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Abstract 

 

 A novel compound 2-chloro-3,6-bis-(quinolin-8-yloxymethyl)-quinoline 3 bearing a tri-

quinoline moiety has been synthesized from 2-chloro-3,6-dimethyl quinoline 1 and 8-hydroxy 

quinoline 2 using dry acetone and K2CO3 as a base. 3 has been characterized by using FT-IR, 

FT-Raman, UV-Vis, 1H NMR, 13C NMR spectra and single crystal X-ray diffraction methods. 

We have also made a combined experimental and theoretical study on the molecular structure, 

vibrational spectra, NMR, FT-IR, FT-Raman and UV-Vis spectra of 2-chloro-3,6-bis-(quinolin-

8-yloxymethyl)-quinoline. The theoretical studies of the title compound have been evaluated by 

using density functional theory calculations using B3LYP/6-31+G(d,p) and M06-2X/6-

31+G(d,p) level of theories. The calculated theoretical values were found to be in good 

agreement with the experimental findings. The single crystal structure 3 crystallized in the 

orthorhombic space group Pna21. The compound 3 exhibits higher cytotoxicity in human 

cervical cancer cell lines (HeLa) than human breast cancer cell lines (MCF7). 
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 Highlights 

• A novel tri-quinoline was synthesized and optimized by density functional 

theories. 

• Single crystal XRD, FT-IR, Raman, 1H, 13C NMR and UV-Vis spectra were 

studied. 

• All the experimental data were compared with theoretical values. 

• Cytotoxicity was determined by MTT assay and by theoretical calculations. 
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Introduction 

 The compounds of quinoline based derivatives find extensive applications such as 

medicinal usage, material utility, optoelectronic properties etc. Specifically, 8-hydroxy quinoline 

(8HQ) is used as one of the components in organic light emitting diode (OLED) fabrication [1, 

2] since the organic materials have photoconductive, photorefractive and hole transporting 

properties[3]. 8HQ is extensively used as the best chelator[4-7] for metal ions after 

Ethylenediaminetetraacetic acid (EDTA) due to its chromogenic behavior. Derivatives of          

8-hydroxy quinoline have been popular in the field of organometallic chemistry[8, 9] and as a 

fluorescent sensors[10, 11] because of the ease of complex formation with various metal ions 

such as Ag+[12], Cd2+[10], Cu2+[13, 14]. Also the special properties of quinolates were 
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illustrated by simple Werner -type complexes and have been useful in the synthesis of 

metallosupramolecular materials [15, 16]. 8HQ derivatives and their quinolates are known to 

possess therapeutic properties for Alzheimer's disease[17], widely used as antimicrobial[18, 19] 

and antitumor agents[20, 21] To prepare newer derivatives, an elaborate knowledge of 

spectroscopic and stability behavior is required in order to promote the utility value in medicinal 

properties. 

 In recent years, density functional theory (DFT)[22] has been extensively used for 

optimized structural studies. In the present work, Becke's three parameter hybrid functional[23, 

24] with correlation functional of Lee-Yang-Parra[25] (B3LYP) and the hybrid meta-GGA 

functional M06-2X with 6-31+G(d,p) basis set have been used for comparing the experimental 

values of geometry, vibrational spectra, electronic and NMR spectra etc. 

 In this communication, we report the first ever synthesis of the novel tri-quinoline based 

compound 3 which was synthesized from 2-chloro-3, 6-dimethyl quinoline and 8-hydroxy 

quinoline using dry acetone and anhydrous K2CO3 as a base. Subsequently, we aimed to compare 

the structural and spectroscopic properties of compound 3 obtained experimentally with 

theoretical results from density functional theory calculations using B3LYP and M06-2X level of 

theories. We optimized the structure of compound 3 and the calculations were performed to 

calculate 1H NMR, 13C NMR, FT-IR, FT-Raman and UV-Vis spectra at the B3LYP and M06-2X 

level of theories. Furthermore, the frontier molecular orbital energies of compound 3 have been 

calculated and various molecular properties such as chemical hardness, softness, electrophilicity, 

electronegativity, ionization potential, chemical potential and electron affinity have also been 

observed at these theory levels. From the molecular electrostatic potential (MEP), the lowest 

unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) were 

plotted to visualize the charge distributions and electronic transport properties of compound 3. 

The comparisons between experimental and theoretical calculations have also been done. 
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Materials and methods 

Experimental  

General 

 All reagents and chemicals were of analytical grade and purchased from Sigma Aldrich. 

The solvents were purified by standard methods. Thin layer chromatography (TLC) plates coated 

with silica gel containing 13% calcium sulfate as a binder were used to test the purity of the 

compound. Melting point (M.P., ºC) was determined using Mettler FP 51 apparatus (Mettler 

Instruments, Switzerland) and remains uncorrected. Microanalyses were performed on a Vario 

EL III model CHNS analyzer (Vario, Germany). 

 

 

FT-IR, FT-Raman, UV spectra and NMR analysis of compound 3 

 The IR spectrum of compound 3 was recorded using KBr pellets in the scan range of 

4000-400 cm-1 with a resolution of 4 cm-1 on a Nicolet Avatar Model FTIR spectrometer (with 

ESP DTGS detector). Raman spectrum was measured using JY-1058 Raman spectrometer (with 

CCD detector) in the scan range of 4000-50 cm-1 with resolution of 2 cm-1. 1H NMR and 13C 

NMR were recorded using a Bruker 400 MHZ and 100 MHz spectrometers respectively using 

tetramethyl silane (TMS) as an internal standard reference and dimethyl sulfoxide-d6 as solvent. 

The chemical shift values were recorded as δ (ppm). UV–Visible absorption spectrum of 

compound 3 (1×10-3 M solution in EtOH/H2O 1:1(v/v)) was recorded at 24 ± 1º C using JASCO-

V- 630 spectrophotometer. 

 

Single crystal X-ray analysis 

 X-ray diffraction data for 3 were collected at 100(2) K on a Bruker APEX II CCD 

diffractometer using Mo-Kα radiation (λ = 0.71073 Å).  Absorption corrections were based on 

equivalent reflections using SADABS[26].  The structure was solved using SHELXS[27] and 

refined against F2 in SHELXL[28] using Olex2[29].  All of the non-hydrogen atoms were 
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refined anisotropically, while all of the hydrogen atoms were located geometrically and refined 

using a riding model.  There was disordered solvent present in the lattice which could not be 

sensibly modelled so Squeeze within Platon [30] was used to treat this. Crystal structure and 

refinement data are given in Table 1. The structure has the CCDC number 1005001. Copies of 

the data can be collected, free of charge, on application to CCDC, 12 Union Road, Cambridge, 

CB2 1EZ, UK. [Fax: + 44(0)-1223-336033 or e-mail: deposit@ccdc.cam.ac.uk]. 

 

DFT computational analysis 

 The molecular geometry for the compound 3 has been extracted from the single crystal 

X-ray analysis data. The compound 3 was optimized by using B3LYP and M06-2X level of 

theories with 6-31+G(d,p) basis set in the Gaussian 09 suite of program[31]. The vibrational 

frequencies were found at these theory levels and no imaginary frequencies were observed which 

confirmed that the structure is on the real minima. Due to the absence of anharmonicity in the 

system, calculated stretching frequencies were higher than experimental values. The values were 

scaled by 0.964[32] and 0.979[33] at the B3LYP and M06-2X level of theories respectively and 

agreed well with the experimental values. The UV-Vis spectra were calculated using polarizable 

continuum model (PCM)[34] in ethanol solution by using the time-dependent density functional 

theory (TD-DFT). The NMR chemical shift calculations were done by using the Gauge- 

Independent Atomic Orbital (GIAO) method[35] at B3LYP and M06-2X level of theories with 

6-31+G(d,p) basis set. The molecular electrostatic potential map is plotted for the optimized 

structure of the title compound 3 and it shows the probable electrophilic and nucleophilic sites of 

the molecule. 

 

Cytotoxicity study by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay 

A cytotoxicity study of compound 3 was carried out on human liver cancer cells (A549) 

which were collected from National Centre for Cell Science (NCCS), Pune, India. Cell viability 

was carried out using the MTT assay method. Cells were maintained in Eagles minimum 

essential medium containing 10% fetal bovine serum (FBS). For the screening experiment, the 
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cells were seeded into 96-well plates in 100 µL of the respective medium containing 10% FBS, 

plates with a density of 10000 cells/well and incubated in a humidified incubator at 37 °C, using 

conditions of 5% CO2, 95% air and 100% relative humidity for 24 h prior to the addition of 

compound. The compound 3 was dissolved in DMSO and diluted in the respective medium 

containing 1% FBS. After 24 h, the medium was changed with the respective medium with 1% 

FBS containing the compounds at various concentrations and incubated at 37 °C with conditions 

of 5% CO2, 95% air and 100% relative humidity for 48 h. Triplication was maintained and the 

medium not containing the compound served as the control. After 48 h, 10 µL of MTT (5 

mg/mL) in phosphate buffered saline (PBS) was added to each well and incubated at 37 °C for 4 

h. The medium with MTT was then flicked off and as a result formazan crystals were dissolved 

in 100 µL of DMSO. The absorbance was then measured at 570 nm using a microquant plate 

reader (Bio-Tek Instruments). The percentage of cell inhibition was determined using the 

formula 

 % of inhibition = [mean OD of untreated cells (control) / mean OD of treated cells] × 100 

and a graph was plotted as the percentage of cell inhibition versus concentration and from this 

the IC50 value was calculated. 

 

 

Results and discussion 

Chemistry 

 8-hydroxy quinoline (0.025 g, 0.26 mmol) was added to the solution of 3,6-

bis(bromomethyl)-2-chloroquinoline[36] (0.048 g, 0.13 mmol) in dry acetone along with 

anhydrous K2CO3 (10 mg). The reaction mixture was refluxed at 100-120 ºC for 8 h. After 

completion of the reaction, the mixture was cooled to room temperature and using reduced 

pressure the excess solvent was removed to get a yellow oil that was separated by silica gel 

column chromatography (80:20 v/v Petroleum ether: Ethyl Acetate) to give pure compound 3  in 

64 % yield; Mp: 223 °C; IR (KBr, cm-1) 3041, 1699, 1559, 1378, 1008,  and 702; 1H NMR (300 

MHz, DMSO, ppm): δ 8.84-8.85 (m, 2H, Ar-H), 8.33(m, 2H, Ar-H), 8.29 (d, 2H, J= 8.4 Hz, Ar-

H), 8.05(s, 1H, Ar-H), 7.94(d, 2H, J= 8.8 Hz, Ar-H), 7.87(d, 2H, J= 8.8 Hz, Ar-H), 7.45-7.53(m, 
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4H, Ar-H), 7.29(d, 1H, J= 7.2 Hz, Ar-H), 5.48(s, 4H, CH2); 13C NMR (100 MHz, DMSO, ppm): 

154.07, 153.70, 149.64, 149.51, 146.84, 136.80, 136.22,  136.10, 136.01, 129.72, 129.63, 129.43, 

129.03, 128.75, 127.29, 126.65, 126.53, 125.78, 121.88, 121.74, 120.83, 120.36, 110.12, 110.10, 

70.33, 67.37; C29H20N3O2Cl: Calculated C 72.88 %; H 4.22 %; N 8.79 %; Found, C 72.84 %; H 

4.49 %; N 8.28 %. 
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Scheme 1: Synthesis of 2-Chloro-3,6-bis-(quinolin-8-yloxymethyl)-quinoline 3
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Single crystal X-ray diffraction studies 

 The structure of 3 was confirmed by single crystal X-ray diffraction, see Fig. 1.  It 

crystallized in the orthorhombic space group Pna21 with one molecule in the asymmetric unit.  

One of the terminal quinolines (N2, C11-C19) was in almost the same plane as the central Cl 

substituted quinoline (N1, C1-C9) with a plane to plane angle of ~2° while the second terminal 

quinoline (N3, C21-C29) was twisted significantly, ~62°, out of the place of the rest of the 

molecule. The structure contained π-π stacking interactions between the central quinolone (N1, 

C1-C9) and terminal quinolone (N2, C11-C19), with centroid-centroid distances of ~3.6 Å and a 

shift of ~1.4 Å.  Disordered solvent was removed through the use of Squeeze. 

 

FT NMR analysis 

 1H NMR and 13C NMR spectra were observed in DMSO-d6 using TMS as an internal 

standard. 1H NMR and 13C NMR data of compound 3 are tabulated in Table 3. In 1H NMR, four 

protons of two CH2 groups appeared in the upfield region of δ 5.48 ppm. All other aromatic 
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proton peaks were observed in the downfield region between δ 7.45 and 8.85 ppm. 13C NMR 

spectrum showed the presence of 26 carbon atoms. The characteristic signals at δ 67.37 and δ 

70.33 ppm were due to -CH2 group carbon atoms. The aromatic carbons appeared in the region 

between δ 110.10 and δ 154.07 ppm (Fig. S2). 

 

In vitro cytotoxicity assay 

 By using MTT assay, the in vitro cytotoxicity of the compound 3 was done against 

human cervical cancer cell lines (Hela) and human breast cancer cell lines (MCF7). 

 

XRD studies and structural analysis 

 The bond lengths, bond angles and dihedral angles of compound 3 from the single crystal 

XRD data are tabulated in accordance with the atom numbering scheme as shown in Fig. 1. The 

experimental and theoretical results of bond lengths, bond angles and dihedral angles are 

compared and tabulated in Tables S1, S2 and S3. The optimized bond lengths and bond angles 

are calculated and are slightly varied from the experimental values because the structure of 

compound 3 is optimized in gas phase while in X-ray diffraction the molecule is packed in a 

crystal in addition the crystal structure contained disordered solvent that was squeezed out but 

may alter the molecular geometry, although this does not appear to have been very significant 

here. 

 Both the experimental and theoretical X-ray data show single and double bonds for C-C 

in the quinoline heterocyclic compounds. The experimental X-ray structure showed C-C bond 

length in the range of aromatic 1.346(6)-1.436(5) Å, single 1.498(5)-1.506(5) Å and their 

corresponding theoretical C-C bond lengths are formed around aromatic 1.375-1.439 Å, single 

1.51-1.509 Å using B3LYP and M06-2X level of theories. The experimental C-Cl and C-N bond 

lengths in compound 3 are 1.776(3) Å and 1.300(4)-1.376(4) Å respectively with the related 

theoretical bond lengths 1.775 Å and 1.28-1.367 Å respectively. Hence a good agreement is 

found between the bond lengths of experimental and theoretical results. 
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 In quinoline ring, almost all the bond angles of carbon lie around 120º, with sp2 

hybridization for their corresponding carbon atoms. The ∠CCC was found in the range of 

116.5(3)-123.9(4)º and 116.1-123.2º for experimental and theoretical data respectively. The 

experimental bond angles of C11-O1-C10 and C21-O2-C20 were found as 115.8(3) Å and 

116.9(3) Å respectively while the theoretical values were calculated as 116.2 Å and 

118.7(B3LYP) and 119.5 Å  and 119.5 Å(M06-2X). The bond lengths of C-N, C=N, C-Cl, C-O, 

C-H, C-C agree well with the correlation coefficient of 0.9742 while the correlation coefficients 

of bond angles of C-C-C, C-C-N, C-N-C, C-C-Cl, O-C-H, C-O-C is 0.9612. The correlation 

coefficient of experimental and theoretical dihedral angles of O-C-C-C, N-C-C-C, and N-C-C-O 

is 0.9988 (Fig. S1). From the obtained results almost all the experimental bond lengths, bond 

angles and dihedral angles quite agreeable with theoretical observations.  

 Quantum Theory of Atoms In Molecules (QTAIM)[37] is an important tool to describe 

the chemical bonding between the atoms. To observe the orientation of the molecule, QTAIM 

calculation were done to investigate the contributions of the intramolecular hydrogen bonds and 

Van der Waals interactions by using MORPHY 98 program package[38]. Surprisingly, no such 

interactions were observed in compound 3. Thus for the orientation of the compound 3, the 

impact of non-covalent interaction is lacking. 

 

FT-IR and FT-Raman assignments 

 The infrared and Raman spectra of compound 2-chloro-3,6-bis-(quinolin-8-yloxymethyl)-

quinoline 3 are carried out in the frequency range of 4000-400 cm-1 and 4000-50 cm-1 

respectively. The FT-IR and FT-Raman spectra of the molecule have been calculated by using 

B3LYP and M06-2X level of theories with 6-31+G(d,p) basis set. The calculated vibrational 

frequencies of FT-IR and FT-Raman, their IR intensities, Raman activities and their 

corresponding experimental frequencies were compared in Table 2. The experimental and 

theoretical FT-IR and FT-Raman were shown in the Figs. 2 and 3. 
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C-C vibrations 

 The FT-IR and FT-Raman stretching frequencies for the aromatic ring and C-C were 

calculated by using B3LYP/6-31+G(d,p) and M06-2X/6-31+G(d,p) level of theories. The 

carbon-carbon stretching vibrations in phenyl ring are identified with reference to the previously 

reported vibrations of the benzene molecule[39, 40]. The C-C stretching vibrations are very 

important modes in carbon skeleton molecule. From the literature studies[41], the C-C stretching 

vibrations are observed in the region 1625-1430 cm-1. In our present study, the experimental C-C 

stretching vibrations were observed between 1428-1378 cm-1 for FT-IR and 1422 cm-1 for FT-

Raman. For the titled compound, the corresponding theoretical FT-IR and FT-Raman stretching 

vibrations were observed at 1379-1355 cm-1 and 1403-1381 cm-1 using B3LYP and M06-2X 

level of theories respectively which agree well with the experimental FT-IR and FT-Raman 

values. 

 

C-H and C=N vibrations 

 In most of the aromatic compounds, C-H stretching vibrations[42] are usually observed at 

3100-2850 cm-1 and in the present investigation, they were observed at 3165-3005 cm-1 in FT-IR 

and FT-Raman spectra by B3LYP/6-31+G(d,p) and M06-2X/6-31+G(d,p) methods. 

Experimentally, the bands observed at 3188 and 3041 cm-1 were attributed to C-H stretching 

modes. According to Silverstein et al[43], the C=N ring stretching bands are observed in the 

region of 1600-1430 cm-1. The experimentally calculated C=N stretching vibrations were 

observed at 1699 and 1568 cm-1 for FT-IR and FT-Raman values respectively and theoretical 

values of FT-IR and FT-Raman spectra were calculated around 1602, 1601 and 1590 cm-1 at 

B3LYP level of theory which has been associated to C=N stretching vibrations of compound 3. 

While, by using M06-2X functional the values were calculated at 1633, 1641 and 1656 cm-1. 

 

C-Cl and C-O vibrations 

 In quinoline ring, C-Cl stretching is observed as a very intense and narrow peak in the 

range of 850-550 cm-1 [44]. Arjunan et al[45] reported C-Cl stretching vibration at 734 cm-1 for 
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IR and 735 cm-1 for Raman. In our current investigation, C-Cl stretching vibrations of the 

compound 3 have been observed at 702 cm-1 and 768 cm-1 for FT-IR and FT-Raman respectively 

and the corresponding theoretical values have been calculated at 746 and 773 cm-1 for FT-IR and 

FT-Raman at B3LYP and M06-2X level of theories respectively. According to the literature[46], 

the stretching mode of C-O is observed around 1350-1000 cm-1. The bands observed around at 

1317, 1316, 1332 and 1330 cm-1 in FT- IR and FT-Raman have been assigned to C-O stretching 

vibrations of the compound which have been calculated at the B3LYP and M06-2X level of 

theories. The experimental values of C-O stretching vibrations are observed at 1378 cm-1 and 

1385 cm-1 in FT-IR and FT-Raman values respectively.  

 

CH2 vibrations 

 Basically there are six fundamentals stretching modes linked with each CH2 group. They 

are CH2 asym-asymmetric stretching, CH2 sym- symmetric stretching, CH2 scis-scissoring and 

CH2 rock-rocking modes and are expected to be polarized. The CH2 wag-wagging and CH2 twist-

twisting modes belong to depolarized for out of plane bending vibrations[47]. In the present 

investigation, the experimental CH2 symmetric and asymmetric FT-IR vibrational frequencies 

were found at 3041 cm-1 respectively and the corresponding CH2 symmetric and asymmetric 

stretching frequencies of FT-Raman are noted at 3064 cm-1. The theoretical values of the FT-IR 

and FT-Raman associated to symmetric CH2 stretching vibrational frequencies of title compound 

have been calculated at 2851, 2869 and 2969, 2986 cm-1 at B3LYP/6-31+G(d,p) and M06-2X/6-

31+G(d,p) level of theories. While the asymmetric CH2 stretching vibrational frequencies were 

noticed at 2898 and 2903 cm-1 for B3LYP and 3018 and 3031 cm-1 for M06-2X level of theories. 

Both theoretical and experimental CH2 symmetric as well as asymmetric stretching vibrational 

frequencies are in good agreement with each other. Similarly all the possible modes of vibrations 

are tabulated in Table 2 by using B3LYP and  M06-2X level of theories with 6-31+(d,p) as basis 

set. In addition, the CH2 bending and stretching modes follow the order of decreasing wave 

number and the order is CH2 scissoring> CH2 >wagging >CH2 twisting > CH2 rocking[48, 49]. 

All the CH2 vibrations were computed at the B3LYP and M06-2X level of theories which agreed 

well with the experimental values. 
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NMR analysis 

 1H and 13C NMR spectra of the title compound were recorded by using DMSO-d6 solvent 

and TMS as the internal standard and the chemical shift values were (δ) calculated by B3LYP/6-

31+G(d,p) and M06-2X/6-31+G(d,p) (Fig. S2). The experimental 1H and 13C chemical shift 

values are compared with the theoretically calculated 1H and 13C chemical shift values and are 

presented in Table 3.  The theoretically calculated chemical shift values of aliphatic protons 

were observed in the shielded region of 4.83-5.11 ppm and experimentally a sharp singlet is 

observed at 5.48 ppm which is attributed to two CH2 protons. The experimental chemical shifts 

were obtained in the deshielded region of 7.29-8.84 ppm which is attributed to aromatic ring 

protons while the theoretical values are found in the region of 6.57-9.01 and 7.55-10.36 ppm by 

using B3LYP and M06-2X level of theories respectively. 

 In 13C NMR, the experimental chemical shift values of the aromatic carbons have 

appeared in the region of 120.36-149.64 ppm. In the present investigation, theoretically 

calculated chemical shift values of 13C aromatic carbons were found to be in the range of 105.88 

to 143.37 ppm. In addition to that, aliphatic carbons C21 and C41 (carbon atoms are numbered 

using fig. 1b) give a signal in the upfield region at 67.37 and 70.33 ppm respectively with the 

corresponding theoretical values of 57.89 and 61.82 ppm (B3LYP) and 53.82 and 59.44 ppm 

(M06-2X). As the compound 3 contains a Cl group which is an electronegative functional group, 

it polarizes the electron distribution. In 13C NMR, the experimental chemical shift value of C47 

bonded to Cl group is too high as observed in the downfield region of 154.07 ppm and the 

corresponding theoretical 13C NMR chemical shift of Cl group is noted at 141.28 ppm. From the 

Table 3, the difference between experimental and theoretical values is in the range of 0.004 to 

2.31 ppm and 0.3 to 32 ppm for the 1H and 13C NMR respectively. Theoretical data of 1H and 13C 

chemical shift values are in good agreement with the experimental data since, the error between 

the theoretical and experimental values can up to 30 ppm[50]. The experimental and theoretical 

NMR chemical shift values are portrayed by using Root Mean Square Deviation by Linear 

regression plot given in Figure S3. From the figure it is found that the correlation coefficient 

obtained for the 1H and 13C NMR at B3LYP and M06-2X level of theories are found as 0.9538, 
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0.9661, 0.8751 and 0.8750 respectively which represent the good correlation between the 

experimental and theoretical values. 

 

Molecular electrostatic potential 

 The electrostatic potential map (MEP) is used to visualize the charge distributions in 

molecules, the size and shape of molecules along with the charge-related properties of 

molecules[51, 52]. The molecular electrostatic potential V(r) is defined as  

 

where ZA is the charge of nucleus A, located at RA, ρ(r') is the electronic density function of the 

compound. A molecular electrostatic potential map (MEP) was used to visualize the charge 

distributions over compound 3 and identify the reactive sites of the compound.  

 Using the density functional B3LYP with 6-31+G(d,p) basis set, the MEP was plotted 

over the optimized geometry of molecule 3. In MEP, the red color refers to negative electrostatic 

potential regions (electron-rich) which are related to electrophilic attack while blue color refers 

to positive electrostatic potential regions (electron-poor) which are related to nucleophilic attack. 

The green color refers to zero electrostatic potential. From Fig. 4, it is observed that compound 3 

has several possible sites for electrophilic attack. These negative sites in compound 3 were found 

around the N1, N2 and N3 atoms as -0.102, -0.190 and -0.178 a.u respectively in the quinoline 

ring and negative potential is also found around O1 and O2 atoms of ether linkage as -0.345 and 

-0.300 a.u. From the obtained values, it is clear that a greater electrophilic region is found around 

the oxygen atoms O1 and O2 of the ether linkage. This might be due to the presence of 

delocalization of charge around the oxygen atoms. The positive potential regions are highly 

localized over the hydrogen atoms of the quinoline rings which are susceptible to nucleophilic 

attack and the corresponding  positive charges are in the range of 0.176- 0.248 a.u. In general, 

halogen atoms are electronegative which favors electrophilic attack. However, in the present 

work, green color in the MEP indicates the radical attacking site due to the Cl atom and the 

corresponding charge value is 0.088 a.u.  
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Frontier molecular orbitals (HOMO and LUMO) 

 The HOMO energy represents the electron donating ability while the LUMO represents 

the electron-accepting ability of the molecule. The Eigen values of HOMO and LUMO designate 

the chemical stability and reactivity of a molecule[53]. The frontier molecular orbitals play an 

important role in describing the HOMO, LUMO energies and were calculated by using 

B3LYP/6-31+G (d,p) and M06-2X/6-31+G (d,p).  

 The frontier molecular orbital[54] is very useful in determining the electrical transport 

properties of the molecules. HOMO and LUMO values are used in determining the chemical 

reactivity, kinetic stability, chemical hardness and softness of the compound, properties that are 

used to describe the bioactivity of a molecule via intermolecular charge transfer[55]. A molecule 

with a large HOMO-LUMO energy gap is more stable, less polarizable and with less chemical 

reactivity is said to be hard species while a molecule with a small HOMO-LUMO gap is said to 

be soft species[56]. 

 According to Koopmans theorem[57], from the HOMO and LUMO energy values, 

ionization potential (I), chemical potential(µ), electron affinity (A), chemical hardness (η) and 

electrophilicity (ω) were calculated and the results are shown in Table 4. The calculated HOMO 

and LUMO values of the compound 3 are -6.0836 and -1.7957 eV (B3LYP) and -7.3574 and 

0.9377 eV (M06-2X). The HOMO-LUMO energy gap of the compound 3 is 4.28800 eV and       

-6.4197 eV at B3LYP and M06-2X level of theories. The energy distributions and levels of 

HOMO-3, HOMO-2, HOMO-1, HOMO, LUMO+1, LUMO+2, LUMO+3 orbitals computed by 

using B3LYP/6-31+G(d,p) level of theory are shown in Figs. 5 and S4. The HOMO of the 

compound 3 is localized over the 6-substituted quinoline and LUMO is distributed over the Cl-

substituted and 3-substituted quinoline. 

Electrophilicity (ω) is used to determine the energy lowering due to electron flow 

between an acceptor and donor[58]. Recently, Bondarchuk et al [59, 60] reported the modern 

developments of electrophilicity concepts. To calculate the global (ω) and local electrophilicity 

(ωk
+) indexes, vertical and adiabatic approaches have been used and the experimental data 
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supports the adiabatic approach. This index is also useful in finding out the toxicity value in 

terms of site selectivity and reactivity[61].  In our present work, the toxicity values (log 1/IC50) 

can be determined by the regression equation given below 

                               log[1/IC50]= 3.3944*ω-5.5788. 

The above equation was tested for aliphatic amines, polychlorinated dibenzofurans and 

polychlorinated biphenyls against ciliate fresh water protozoa Tetrahymena pyriformis [62] 

where electrophilicity index (ω) is taken as an independent variable. Cell viability graphs of 

compound 3 using MTT assay are shown in Fig. S5. The IC50 value by MTT assay was 

calculated as 21.02 µM and 27.73 µM against HeLa and MCF-7 cancer cell lines. The toxicity 

values (log 1/IC50) were observed as 19.61 µM and 10.48 µM at B3LYP and M06-2X level of 

theories respectively which are comparable with the experimental values. 

 

Electronic spectra 

 The electronic absorption spectrum of the title compound 3 was recorded in the range 

200-600 nm using the solvent as ethanol and the representative spectrum is given in Fig. 6. From 

the figure, it can be observed that the electronic absorption spectrum showed one maximum at 

233 nm are caused by the n-π* transitions and two strong shoulder bands at 315 and 364 nm 

might be due to π-π*. This spectral absorption is similar to those found in related quinoline 

compounds [63, 64]. 

 The TD-DFT/ B3LYP/6-31+G(d,p) calculations were done for the optimized structure of 

the compound 3 in ethanol solvent using PCM model. The stimulated UV-Vis spectra are shown 

in Fig. 6. From the calculations, it is observed that by using the B3LYP level of theory, the 

computed absorption wavelengths are obtained at 286.08, 291.31, 317.14, 319.96, 331.75 nm. 

For M06-2X, the theoretical absorption values were found to be 241.62, 258.81, 268.60, 281.42, 

349.77 nm. The calculated values along with their oscillator strength (f) and the experimental 

values are listed in Table 5. Thus theoretical absorption values are in good agreement with the 

experimental value. 
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Conclusion 

 The present work reports a novel tri-quinoline compound which has been synthesized to 

find out the anticancer activity. In order to resolve the unambiguity of the structure both by 

theoretical and experimental studies, complete spectroscopic studies FT-IR, FT-Raman, 1H 

NMR, 13C NMR, UV- Vis, HOMO and LUMO were undertaken and found to be in agreement 

with the experimental values of the synthesized compound. By using the PCM model, the 

absorption maximum (λmax) of the compound was found by TD-DFT calculations and compared 

with the experimental spectra. Most of the experimental data were found to be in good agreement 

with the theoretical results. It has been noticed that the experimental data were obtained in solid 

phase while all the theoretical calculations were done in gaseous phase except the electronic 

spectrum which was calculated in solvent phase. The small difference in the results might be due 

to the phase used. The study also revealed some interesting facts in terms of studying the 

possible electrophilic and nucleophilic sites of the compound using molecular electrostatic 

potential map and showed that the positive potential regions are around the hydrogen atoms 

while the negative potential regions are on electronegative atoms. The eventual charge transfer 

interactions were studied using frontier orbital analysis. IC50 of the compound was found to be 

21.02 µM and 27.73 µM against HeLa and MCF-7 cancer cell lines using MTT assay and is in 

agreement with the theoretical data. 
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Appendix A. Supplementary material 

CCDC 1005001 contains the supplementary crystallographic data for this paper. These data can 

be obtained free of charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. 
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