plotting the distributions of z-scores for primary outcomes stratified by 218 

study design or by study type (Appendix 2). 219 

  220 
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Discussion 221 

Our distributions of reported P-values/z-scores from medical research studies show notable 222 

peaks (or discontinuities) in the distributions at the common threshold of statistical 223 

significance (z-score = 1.96/p = 0.05) that may provide indirect insights on reporting bias. The 224 

outcome that is reported earliest in an article is more prone to this phenomenon than the 225 

primary outcome. Only about half of the included articles specified the primary outcome, and 226 

in 28% of the articles the first reported outcome was not the primary outcome. Similar 227 

patterns were observed across various medical discplines, study designs and types. 228 

 229 

Strengths of our study include use of a large random sample of 1500 articles recently 230 

published, of which 758 contributed to the analysis. We also implemented manual data 231 

extraction from the articles; provided a breakdown by medical disciplines, study type and 232 

study design; and computed z-scores/P-values when they were not reported directly. 233 

However, we were unable to retrieve all of the articles listed in our random sample (see 234 

Figure 1). We are unable to draw any conclusions about whether the observed distribution is 235 

due to data manipulation (‘p-hacking’) or genuine effects, because as Bruns and Ioannidis 236 

suggested[24], p-curves may neither identify genuine effects nor p-hacking in observational 237 

research.   238 

 239 

The presence of reporting biases has been claimed repeatedly in the medical literature,[1, 4, 240 

8] and in other areas as diverse as cognitive sciences,[17, 25] biology,[26] educational 241 

research,[27] political sciences,[28] and management research.[7] Although definitions of 242 

reporting biases and strategies to explore vary, the conclusions and implications for 243 

researchers are similar across disciplines. Previous studies have investigated empirical 244 

distributions of published P-values. A study of abstracts in PubMed reported an extremely 245 

skewed distribution of P-values, with a substantially higher proportion of P-values below 0.05 246 

in non-randomized studies compared to randomized trials.[29] In a review of meta-analyses, 247 

Ioannidis and Trikalinos also concluded that significant P-values were overrepresented [30]. In 248 

psychology, some studies also explored the P-value distribution and showed an inordinately 249 

high number of P-values just below 0.05.[17, 31]  250 

 251 
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It is good practice to specify the primary outcome before performing the statistical analysis of 252 

a clinical trial.[9] In our survey, we found that 72% of the RCTs vs. 40% of studies other than 253 

RCTs specified the primary outcome in their reports. Moreover, the specified primary 254 

outcome and first reported outcome differed in 24% of the included RCTs compared with 255 

33% in the included studies other than RCTs. In addition, we found that the proportion of 256 

significant P-values is higher in first reported outcomes compared with primary outcomes in 257 

RCTs. This is consistent with observations in epidemiological research comparing primary 258 

outcomes stated in the protocol with those declared in the final report.[32, 33]  259 

 260 

Reporting biases are a prevalent and complex phenomenon across most scientific areas, 261 

including epidemiology. Our survey adds to the evidence that statistically significant findings 262 

are still overrepresented in current medical research. The phenomenon limits the validity of 263 

conclusions drawn from the published literature, and has led to expressions of major 264 

concerns and disbelief about the usefulness of scientific evidence.[34, 35] It is important that 265 

techniques are used to assess the potential extent of these threats to published evidence, 266 

whether in the context of a systematic review or otherwise. Meta-analysis methods provide 267 

some of the most direct tools for this, although have major limitations. 268 

 269 

Efforts should be increased to tackle the mechanisms causing reporting biases. Initiatives to 270 

facilitate registration of studies, protocols and statistical analysis plans are key in this regard. 271 

The common practice of interpreting results based on significance tests is likely to have an 272 

important role, and researchers should continue to be encouraged to emphasize confidence 273 

intervals and effect sizes, rather than P-values, in the interpretation of results.[22, 36, 37] 274 

Furthermore, the pressure imposed on researchers to produce scientific publications on a 275 

regular basis, coupled with the increasing emphasis on research impact (including journal 276 

impact factor), may lead them to dismiss scientific findings for publication if their results are 277 

insufficiently innovative or not in agreement with the dominant paradigm. This risks a 278 

prioritization of aspects other than rigor and scientific quality when presenting their findings 279 

in scientific reports.[38] A new framework in which the importance of replication, as well as 280 

the benefits of complete publication of research findings, has been advocated as a promising 281 

approach to reduce the prevalence of reporting biases in scientific literature.[25, 39, 40] 282 

 283 
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Tables  382 

Table 1. Caliper test for reporting biases in first reported outcomes and primary outcomes. 383 
 384 

Under caliper: number of z-scores that are between 0 and X% smaller than 1.96, with X being the caliper size; over caliper: 385 
number of z-scores that are between 0 and X% greater than 1.96; P-value: p-value from a one-tailed binomial test 386 
  387 

 5% caliper 10% caliper 

Under 
caliper 

Over 
caliper 

P-value Under 
caliper 

Over 
caliper 

P-value 

First reported 
outcomes 

17 44 <.001 24 60 <.001 

Primary 
outcomes 

9 23 0.010 13 35 0.001 



17 

 

Table 2. Distribution of P-values for all first reported outcomes and primary outcomes. 388 
 389 
 390 
 391 
 392 
 393 
 394 
 395 

The distribution of the P-values for the first reported outcomes compared to 396 
primary outcomes was performed by the analysis of frequencies (χ2

2 = 10.412; p-397 
value = 0.005).  398 

 399 
 400 
  401 

 P-values 
>0.05 

P-values 

0.05 & >0.01 

P-values 

0.01 

First reported 
outcomes 

166 (21.9%) 216 (28.5%) 376 (49.6%) 

Primary 
outcomes 

118 (30.6%) 101 (26.2%) 167 (43.3%) 
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 402 
Table 3. Distribution of P-values for all first reported outcomes and primary outcome 403 
grouped by the study design (RCTs vs. studies other than RCTs). 404 
 405 

 406 
The distribution of the P-values for the first reported outcomes compared to primary outcomes was performed by the 407 
analysis of frequencies in included a RCTs (𝜒2

2 = 7.4666; p-value = 0.0239); b Studies other than RCTs (𝜒2
2 = 1.2052; p-value = 408 

0.5474).  409 
 410 
 411 
 412 
 413 
  414 

 P-values from RCTs P-values from studies other than RCTs 

 >0.05 0.05 & 
>0.01 

0.01 >0.05 0.05 & 
>0.01 

0.01 

First reported 
outcomesa 

71  
(26.9%) 

77  
(29.2%) 

116 
(43.9%) 

96  
(19.4%) 

139 
(28.1%) 

259 
(52.4%) 

Primary 
outcomesb 

73  
(38.6%) 

51  
(27.0%) 

65  
(34.4%) 

45  
(22.8%) 

50  
(25.4%) 

102 
(51.8%) 
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 415 

Figures 416 

 417 

 418 

 419 

Figure 1. Flow chart for identification of relevant articles from a random sample of records 420 
in PubMed  421 

 422 

423 
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 424 
Figure 2. Histograms of z-scores across all articles 425 
These figures display z-scores in absolute value, with the bottom x-axis indicating the 426 
corresponding p-value in a two-tailed test; the red dashed line represents the common 427 
threshold of p = 0.05 for significance tests. 428 

  429 
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 430 
 431 

Figure 3. Histograms of z-scores for first reported outcomes, stratified by medical 432 
discipline.  433 

These figures display z-scores in absolute value, with the bottom x-axis indicating the 434 
corresponding p-value in a two-tailed test; the dashed line represents the common 435 
threshold of p = 0.05 for significance tests; k: number of studies; N: sample size. 436 

  437 
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 438 

 439 
Figure 4. Histograms of z-scores for first reported outcomes, stratified by study design 440 
These figures display z-scores in absolute value, with the bottom x-axis indicating the 441 
corresponding p-value in a two-tailed test; the dashed line represents the common 442 
threshold of p = 0.05 for significance tests; k: number of studies. 443 

 444 

  445 
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Appendices 446 

Appendix 1. Search strategy for PubMed/Medline 447 

1. "2014/03/01"[Date - Publication] : "2014/03/31"[Date - Publication] 448 
2. Clinical Trial[ptyp]  449 
3. Clinical Trial, Phase III[ptyp]  450 
4. Comparative Study[ptyp]  451 
5. Controlled Clinical Trial[ptyp]  452 
6. Multicenter Study[ptyp]  453 
7. Observational Study[ptyp]  454 
8. Randomized Controlled Trial[ptyp]  455 
9. Pragmatic Clinical Trial[ptyp]  456 
10. Twin Study[ptyp] 457 
11. 2 OR 3 OR 4 OR 5 OR 6 OR 7 OR 8 OR 9 OR 10 458 
12. Humans[Mesh]  459 
13. English[lang] 460 
14. 1 AND 11 AND 12 AND 13 461 

  462 
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Appendix 2. Supplementary figures 463 
 464 

 465 
Figure S1. Histograms of z-scores for primary outcomes, stratified by medical discipline 466 

These figures display z-scores in absolute value, with the bottom x-axis indicating the 467 
corresponding p-value in a two-tailed test; the dashed line represents the common 468 
threshold of p = 0.05 for significance tests; k: number of studies; N: sample size. 469 

  470 
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 471 

 472 

Figure S2. Histograms of z-scores for first reported outcomes, stratified by study type 473 
These figures display z-scores in absolute value, with the bottom x-axis indicating the 474 
corresponding p-value in a two-tailed test; the dashed line represents the common 475 
threshold of p = 0.05 for significance tests; k: number of studies. 476 

  477 
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 478 

 479 

Figure S3. Histograms of z-scores for primary outcomes, stratified by the study design 480 
These figures display z-scores in absolute value, with the bottom x-axis indicating the 481 
corresponding p-value in a two-tailed test; the dashed line represents the common 482 
threshold of p = 0.05 for significance tests; k: number of studies. 483 

  484 
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 485 

 486 

Figure S4. Histograms of z-scores for primary outcomes, stratified by the study type 487 
These figures display z-scores in absolute value, with the bottom x-axis indicating the 488 
corresponding p-value in a two-tailed test; the dashed line represents the common 489 
threshold of p = 0.05 for significance tests; k: number of studies. 490 

 491 


