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ABSTRACT 

Background Body mass index (BMI) rebound refers to the beginning of the second rise in 

BMI during childhood. Accurate estimation of an individual’s timing of BMI rebound is 

important since it is associated with health outcomes in later life.  

Methods We estimated BMI trajectories for 6,545 children from the Avon Longitudinal 

Study of Parents and Children (ALSPAC). We used a novel Bayesian two-phase piecewise 

linear mixed model where the ‘change point’ was an individual-level random effect 

corresponding to the individual-specific timing of BMI rebound. The model’s individual-

level random effects (intercept, pre-change slope, post-change slope, change point) were 

multivariate normally distributed with an unstructured variance-covariance matrix, thereby 

allowing for correlation between all random effects. 

Results Average age at BMI rebound (mean change point) was 6.5 (95% credible interval: 

6.4 to 6.6) years. The standard deviation of the individual-specific timing of BMI rebound 

(random effects) was 2.0 years for females and 1.6 years for males. Correlation between the 

pre-change slope and change point was 0.57, suggesting faster rates of decline in BMI prior 

to rebound were associated with rebound occurring at an earlier age. Simulations showed 

estimates from the model were less biased than those from models assuming a common 

change point for all individuals or a non-linear trajectory based on fractional polynomials. 

Conclusions Our model flexibly estimated the individual-specific timing of BMI rebound, 

whilst retaining parameters that are meaningful and easy to interpret. It is applicable in any 

situation where one wishes to estimate a change-point process which varies between 

individuals.  

Keywords: ALSPAC, splines; piecewise linear; change point; Bayesian; Stan.  
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INTRODUCTION 

During early life humans typically experience two periods of increasing body mass index 

(BMI) and one period of decline. The first period of increase is generally quite rapid and 

occurs during the first year of life. From around one year of age BMI gradually declines for 

several years. ‘BMI rebound’ refers to the time at which the child’s BMI stops decreasing and 

instead starts increasing for a second time, an increase that continues into adulthood.1 For 

most children this will occur around 6 years of age, however there is relatively large 

heterogeneity between individuals. It is important to be able to accurately identify the 

individual-specific timing of BMI rebound since it is associated with health outcomes in later 

life, including risk factors for chronic disease. For example early BMI or adiposity rebound 

has been shown to be associated with an increased risk of subsequent obesity,1-4 Type 2 

diabetes,5 and potentially also cardiovascular disease.6 

A statistical framework for estimation of the timing of BMI rebound is provided by piecewise 

linear mixed modelling. The standard two-phase piecewise linear mixed model is limited by 

the fact that the ‘change point’, defined as the time at which a change in slope occurs, is 

common across all individuals. A number of authors have therefore extended the model to 

treat the change point as a random effect parameter, thereby allowing individuals to have 

their own change point.7-12 The use of a random change point has the advantage of increasing 

model flexibility and is therefore likely to improve model fit without major alteration of 

parameter interpretation. Such models provide useful insights when the person-specific 

timing of the change point is of intrinsic interest, for example estimating the onset of 

cognitive decline in the elderly7,12,13 and disease progression in HIV patients.9,10 

Piecewise linear mixed models with a random change point have predominantly been 

estimated using a Bayesian approach,7-10,12 although frequentist estimation techniques have 
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also been proposed.11 Extensions to these models have been considered, for example, the use 

of smooth changes in slope around the random change point,13 multiple random change 

points,14 mixtures of linear and piecewise linear models,15 or the incorporation of a random 

change point model in the context of joint modelling of longitudinal and time-to-event data.16-

18 However, a limitation of the random change point model when used in epidemiological 

research has been a preference, presumably on pragmatic computational grounds rather than 

any inherent substantive rationale, to not allow all individual-level random effects to be 

correlated; for example, assuming the random change point is independent of other 

individual-specific parameters in the model such as the rate of growth.  

In this paper we present a two-phase piecewise linear mixed model with a random change 

point, which we use to estimate longitudinal BMI trajectories for children aged between 1 

and 15 years. The random change point in this model corresponds to the individual-specific 

timing of BMI rebound in childhood. We extend previous approaches by estimating an 

unstructured correlation matrix across the model’s four individual-level random effects 

(intercept, pre-change slope, post-change slope, and change point), thereby gaining additional 

insights. We estimate our model under a Bayesian framework using the statistical software 

Stan.19 In a simulation study we compare our random change point model to an alternative 

model based on fractional polynomials, as well as simpler change point models that do not 

allow for between-individual variability in the timing of BMI rebound. 

METHODS 

The Avon Longitudinal Study of Parents and Children 

The Avon Longitudinal Study of Parents and Children (ALSPAC) is a prospective birth 

cohort which enrolled expectant mothers in south-west England who were due to give birth 
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between 1/4/1991 and 31/12/1992. A detailed description of the ALSPAC cohort, including 

the recruitment process, has been described elsewhere 20 and the ALSPAC website contains 

details of all the available data through a fully searchable data dictionary 

(http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/). Ethical approval for 

this study was obtained from the ALSPAC Ethics and Law Committee and the Local 

Research Ethics Committees. 

Model formulation 

Let 𝑦𝑖𝑗 = 𝑦𝑖(𝑡𝑖𝑗) denote the observed BMI measurements taken for the 𝑖th child (𝑖 = 1, … , 𝑁) 

at some time points 𝑡𝑖𝑗 (𝑗 = 1,… , 𝑛𝑖) measured in years. We define BMI as weight (in 

kilograms) divided by the square of height (in metres2). We model the observed BMI 

measurements using a piecewise linear mixed effects model of the form 

 

𝑦𝑖𝑗 ~ 𝑁(𝜇𝑖𝑗 , 𝜎𝑦
2) 

𝜇𝑖𝑗 = 𝛽1𝑖 + 𝛽2𝑖(𝑡𝑖𝑗 − 𝜔𝑖)𝐼(𝑡𝑖𝑗 ≤ 𝜔𝑖) + 𝛽3𝑖(𝑡𝑖𝑗 − 𝜔𝑖)𝐼(𝑡𝑖𝑗 > 𝜔𝑖) 

(1) 

where 𝐼(. ) is the indicator function, 𝜔𝑖 is the individual-specific change point, 𝛽1𝑖 is the 

individual-specific intercept denoting the expected value of BMI at the change point, 𝛽2𝑖 is 

the individual-specific linear slope before the change point (“pre-change slope”) and 𝛽3𝑖 is 

the individual-specific linear slope after the change point (“post-change slope”). The 

individual-specific random parameters 𝛽1𝑖, 𝛽2𝑖 𝛽3𝑖 and 𝜔𝑖 can be further specified as 

 

[
 
 
 
 
 
𝛽1𝑖

𝛽2𝑖

𝛽3𝑖

𝜔𝑖 ]
 
 
 
 
 

=  

[
 
 
 
 
 
𝛽10

𝛽20

𝛽30

𝜔0 ]
 
 
 
 
 

+

[
 
 
 
 
𝑢1𝑖

𝑢2𝑖

𝑢3𝑖

𝑢4𝑖]
 
 
 
 

 (2) 

such that 𝛽10, 𝛽20 and 𝛽30 represent the fixed (population average) intercept, pre-change 

slope and post-change slope parameters, 𝜔0 represents the fixed (population average) change 

http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/
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point and 𝑢1𝑖, 𝑢2𝑖, 𝑢3𝑖 and 𝑢4𝑖 are the individual-level random effects (or deviations from the 

population average) associated with those parameters. We assume the vector of individual-

level random effects 𝒖𝒊 = (𝑢1𝑖, 𝑢2𝑖, 𝑢3𝑖, 𝑢4𝑖) is multivariate normally distributed with mean 

zero and an unstructured variance-covariance matrix 

 𝒖𝒊 ~ 𝑀𝑉𝑁

(

  
 

𝟎 , 𝚺 =

[
 
 
 
 
 

𝜎𝑢1
2 𝜎𝑢1𝑢2

𝜎𝑢1𝑢3
𝜎𝑢1𝑢4

𝜎𝑢1𝑢2
𝜎𝑢2

2 𝜎𝑢2𝑢3
𝜎𝑢2𝑢4

𝜎𝑢1𝑢3
𝜎𝑢2𝑢3

𝜎𝑢3
2 𝜎𝑢3𝑢4

𝜎𝑢1𝑢4
𝜎𝑢2𝑢4

𝜎𝑢3𝑢4
𝜎𝑢4

2
]
 
 
 
 
 

)

  
 

 (3) 

In other words, our model allows for correlation between the random intercept, pre-change 

slope, post-change slope and change point parameters. We denote the corresponding 

correlation matrix for the random effects  

𝐑 =

[
 
 
 
 
 

1 𝜌𝑢1𝑢2
𝜌𝑢1𝑢3

𝜌𝑢1𝑢4

𝜌𝑢1𝑢2
1 𝜌𝑢2𝑢3

𝜌𝑢2𝑢4

𝜌𝑢1𝑢3
𝜌𝑢2𝑢3

1 𝜌𝑢3𝑢4

𝜌𝑢1𝑢4
𝜌𝑢2𝑢4

𝜌𝑢3𝑢4
1 ]

 
 
 
 
 

 

Model estimation 

We adopt a Bayesian approach to estimating our model that we implement in the software 

Stan.19 Following the advice of Gelman we use weakly informative prior distributions for the 

regression coefficients.21 We use the separation strategy to decompose the random effects 

variance-covariance matrix 𝚺 into a correlation matrix 𝐑 and separate standard deviation 

terms for each of the random effects (𝜎𝑢𝑘
; 𝑘 = 1,2,3,4).22 This allows us to specify prior 

distributions separately for each of these components, in a much more intuitive way. We use 

the “LKJ” correlation matrix distribution, implemented in Stan, as a prior distribution for the 

random effects correlation matrix.23,24 We used R Version 3.1.3 for pre-processing of data as 

well as post-processing and analysis of the MCMC samples.25 We interface with Stan from R 
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using the RStan package.19 The supplementary material contains further details of the model 

implementation (for example prior distribution and computation) as well as the code for 

fitting the random change point model. 

We graphically present the estimated BMI trajectories in two ways. First, we plot the 95% 

credible interval (i.e., the 2.5th and 97.5th percentiles) of the posterior predictive distribution 

given by 

 

𝑝(�̃�𝑖(𝑡)|𝒚) = ∬𝑝(�̃�𝑖(𝑡), 𝒖𝒊, 𝜽|𝒚) 𝑑𝒖𝒊 𝑑𝜽

= ∬𝑝(�̃�𝑖(𝑡)|𝒖𝒊, 𝜽) 𝑝(𝒖𝒊|𝜽, 𝒚𝒊) 𝑝(𝜽|𝒚) 𝑑𝒖𝒊 𝑑𝜽 

(4) 

where �̃�𝑖(𝑡) is a newly generated BMI measurement under the model (i.e., an in-sample 

prediction) for the 𝑖th child at time 𝑡, 𝒚𝒊 = (𝑦𝑖1, … , 𝑦𝑖𝑛𝑖
) denotes the vector of observed BMI 

measurements for the 𝑖th child, 𝒚 = (𝒚𝟏, … , 𝒚𝑵) denotes the vector of observed 

measurements for all children, 𝒖𝒊 = (𝑢1𝑖, 𝑢2𝑖, 𝑢3𝑖, 𝑢4𝑖) is the vector of random effects for the 

𝑖th child and 𝜽 = (𝛽10, 𝛽20, 𝛽30, 𝜔0, 𝜎𝑦
2, 𝚺) denotes the vector of all remaining unknown 

model parameters. Since the new data is assumed to be independent of the observed data 

given the model parameters, the 𝑝(�̃�𝑖(𝑡)|𝒖𝒊, 𝜽) term in equation (4) does not need to 

condition on 𝒚. Further, by integrating over the random effects 𝒖𝒊 and the hyperparameters 𝜽, 

the posterior predictive distribution incorporates uncertainty associated with each of the 

parameters estimated under the model. 

We also plot the expected BMI trajectory calculated using the posterior mean for each of the 

model parameters, defined as E[𝑦𝑖(𝑡)|𝜽
∗] for the 𝑖th child at time 𝑡 where 𝜽∗ denotes the 

complete vector of posterior means for all parameters in the model, including random effects. 

This trajectory will exhibit the abrupt change in slope at the change point, which is 

characteristic of the piecewise linear mixed model, since the estimates are calculated using a 
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unique realisation of the model parameters. Conversely, predictions from the posterior 

predictive distribution are based on the joint posterior distribution for all model parameters 

(including the random change point) and therefore may exhibit apparent non-linearity around 

the change point. 

Comparison with alternative models 

In a simulation study we compared the performance of our random change point model to 

simpler alternative change point models which have been commonly used. This includes a 

model which assumes a fixed (common) change point for all individuals or one which 

assumes the random change point is independent from the other individual-level random 

effects. When generating the data for our simulation study we assumed that there is true 

underlying heterogeneity between individuals in terms of when BMI rebound occurs. The 

simulation study, therefore, allows us to quantify the bias that may be induced by not 

appropriately allowing for between-subject variability in the timing of the change point. In 

addition, we compared our random change point model to a complex alternative that allows 

for flexible BMI trajectories through the use of fractional polynomials. The models were 

compared using data generated according to two different processes; one based on our 

random change point model, the other based on the fractional polynomial model. 

RESULTS 

A total of 14,701 children in the ALSPAC cohort were alive at 1 year of age. In our analysis 

we include those children who had at least eight BMI measurements taken between ages 1 

and 15 years and analyse data for females and males separately. Therefore our analysis 

includes 3,248 female and 3,297 male children, with a total of 38,686 female and 39,367 

male BMI measurements. The mean (maximum) number of BMI measurements per child was 
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11.9 (35) for females and 11.9 (34) for males. Variation in the observed BMI measurements 

generally increased with age and the lowest overall mean BMI was observed between ages 5 

and 7 years (Table 1). Figure 1 shows the observed BMI trajectories for 10 female children in 

the ALSPAC cohort. 

We used the random change point model to estimate individual-specific changes in BMI 

between ages 1 and 15 years. Table 2 shows the estimated parameters from the fitted model, 

for females and males separately (95% credible intervals are shown in the table, however, 

these are omitted from the following text to aid readability). The estimated mean BMI when 

rebound occurs is 15.28 and 15.25 kg/m2 for females and males respectively. The estimated 

mean rate of change in BMI prior to, and following, rebound is -0.36 and 0.75 kg/m2 per year 

for females, whilst the corresponding estimates for males are -0.43 and 0.63 kg/m2 per year. 

The estimated mean change point, which is the age at which BMI rebound is estimated to 

occur for the average individual, is 6.5 years for both females and males. There appears to be 

relatively large variability between individuals in terms of the age at which BMI rebound 

occurs, with the standard deviation for the random change point estimated at 2.0 years for 

females and 1.6 years for males. There was a moderately strong positive correlation (0.57 for 

both females and males) between the random effects for the pre-change slope and the change 

point itself, suggesting children with a faster rate of decline in BMI prior to rebound are 

likely to experience rebound occurring at an earlier age. 

Figure 1 shows as dashed lines the estimated BMI trajectories for 10 female children 

calculated at the posterior mean for each of the model parameters, whilst the shaded area 

represents the 95% credible interval of the posterior predictive distribution. The model fits 

the observed data well, with the majority of data points fitting within the 95% credible limits 

for the posterior predictive distribution. The between-child variation in the random change 

points is evident from the plots. In supplementary material we have provided several plots of 
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the standardised residuals from the fitted model. The residuals appeared to be normally 

distributed with no obvious patterns over time and constant variance, suggesting an adequate 

model fit across the entire age range. 

In the supplementary material we describe in detail the results from our simulation study. In 

brief, we found that a fractional polynomial model, when fitted to data generated under a 

random change point process, severely underestimated the mean timing of BMI rebound (𝜔0 

was estimated as the turning point of the fractional polynomial model and resulted in relative 

bias of approximately -20%). However, the estimate of the mean timing of BMI rebound 

obtained from the random change point model was much less biased, even when the true data 

generating process was based on fractional polynomials (relative bias for 𝜔0 of 

approximately -2%). 

When comparing several alternative change point models, we found that a model with a fixed 

(common) change point for all individuals resulted in the largest increases in bias, and this 

was relevant for both fixed and random effect parameters. Models with a random change 

point were much less biased, but we did find that as the true correlation between the random 

change point and the other individual-level random effects increased, there was increasing 

bias in the estimated parameters from a model which wrongly assumed that the change point 

was independent. While the covariance and correlation parameters for the random effects 

were most severely impacted, the fixed effect regression coefficients were also affected.  

DISCUSSION 

In this paper we have used a piecewise linear mixed model with a random change point to 

estimate BMI trajectories across childhood for 6,545 children from the ALSPAC study. The 

timing of BMI rebound is a biological characteristic known to vary between individuals. 

Through the use of a random change point, our model provided the flexibility required to 
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estimate the individual-specific timing of BMI rebound for each child, whilst also providing 

an estimate of the mean timing of BMI rebound and the variability around that mean. The 

estimated parameters in our model, for example the individual-specific (and average) 

intercepts, slopes and change points, all remain easily interpretable. Alternative models which 

allow for flexible non-linear trajectories (through the use of, say, polynomials, non-linear 

splines or other non-linear functions such as the SuperImposition by Translation And 

Rotation (SITAR) model26) may fit observed data better but the interpretation of parameter 

estimates is often problematic and the generalisability of increasingly tailored models may be 

questioned. 

Previous studies aimed at identifying the timing of BMI rebound have taken a variety of 

approaches. Relatively simple approaches such as the “visual inspection method” have been 

used, whereby the minimum of the BMI curve is assessed visually using the observed data 

but without any fitted model.27,28 When using the visual inspection method the timing of the 

rebound is limited to those ages at which a BMI value is observed, and there will be varying 

amounts of measurement error depending on the number and timing of ages of measurement. 

Modelling approaches, on the other hand, allow the timing of the rebound to be estimated as 

having occurred between observation time points. Nonetheless, it has been suggested that the 

visual inspection method may more appropriately capture the physiological basis for BMI or 

adiposity rebound.29 This is because individuals who have a prolonged period of minimum 

BMI (a “plateau”) will have the timing of the rebound estimated at the end of the plateau 

under the usual criteria for the visual inspection method but estimated closer to the centre of 

the plateau (in other words at an earlier age) under most modelling approaches.  

The most common modelling approach for estimating BMI rebound has been the use of 

polynomial functions for modelling changes in BMI over time.4,29-31 Wen et al. used linear 

mixed models with fractional polynomials to model BMI trajectories across childhood.30 
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They estimated BMI rebound using the individual-level turning point for the fitted 

polynomial function. One difficulty with the use of a fitted polynomial function, however, is 

that it does not directly provide easily interpretable slope estimates corresponding to the rates 

of change in BMI at various stages of childhood (although it would be possible to explicitly 

calculate the slope estimates for each individual at a specific set of discrete ages and 

summarise these values). An additional advantage of our modelling approach is that it allows 

us to succinctly quantify variation in the timing of BMI rebound. For example, under the 

assumption of normally distributed random effects, we estimated the standard deviation of 

the timing of BMI rebound as 2.0 years for females and 1.6 years for males. Further, in our 

simulation study (supplementary material) we found that an alternative analysis model based 

on fractional polynomials only provided an unbiased estimate of the mean timing of BMI 

rebound when the true data generating process was also based on fractional polynomials. 

Whereas our random change point model provided relatively unbiased estimates of the mean 

timing of BMI rebound across two different data generating processes; one based on the 

random change point model, and the other based on fractional polynomials. 

The model used in this study was estimated using an unstructured variance-covariance matrix 

for the individual-level random effects. A simplistic alternative to estimating an unstructured 

variance-covariance matrix is to assume independence between some or all of the individual-

level random effects, by setting their respective pairwise correlations to zero. For example, 

Muniz Terrera et al.12 and Kiuchi et al.9 allow for a 3x3 unstructured covariance matrix for 

the random intercept and two random slopes but estimated the random change point 

independently. Muggeo et al.11 assumed a block diagonal covariance structure for the random 

effects whereby they only allowed for two non-zero correlations. Other authors have used 

covariance structures with even greater restrictions.7,8,13 Although restricting some (or all) of 

the random effect correlation parameters to zero simplifies the model estimation, it does have 
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the potential to bias results (see the results from our simulation study in the supplementary 

material). In addition, the estimation of all pairwise correlations between the individual-level 

random effects has the potential to provide benefits for interpretation, since in some settings 

these correlation terms may be of direct interest.  

Importantly, the most flexible random change point model we considered in the simulation 

study, which resulted in significantly less bias, required only four additional parameters to be 

estimated when compared with the model which assumed a common change point for all 

individuals. Nonetheless, estimating an unstructured covariance matrix can be 

computationally intensive when the random effects distribution is of a relatively high 

dimension. For example, in the case of a two-phase piecewise linear mixed model with a 

random intercept, two random slopes (pre-change and post-change) and a random change 

point the resulting unstructured variance-covariance matrix requires estimation of 10 

parameters (four variances and six covariances). Furthermore the variance of the residual 

error also needs to be estimated. In many epidemiological studies the requirements of 

estimating all of these parameters would be challenging, for example, due to a limited 

number of repeated measurements per individual. Convergence difficulties may also arise if 

the variances which need to be estimated are close to zero. In a Bayesian setting, the choice 

of prior distribution for the variance-covariance matrix can also pose difficulties. In this study 

we used the Bayesian software Stan for fitting our model and discussed some of the 

computational benefits this provided. We are not aware of any paper which has discussed 

fitting this type of model using Stan or with the prior specification we used for the random 

effects distribution. In supplementary material we have provided the Stan code, as well as 

some simulated data, so that researchers can try fitting the model themselves (all software is 

freely available). 
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A further benefit of directly estimating parameters of key interest, such as the individual-

specific change point, is that they can be used in turn to investigate their association with 

other exposures or outcomes. For example, one can investigate the association between the 

change point and later health outcomes, either through a joint modelling framework or a 

simpler two-stage process.17 Such extensions may be difficult when using other non-linear 

modelling approaches such as polynomials or the SITAR model where parameters of key 

interest, such as the individual-specific timing of a change in growth, may not be directly 

estimated and may need to be derived. Importantly, if an estimate of the change point is to be 

used as the exposure in a subsequent model for later life outcomes, then the approach needs 

to incorporate the uncertainty in the estimated exposure. Ignoring this uncertainty may lead to 

overly precise and/or biased estimates of the effect of exposure on the later life outcome. 

Another related issue is that any measurement error in estimating age at BMI rebound as an 

exposure will bias estimates of associations with outcomes towards the null. Therefore, the 

more accurately BMI rebound can be estimated, the less biased the association with the 

outcome will be. The most appropriate approach is likely to be based on the use of a joint 

likelihood function for both the BMI trajectory model and the model for the later life 

outcome, as has been the main approach used for joint modelling of longitudinal and time-to-

event data.32,33 However, some authors have found that in certain situations a simpler (and 

less computationally intensive) two-stage approach may lead to very little bias, or in some 

cases no bias, even though it ignores the uncertainty in the estimated exposures.34 

It is worth noting, however, that the ability to estimate a random change point model is likely 

to depend on the underlying statistical power for detecting changes in slope at the change 

point. In our application we had no issues with model identifiability. However, in other 

settings where the change in slope is subtle or there is large between-individual variability in 

slopes before or after the change point it may be difficult to identify the timing of the change 
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point itself which in turn could lead to model identifiability issues or problems achieving 

convergence. Such issues could be considered as part of future work.  
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Figure 1. Observed BMI data and estimated BMI trajectories (under the random change point 

model) for 10 female children in the ALSPAC dataset. The dashed line represents the 

estimated BMI trajectory based on the posterior mean for each of the parameters in the 

model, whilst the shaded area represents the 95% credible interval associated with the 

posterior predictive distribution for that child.  
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Table 1. Mean, standard deviation and number of observed BMI measurements for individuals 

in the ALSPAC cohort, stratified by age period of observation and gender. 

Age period of observation  Mean (SD) [N] of observed BMI measurements 

 Females Males  

≥1 and ≤3 years 16.8 (1.6) [6867] 17.1 (1.5) [7394] 

>3 and ≤5 years 16.2 (1.5) [5375] 16.3 (1.4) [5741] 

>5 and ≤7 years 15.8 (2.3) [3774] 15.8 (1.9) [4034] 

>7 and ≤9 years 16.7 (2.4) [5612] 16.4 (2.1) [5584] 

>9 and ≤11 years 18.0 (3.0) [6498] 17.6 (2.8) [6386] 

>11 and ≤13 years 19.5 (3.5) [5505] 19.1 (3.4) [5291] 

>13 and ≤15 years 20.3 (3.5) [5055] 19.7 (3.4) [4937] 

Abbreviations. BMI: body mass index. ALSPAC: Avon Longitudinal Study of Parents and 

Children. SD: standard deviation. 
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Table 2. Parameter estimates from the piecewise linear mixed model with a random change 

point when used to model changes in BMI between ages 1 and 15 years for male and female 

children in the ALSPAC cohort. Estimates provided are posterior means and associated 95% 

credible intervals in parentheses. 

Parameter  Females Males 

Fixed effects    

 β10 15.28 (15.23 to 15.34) 15.25 (15.20 to 15.31) 

 β20 -0.36 (-0.38 to -0.34) -0.43 (-0.45 to -0.41) 

 β30 0.75 (0.74 to 0.77) 0.63 (0.62 to 0.65) 

 ω0 6.50 (6.38 to 6.61) 6.49 (6.39 to 6.59) 

SD residual error    

 σy 1.02 (1.01 to 1.03) 1.06 (1.05 to 1.07) 

SD random effects   

 σu1
 1.29 (1.21 to 1.36) 1.28 (1.23 to 1.33) 

 σu2
 0.23 (0.21 to 0.25) 0.24 (0.23 to 0.26) 

 σu3
 0.36 (0.34 to 0.37) 0.37 (0.36 to 0.38) 

 σu4
 2.01 (1.91 to 2.13) 1.58 (1.49 to 1.67) 

Covariance parameters   

 σu1u2
 0.07 (0.03 to 0.12) 0.10 (0.07 to 0.13) 

 σu1u3
 0.08 (0.05 to 0.12) 0.00 (-0.03 to 0.02) 

 σu1u4
 -0.62 (-0.78 to -0.47) -0.52 (-0.63 to -0.40) 

 σu2u3
 0.02 (0.01 to 0.03) -0.02 (-0.02 to -0.01) 

 σu2u4
 0.27 (0.22 to 0.32) 0.22 (0.18 to 0.26) 

 σu3u4
 0.05 (0.00 to 0.11) -0.08 (-0.11 to -0.05) 

Correlation parameters    

 ρu1u2
 0.25 (0.11 to 0.37) 0.32 (0.24 to 0.39) 

 ρu1u3
 0.18 (0.11 to 0.27) -0.01 (-0.06 to 0.05) 

 ρu1u4
 -0.24 (-0.30 to -0.18) -0.26 (-0.31 to -0.20) 

 ρu2u3
 0.21 (0.10 to 0.35) -0.17 (-0.25 to -0.09) 

 ρu2u4
 0.57 (0.50 to 0.65) 0.57 (0.49 to 0.64) 

 ρu3u4
 0.08 (0.00 to 0.15) -0.14 (-0.20 to -0.08) 
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Abbreviations. BMI: body mass index. ALSPAC: Avon Longitudinal Study of Parents and 

Children. SD: standard deviation. 
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