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Abstract

To diagnose breast cancer, the number of mitotic cells present in histology
sections is an important indicator for examining and grading biopsy spec-
imen. This study aims at improving the accuracy of automated mitosis
detection by characterizing mitotic cells in wavelet based multi-resolution
representations via a non-Gaussian modeling method. The potential mito-
sis candidates were decomposed into multi-scale forms by an undecimated
dual-tree complex wavelet transform. Two non-Gaussian models (the gener-
alized Gaussian distribution (GGD) and the symmetric alpha-stable (SαS)
distributions) were used to accurately model the heavy-tailed behavior of
wavelet marginal distributions. The method was evaluated on two indepen-
dent data cohorts, including the benchmark dataset (MITOS), via a support
vector machine classifier. The quantitative results shows that the bivariate
SαS model achieved superior classification performance with the area under
the curve value of 0.82 in comparison with 0.79 for bivariate GGD, 0.77 for
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univariate SαS, 0.72 for univariate GGD, and 0.59 for Gaussian model. Since
both mitotic and non-mitotic cells appear as small objects with a large vari-
ety of shapes, characterization of mitosis is a hard problem. The inter-scale
dependencies of wavelet coefficients allowing extraction of salient features
within the cells that are more likely to appear at all different scales were
captured by the bivariate non-Gaussian models, leading to more accurate
detection results. The presented automated mitosis detection method might
assist pathologists in enhancing the operational efficiency and productivity
as well as improving diagnostic confidence.

Keywords:
histopathology; breast cancer; mitosis detection; non-Gaussian model;
wavelet.

1. Introduction

According to the World Health Organization, breast cancer is the most
frequently diagnosed cancer and is the leading cause of cancer death among
women [1, 2, 3]. A breast biopsy is a diagnostic procedure that can defi-
nitely determine if the suspicious area is malignant (cancerous) or benign
(non-cancerous). During biopsy, samples of tissue are removed from breast
to produce stained histology slides, which are observed under microscope
and graded by pathologists. Based on the Nottingham Grading (modified
Bloom-Richardson grading) System [4], mitotic count is one of the main
parameters in breast cancer grading as it gives an assessment of tumor pro-
liferation and aggressiveness of breast lesions. Manual counting of mitosis is
a tedious process and often prone to inter- and intra-reader variations. A re-
cent concordance study for quantifying the magnitude of diagnostic disagree-
ment among pathologists on breast biopsy specimens reported 27.7% over-
all disagreement between the individual pathologists’ interpretations and the
expert consensus-derived reference diagnoses [5]. A mitosis has four main
phases of prophase, metaphase, anaphase and telophase, and exhibits highly
variable appearance. For instance, a mitosis in telophase contains two dis-
tinct nuclei but does not yet divide into full individual cells, and must be
counted as one single mitosis [6]. Most commonly in the hematoxylin and
eosin (H&E) section, mitotic nuclei manifest themselves as hyperchromatic
objects. However, many non-mitotic objects, such as apoptotic and necrotic
nuclei, and other artifacts from the slide preparation and acquisition, can
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also have a similar appearance. The major problem is that there is a low
density of mitosis in a single histological image. Hence, manual identifica-
tion of mitotic cells is a difficult task even for expert pathologists to make a
distinction [7]. Since most current mitosis counting approaches are based on
the subjective opinion of pathologists, there is clearly a need for development
of an automatic mitosis detection algorithm that works with the routinely
clinical practices.

With the recent advent of whole slide digital scanners and advances in
computational power, it is now possible to use digitized histopathological im-
ages and computer-aided diagnosis (CAD) algorithms for disease detection,
diagnosis, and prognosis prediction to complement the opinion of the pathol-
ogist [7, 8, 9, 10, 11]. Recently, a few CAD techniques have been developed
to automatically detect and classify mitosis and non-mitosis using various
image features [12]. For example, Sommer et al. [13] employed intensity,
shape (e.g., circularity), and texture features (e.g., Haralick, statistical geo-
metric features) to perform mitosis classification on a pixel basis. Tashk et al.
[14] introduced an automatic mitosis detection method using completed local
binary patterns based on a pixel-wise classification. In their recent publica-
tion [15], a CAD system was presented based on a teaching-learning-based-
optimization method to reduce false positives in mitosis detection. Tek [16]
employed color, binary shape-based, Laplacian, and morphological features
to perform mitosis classification. Irshad et al. [17, 18] adopted morphological
and multi-channel statistical features, or co-occurrence features, run-length
features, and scale-invariant feature transform features to characterize can-
didate cells for mitosis detection. Although these pixel-wise textural and
statistical features have been proved to be effective imaging attributes for
mitosis detection, the discrimination power of these features can be degraded
by artifacts present in the image due to slide preparation and acquisition.
Further, Wang et al. [19], Ciresan et al. [20], Malon and Cosatto [21], and
Albarqouni et al. [22] used convolutional neural network (CNN) to detect
mitosis in breast histology images. Despite the issue of high computational
complexity, these CNN-based approaches, proved to be effective and to have
a high accuracy in detecting mitotic cells [12].

Wavelets have emerged as an effective tool for image processing as they
provide a natural partition of the image spectrum into multiscale and ori-
ented subbands [23]. The discrete wavelet transform (DWT) has been used
extensively within various medical image processing applications, such as
enhancement, fusion, compression, segmentation, and classification [24, 25].
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Figure 1: The flowchart illustrating that mitotic and non-mitotic cell figures segmented
from original histopathological images are decomposed into multi-resolution representa-
tions via UDT-CWT. The model parameters estimated on wavelet coefficient distributions
are extracted to well characterize tissue cells and evaluated by a SVM classifier.

Weyn et al. employed wavelets for multi-scale image analysis on the micro-
scopic images to extract parameters for the description of chromatin tex-
ture in grading invasive breast cancers, and showed that the wavelet-based
features achieved higher classification scores and recognition scores than the
traditional texture features, such as densitometric and co-occurrence features
[26]. Wouwer et al. also computed the DWT-based energy parameters for
the automated identification of neoplastic nuclei in digitalized microscopic
images and yielded good classification results in grading of invasive breast
cancer. Tripathi et al. investigated the ability of multi-level Daubechies
wavelets, a commonly used form of DWT, to extract texture features for
detecting mitosis in breast histopathological images, and showed a remark-
able increase in the sensitivity measure over previous studies [27]. Lopez
and Agaian combined wavelet and fractal features for Gleason grading of
prostate cancer in histopathology images [28]. Lessmann et al. integrated
DWT-based texture features and color attributes to separate four classes
of meningiomas in histopathology images. Further, Zhang et al. expanded
2D-DWT to 3D-DWT to handle volumetric magnetic resonance images to
distinguish patients with Alzheimer’s disease from mild cognitive impairment
and normal controls, and showed that 3D-DWT yielded good classification re-
sults [29]. The prior work demonstrated that the wavelet-based computerized
approaches offered the potential for automating classification of histological
images and supporting cancer diagnosis.

Previous studies revealed that the DWT suffers from shift variance and
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poor directional selectivity because its separable filters cannot distinguish
between edge features on opposing diagonals [24, 25, 30]. Variations on the
DWT have been developed to produce a shift invariant form [31, 32]. The
dual tree complex wavelet transform (DT-CWT) [33] is a relatively recent
enhancement to the DWT. The DT-CWT offered a compact representation
while providing the desirable properties of approximate shift invariance, im-
proved directional selectivity (6 directional subbands per scale), and complex
valued coefficients, which are useful for magnitude/phase analysis within the
transform domain. The DT-CWT has been widely applied to image model-
ing [34], denoising [35], enhancement [36], fusion [37, 38], and segmentation
[39]. Additionally, Wang et al. developed an automatic classification system
in detecting abnormal brains from healthy brains on MRI via DT-CWT [40].
Niwas et al. computed the DT-CWT based features as nucleus descriptors
to automatically classify benign and malignant breast cancers in cytological
Images [41]. Wan et al. employed DT-CWT statistical features to distinguish
mitosis and non-mitosis in breast cancer histopathology, and achieved supe-
rior classification performance in terms of accuracy [42]. The undecimated
dual-tree complex wavelet transform (UDT-CWT) [25, 43] is an improved
version of DT-CWT combining the benefits of the undecimated DWT (exact
translational invariance and a one-to-one relationship between all co-located
coefficients at all scales) and the DT-CWT (improved directional selectiv-
ity and complex subbands). The DT-CWT and UDT-CWT have showed
promise in various applications in medical image processing, which motivated
our work in detecting mitosis and non-mitosis using wavelet-based method
in histopathological images.

Recently, Khan et al. [44] presented a statistical approach using a Gamma-
Gaussian mixture model for mitosis detection, in which the pixel intensities
were modeled as random variables via Gamma and Gaussian distributions.
This method yielded 51% F-score during the ICPR 2012 Context [6]. Com-
pared to the image domain, statistical modeling is much easier to perform
in the transform space, such as the wavelet domain, because of its energy
compaction property. Wan et al. [38] have graphically showed that his-
togram of wavelet coefficients has heavy tails and sharply peaked modes at
zero (non-Gaussian heavy tailed behavior), which deviate significantly from
the Gaussian distribution. In addition, Loza et al. [37] showed that wavelet
subband coefficients can be better modeled by the generalized Gaussian dis-
tribution (GGD) or symmetric alpha-stable (SαS) distributions compared to
the Gaussian model. Although statistical modeling (GGD and SαS models)
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in wavelet domain has been widely adopted in the computer vision and re-
cently in the medical image processing field [45, 46, 47], this method has not
been fully explored in the computerized histology analysis.

In this paper, we present a wavelet based approach to automatically iden-
tify mitosis in breast histopathological images via a non-Gaussian modeling
technique. This work is an extension of our previous work published in [42].
The segmented individual tissue cells are decomposed into multi-resolution
representations via an undecimated dual-tree complex wavelet transform [25].
Different from the previous work [42], in which 5 statistical features (i.e.,
mean, median, variance, energy, and entropy) were extracted from DT-CWT
subbands, the presented work utilized two non-Gaussian models, i.e., GGD
and SαS distributions, to accurately model the heavy-tailed behavior of sub-
band coefficient distributions [38, 39]. Model parameters estimated from
wavelet subbands are used to represent the cell characteristics. A support
vector machine (SVM) classifier is utilized in distinguishing mitosis from
non-mitosis on a cell basis. Our approach was quantitatively tested on two
independent data cohorts obtained from two institutions, rather than only
one dataset used by the previous work [42]. The flowchart of the presented
method is illustrated in Figure 1.

Mitosis detection is very challenging since the biological variability of mi-
totic cells and imaging artifacts make the detection extremely difficult. Our
main contributions are: (1) Non-Gaussian distributions (GGD and SαS) are
used to characterize texture attributes for mitosis and non-mitosis by model-
ing the marginal densities of wavelet subband coefficients. This is justified by
recent psychological research on human texture perception suggesting that
two homogeneous textures are often difficult to discriminate if they produce
similar marginal distributions of responses from a bank of filters [48]. The
texture difference between the mitosis and non-mitosis can be accurately
captured through adaptively estimating the model parameters of wavelet co-
efficient distributions, thus leading to a robust detection approach which is
less sensitive to the quality of mitosis segmentation. (2) The use of bivariate
non-Gaussian model to capture both marginal densities of wavelet subbands
and the strong interdependencies between wavelet coefficients at different
scales, leads to a more accurate texture model compared to an univariate
model. For instance, a coefficient with a high value appearing in the current
scale which does not have a correspondingly high coefficient appearing in the
lower adjacent scale is probably caused by noise. By taking into account the
joint statistics of wavelet coefficients across subbands, we are able to extract
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not only the salient features of mitosis and non-mitosis on multi-resolution
representations, but also reduce the possibility of missing information which
often happens in processing small regions of interest (ROI).

The rest of this paper is organized as follows. Section 2 provides the
necessary preliminaries on generalized Gaussian and alpha-stable processes.
Section 3 describes the details of the method. The experimental design and
results are presented in Section 4 and Section 5, respectively. Concluding
remarks are given in Section 6.

2. Non-Gaussian models for image wavelet coefficients

In this section, two non-Gaussian models, i.e., GGD and SαS, underlying
our wavelet-based mitosis detection method are presented to characterize
the heavy-tailed behavior of the wavelet subband marginal distribution. SαS
processes include the Cauchy and Gaussian distributions as limiting cases,
whereas the GGDs cover both Gaussian and Laplace.

2.1. Generalized Gaussian model

2.1.1. Univariate model

A univariate case of GGD probability density functions (PDF) can be
written as [37]:

p(x; s, p) =
p

2sΓ(1/p)
e−(|x−µ|/s)p

(1)

where Γ(t) =
∫∞
0 e−uut−1du is the gamma function, µ represents location, s

and p are the scale and shape parameters, respectively. Since our develop-
ments are in the framework of wavelet analysis, only signals with zero mean
(µ = 0) are considered throughout this work. s models the width of the PDF
peak, while p is inversely proportional to the decreasing rate of the peak.
The smaller values of p (p < 2) reflect the heavier tails of the corresponding
GG density function compared to the Gaussian distribution. Examples of
GGD family of distributions illustrating the different values of the shape pa-
rameters p are shown in Figure 2(a). The GGD family includes the Gaussian
model when p = 2 and the Laplace model when p = 1 as special cases. Their
marginal PDFs with mean µ = 0 can be written as follows:

p(x; σ) =
1√
2πσ

e−(|x|/(
√

2σ))
2

; p(x; σ) =
1√
2σ

e(−√2|x|/σ) (2)

where σ = s
√

Γ(3/p)/Γ(1/p) is the standard deviation of the distribution.
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2.1.2. Bivariate model

Univariate distributions cannot model the statistical dependencies be-
tween wavelet coefficients. Previous work revealed that there are strong
dependencies between the coefficients, their parent (adjacent coarser scale
locations), and their sibling coefficients across different orientations [39, 37].
In this study, we consider the problem of modeling the statistical depen-
dencies between coefficients and corresponding parent coefficients. Let xl+1

represent the parent coefficient of xl at the same position. We assumed that
the variances of wavelet coefficients at child and parent levels are equal. The
bivariate dependent Laplace model is given by [49]:

p(xl, xl+1; σ) =
3

2πσ2
e
(−

√
3((

xl
σ

)
2
+(

xl+1
σ

)
2
))

(3)

The reason for restricting our modelling to the Laplace case is the availability
of easily derived parameter estimators.

2.2. Symmetric alpha-stable model

2.2.1. Univariate model

Due to lack of a compact analytical expression for their probability density
function, the univariate SαS distribution can be defined by their character-
istic functions (i.e., the Fourier transform of the PDF) as follows [50]:

ϕ(ω) = e(jδω−γ|ω|α) (4)

where ω denotes frequency, j is the imaginary unit, δ(−∞ < δ < ∞) is the
location parameter (δ = 0 in our work), α(0 < α ≤ 2) is the characteristic
exponent that determines the shape of the distribution, and γ(γ > 0) is the
dispersion of the distribution that describes the spread of the distribution
around its location parameter δ.

Figure 2(b) illustrate the SαS density function taking various values of
the characteristic exponent α. Note that the smaller α is, the heavier the
tails of the SαS density function. This implies that random variables follow-
ing distributions with small characteristic exponents are highly impulsive.
Gaussian and Cauchy processes are special cases of stable processes with
α = 2 and α = 1, respectively. The probability distribution for the Cauchy
density with location parameter δ = 0 is given by:

p(x; γ) =
γ

π(x2 + γ2)
(5)

8



−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

P
D

F

GGD

 

 

p=0.5
p=1.0
p=2.0

(a)

−6 −4 −2 0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

P
D

F

SaS

 

 

alpha=0.5
alpha=1.0
alpha=1.5
alpha=2.0

(b)

Figure 2: (a) Graphs of generalized Gaussian densities corresponding to the values p = 0.5,
p = 1.0 (Laplace), and p = 2.0 (Gaussian), for s = 1.0 and µ = 0. (b) Graphs of symmetric
alpha-stable densities corresponding to the values α = 0.5, α = 1.0 (Cauchy), α = 1.5,
and α = 2.0 (Gaussian), for γ = 1.0.

Although the SαS density function behaves approximately like a Gaussian
density function near the origin, the stable densities have algebraic tails
(heavy tails) while the Gaussian density function has exponential tails which
decay at a faster rate [37, 38]. One consequence of heavy tails is that only
moments of order less than α exit for the non-Gaussian alpha-stable family
members, i.e., E|x|m = C(m,α)γ

m
α for −1 < m < α, where m is the moment

order and C(m,α) = (2m+1Γ(m+1
2

)Γ(−m
α
))/(α

√
πΓ(−m

2
)).

2.2.2. Bivariate model

Unlike univariate stable distributions, bivariate alpha-stable distributions
form a nonparametric set being thus much more difficult to describe. An ex-
ception is the family of multidimensional isotropic stable distributions whose
characteristic function has the form:

ϕ(ω1, ω2) = e(j(δ1ω1+δ2ω2)−γ|ω|α) (6)

where ω = (ω1, ω2), and |ω| =
√

ω2
1 + ω2

2. The distribution is isotropic with
respect to the location point (δ1, δ2). The two marginal distributions of the
isotropic stable distribution are SαS with parameters (δ1, γ, α) and (δ2, γ, α).
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As before, we will assume that the location (δ1, δ2) = (0, 0), while the param-
eters α and γ are used to characterize the distribution of wavelet subband
coefficients. As in the case of the univariate SαS density function, when
α = 1 (Cauchy) and α = 2 (Gaussian), no closed form expressions exist for
the density function of bivariate alpha-stable random variables. A numeri-
cal algorithm for computing bivariate SαS densities has been developed by
Nolan [51]. The bivariate Cauchy distribution as a special case of SαS is
defined as:

p(xl, xl+1; γ) =
γ

2π(x2
l + x2

l+1 + γ2)
3
2

(7)

where xl and xl+1 are child and parent wavelet coefficients on the decompo-
sition level l and l + 1, respectively.

3. Methods

3.1. Candidate Detection

We utilized a two-step detection method to identify mitosis candidates via
a K-means clustering algorithm and a distance regularized level set evolution
(DRLSE) based segmentation method [52].

3.1.1. Step 1: Nuclei detection

The breast pathological images were stained with hematoxylin and eosin
(H&E) in which the nuclear and cytoplasm regions appear as hues of blue and
purple while extracellular material have hues of pink. As we were interested
in nuclei which appear as blue-purple regions, the input pathological images
in the RGB color space were transformed into a blue-ratio space [53], in which
a pixel with a high blue intensity was given a high value, whereas a pixel with
a low blue intensity was given a low value. The blue-ratio representation has
been proven to be able to highlight nuclei regions [17, 19]. Moreover, in
the blue-ratio channel, mitotic figures usually appear to be brighter than
non-mitotic ones, thus providing more discriminative information for mitosis
detection in histopathological images [22]. By using the blue-ratio mapping,
the nuclei of cells could be detected using a simple thresholding approach
[18].

A traditional 2-class K-means clustering algorithm was employed to the
blue-ratio images to produce a binary image with the high-value pixels hav-
ing value of 1 as candidate nuclear regions. We repeated the clustering three
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times using randomly selected initial cluster centroid positions to avoid lo-
cal minima and adopted the solution with the lowest within-cluster sums of
point-to-centroid distances. The squared Euclidean distance was computed
as a distance measure for each centroid cluster. We then performed morpho-
logical dilation and erosion operations to divide the connected large regions
into individual regions in case that the nuclei may be overlapping, clustered
or tightly clumped. We finally applied a thresholding operation to eliminate
anomalously small regions, which might be image artifacts due to the fact of
non-standardization in histopathological work flow.

3.1.2. Step 2: Cell Segmentation

The identified nuclei candidates from Step 1 were used as initialization
points for the DRLSE based segmentation method [52]. In the segmentation
model, a general variational level set formulation with a distance regulariza-
tion term and an external energy term drives the motion of the zero level
contour toward desired locations. The distance regularization term is defined
with a potential function such that it forces the gradient magnitude of the
level set function to one of its minimum points, thereby maintaining a desired
shape of the level set function, particularly a signed distance profile near its
zero level set. The energy function E(φ) is defined by [52]:

E(φ) = µRp(φ) + λLg(φ) + αAg(φ) (8)

where φ is a level set function. Rp(φ) is the level set regularization term, and
µ > 0 is a constant. λ > 0 and α are the coefficients of the edge-based energy
functions Lg(φ) and Ag(φ), which are defined as external energy functions
to ensure that the zero level contour of φ is located at the object bound-
aries. This allows for speeding up of the motion of the zero level contour in
the level set evolution process. Further, we employed the potential nuclear
candidate region rather than a single pixel, which was close to the region
to be segmented, as initializations of zero level set function. Thus, a small
number of iterations were needed to move the zero level set from the ini-
tialized boundary to the desired object boundary. This could greatly reduce
the computational cost for segmenting numerous nuclei in histopathological
images.

3.2. Wavelet Representation

The undecimated dual-tree complex wavelet transform has been proved to
have several advantages over the conventional discrete and complex wavelet
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Figure 3: Two examples of UDT-CWT representations with 2 decomposition levels (rows)
and 6 orientations (columns) for a mitotic cell and a non-mitotic cell. The wavelet subband
images reveal that important texture features appearing in coarse level are more likely
present in the adjacent level.

transforms in terms of translational invariance, improved scale-to-scale co-
efficient correlation and the directional selectivity [25]. The UDT-CWT is
an improved form of DT-CWT [33], which is a complex-valued extension to
the standard 2D DWT. The DT-CWT calculates the complex transform of
a signal using two separate DWT with two decomposition trees to generate
the real and imaginary parts of complex wavelet coefficients. This intro-
duces a limited amount of redundancy and allows the transform to provide
approximate shift invariance and directionally selective filters, while preserv-
ing the properties of perfect reconstruction and computational efficiency [34].
The filterbank implementation of DWT can be interpreted as computing the
wavelet coefficients of a discrete set of child wavelets for a given mother
wavelet. In the case of DWT, the mother wavelet ψ is defined by:

ψj,k(t) =
1√
2j

ψ(
t− k2j

2j
) (9)

where j is the scale parameter and k is the shift parameter. For an image with
a size of Nw×Nh, the wavelet subband Wl,θ has a size of Nw/2l−1×Nh/2

l−1.
Each subband Wl,θ, l ∈ {1, ..., L}, θ ∈ {± π

12
,±3π

12
,±5π

12
} contains a real and

imaginary parts of the complex coefficients. The decomposition level L was
chosen depending on the size of the image according to the following formula
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L = (log2 min{Nw, Nh})− 4 [36].
Figure 3 shows two examples of UDT-CWT representations for a mitotic

cell and a non-mitotic cell, respectively. For a better visualization, the parent
subband images have been enlarged to the same size as the child subband
images. The mitotic and non-mitotic cells exhibit distinctive patterns of
frequency response in wavelets. Moreover, the figures revealed that impor-
tant texture features appearing in coarse level are more likely present in the
adjacent level, which is referred to as the inter-scale dependencies (or the
persistency property of wavelet transform). This property allows better ex-
traction of salient features having discrimination capability in distinguishing
mitotic and non-mitotic cells.

3.3. Model Parameter Estimation and Feature Extraction
3.3.1. GGD

The parameters s and p of univariate GGD model can be estimated via
a maximum likelihood (ML) method defined in [48], which showed that the
ML estimator was superiorly performed in GGD models. Furthermore, the
ML estimator has been proved to be desirable for modeling heavy-tailed
distributions among classic statistical methods, which is often the case of
wavelet subband coefficients [54]. Thereby, we used the ML estimator for the
GGD model. Let xl = (x1,l, x2,l, ..., xU,l) and xl+1 = (x1,l+1, x2,l+1, ..., xU,l+1)
define U wavelet coefficients and their corresponding parent coefficients at
decomposition level l and l + 1, respectively. The likelihood function of xl is
defined as L(xl; s, p) = log

∏U
i=1 p(xi,l; s, p).

The ML estimators are given as:

∂L(xl; s, p)

∂s
= −U

s
+

U∑

i=1

p|xi,l|ps−p

s
= 0 (10)

∂L(xl; s, p)

∂p
=

U

p
+

LΨ(1/p)

p2
−

U∑

i=1

(
xi,l

s
)p log(

|xi,l|
s

) = 0 (11)

where the Digamma function Ψ(u) = Γ′(u)/Γ(u). Γ(u) is the gamma func-
tion, and u is the location. The above two equations can be numerically
solved by the Newton-Raphson iterative procedure [48].

For the bivariate Laplace model, the parameter σ can also be estimated
through the ML method published in [37] which is defined as:

σ =

√
3

2U

U∑

i=1

√
(|xi,l|2 + |xi,l+1|2) (12)
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3.3.2. SαS

The model parameters α and γ of univariate SαS densities can be ob-
tained through a log-moment method [39]. The log absolute value of wavelet
coefficient xl is give as yl = log(|xl|). The mean and variance of yl are
respectively given by [37]:

E(yl) =
α− 1

α
Ψ(1) +

log(γ)

α
(13)

and:

E([yl − E(yl)]
2) =

π2(α2 + 2)

12α2
(14)

The estimation process simply involves solving Equation (14) for α and sub-
stituting back in Equation (13) to find the value of the dispersion parameter
γ. For the univariate Cauchy density, the parameter γ can be written as

γ = e( α
U

∑U

i=1
log(|xi,l|)+Ψ(1) 1−α

α
).

The corresponding estimation for the isotropic bivariate models can be
obtained by replacing yl = log(|xl|) with yl,l+1 = log(|xl| + |xl+1|). Note
that we assume a constant γ in adjacent levels. Thus the estimation method
applied to the univariate alpha-stable distributions can be used in the bivari-
ate models by combining child-parent coefficients into a single data vector.

3.3.3. Feature extraction

The original image was decomposed into multi-resolution representatives
via the undecimated dual-tree complex wavelet transform using six orienta-
tions {± π

12
,±3π

12
,±5π

12
}, as shown in Figure 3. The decomposition level was

determined based on the size of the image. The larger image intended to have
more levels of decomposition. Each subband contained a real part and an
imaginary part of the complex coefficients. For each wavelet subband, GGD
and SαS were employed to model the heavy-tailed behavior of subband co-
efficient distributions. The model parameters were used to characterize the
wavelet subband distribution attributes. GGD model has two parameters
s and p representing the scale and shape of the distribution, respectively,
while SαS model is described by two parameters α and γ denoting shape
and dispersion of the distribution. For example, a 2-level based UDT-CWT
decomposition produces 24 real and imaginary wavelet subbands, thus re-
sulting in 48 model parameters in total for each non-Gaussian density. We
found that real coefficient subband and its corresponding imaginary coeffi-
cient subband generated similar distributions, thereby in this work the model
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parameters estimated from the real coefficient subband were utilized to form
the feature set to be used in the subsequent classification.

3.4. SVM Based Classification

The model parameters estimated from wavelet coefficients were used to
characterize the potential mitotic cells. Support vector machines was applied
to evaluate the discrimination capability of the extracted features for distin-
guishing mitosis from non-mitosis. Before performing the classification, we
adopted a popular feature selection method (i.e., the minimum-redundancy
maximum-relevance (mRMR) feature selection method [55]) to select the
features by minimizing redundancy and maximizing statistical dependency
based on mutual information measure. The theoretical analysis [55] revealed
that mRMR was equivalent to Max-Dependency for first-order feature selec-
tion with higher efficiency. The wavelet-based features were ranked through
scoring of the most relevant features based on mRMR criterion. The optimal
subset of features was generated by adding the best features with the highest
ranking scores, which is known as the stepwise regression method [56].

In the SVM classification, a Laplacian radial basis function (RBF) kernel
was used to map the input data into a higher dimension space where the data
were supposed to have a better distribution, and then an optimal separating
hyperplane was chosen. The functional form of the Laplacian RBF is given
by [57]: ∏

(Fi, Fj) = e−ε‖Fi−Fj‖2 , (15)

where Fi and Fj are the image feature matrices of nuclei (i 6= j). ε is a
scaling factor which is used to project the data into the high-dimensional
SVM space. A commonly used sequential minimal optimization method was
employed to find the separating hyperplane.

4. Experimental Design

4.1. Data Preparation

The method was tested on two independent data cohorts. Dataset I is a
publicly available dataset for the MITOS contest held in conjunction with the
ICPR 2012 conference [6, 58], which is composed of a set of 50 H&E stained
breast histopathological high power field (HPF) images (2084× 2084 pixels)
from 5 patients. They were scanned by a ScanScope XT slide scanner (Aperio
Technologies Inc., Vista, USA) at 40× magnification with a spatial resolution
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of 0.2456 µm/pixel. Dataset II contains 20 H&E stained slides from 20
invasive breast carcinoma women patients, who underwent an excision biopsy
between 2010 and 2014 at the No. 91 Central Hospital of PLA, China. All
slides were digitalized via a whole slide scanner (Leica Biosystems, Wetzlar,
Germany) at 40× magnification with a 0.25µ m/pixel resolution. One expert
pathologist with more than 10 years of experience marked ROIs containing
cancerous tissues on the digital slides and annotated the locations of mitotic
figures. The areas for annotation were chosen using the standard criteria used
for scoring mitotic figures [58, 59]. The ROI was divided into multiple HPF
images (1200 × 1200 pixels) and only the HPFs (N = 374) that contained
at least one mitotic cell were included into the dataset. A total of 1155
mitosis (Dataset I: 326; Dataset II: 829) were manually annotated by two
pathologists as the ground truth. Also, 3314 non-mitotic cells (Dataset I:
1173; Dataset II: 2141) were delineated by an expert pathologist who was
unaware of the ground truth. A student t test was performed to verify that
there was no cell size-related bias between these two data cohorts.

We are aware that there are two other publicly available datasets, i.e.,
MITOS-ATYPIA-14 [59] and AMIDA13 [60] proposed during the mitosis
detection contests at the conferences of ICPR 2014 and MICCAI 2013. Since
the rules of the two organizers clearly stated that the datasets were limited
for the contests solely and can not be used for research purpose, we did not
evaluate our method on these two datasets.

4.2. Implementation Settings

In order to reduce the color variations in tissue appearance due to variabil-
ity in tissue preparation and the use of scanners from different manufacturers,
a nonlinear mapping based stain normalization method [61] was utilized on
both Dataset I & II. A histological image from Dataset I was randomly se-
lected as a reference (target) image. All the rest images from Dataset I and
II were matched to the target image during the stain normalization.

We conducted three independent experiments. Experiment I was to dis-
tinguish mitosis and non-mitosis using a combination of Dataset I & II via
an iterative 2-fold cross validation scheme. The mitotic and non-mitotic sets
are equally partitioned into a training dataset Ztra and a testing dataset Ztes

containing both mitotic and non-mitotic cells without overlapping between
Ztra and Ztes. To avoid a biased evaluation, we ensured that there were no
samples (mitosis and non-mitosis) from the same patient in the training and
testing sets simultaneously. Experiment II performed two detection tasks
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to identify mitosis using {Ztra =Dataset I, Ztes = Dataset II} and {Ztra =
Dataset II, Ztes = Dataset I} to independently validate our wavelet-based
method on the two different datasets. Experiment III was done using the
same training and testing criteria in the MITOS contest at ICPR 2012 [58]
in order to compare out method with the state-of-the-art approaches of ICPR
2012 contest. In the contest, the training and testing set consisted of 35 and
15 HPFs containing 226 and 100 mitosis, respectively.

We applied candidate detection (Section 3.1) on all the training set im-
ages and considered those candidates as non-mitosis, which was not mitosis.
The dataset consisting of candidate potential mitotic cells was unbalanced be-
tween the number of mitosis and non-mitosis candidates. To train a balanced
classifier, we reduced non-mitosis class by replacing overlapping non-mitotic
cells with their clustered center [19], and increased the number of mitotic cells
by applying the synthetic minority oversampling technique [62, 63]. In Ex-
periment I, we randomly selected a balanced mix of mitotic and non-mitotic
samples to train the SVM classifier using the 2-fold cross-validation strategy.
We chose stratified 2-fold cross-validation in this work rather than the higher
folds of cross-validation method, to ensure that both our training and testing
sets contained sufficient numbers of samples, thus reducing the variance of
the classification model as well as the computational time. The disadvan-
tage of 2-fold cross-validation is that the evaluation might be significantly
different depending on the dataset division. We utilized an iterative random
sampling approach to perform the 2-fold cross-validation to reduce the error
rate of the predicative model.

4.3. Performance Measures

4.3.1. Segmentation performance measure

We measured the segmentation performance via both boundary-based
and region-based metrics. Mean absolute difference (MAD) was calculated
by evaluating the mean difference between each point on the automated
cell segmentation P c = {pc

i |i ∈ {1, ..., M}} and the corresponding closest
point pg

i on the ground truth manual segmentation P g = {pg
i |i ∈ {1, ..., M}}

delineated by the pathologists. The MAD computation is defined as MAD =
1
M

∑M
i=1[ming‖pc

i − pg
i ‖2], where M is the number of points. An MAD value

of 0 reflects perfect segmentation.
The dice similarity coefficient (DSC) was used to compute the spatial

overlap accuracy of the automated segmentation to the ground truth, which
can be defined as DSC = 2|Sc∩Sg |

|Sc|+|Sg | , where Sc and Sg are the areas enclosed by
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the automated segmentation P c and manual segmentation P g, respectively.
|·| is the cardinality of set. An DSC = 1 is indicative of perfect segmentation.

4.3.2. Modeling performance measure

The Kullback-Leibler distance (KLD), a statistical measure of the differ-
ence between the data and a model, was used to quantify similarity between
the discrete distribution of the wavelet coefficients ωc and a fitting model ωm.
The KLD computation is given as:

KLD(ωc‖ωm) =
∑

i

ln(
ωc(i)

ωm(i)
)ωc(i) (16)

The smaller value of KLD indicates a better approximation of the model to
the wavelet coefficient distribution.

4.3.3. Classification performance measure

The classification performance was quantitatively measured by the recall
or true positive rate (TPR), precision or positive predictive value (PPV),
and F-score. These three measures were utilized in the MITOS contest of
ICPR 2012 [58], in which true positive (TP) was defined as detected mitosis
whose centroid was localized within a range of 5µm (20.4 pixels) of the cen-
troid of a ground truth mitosis. Nuclei that did not meet this criteria were
defined as false positive (FP) or false negative (FN). In addition, a receiver
operating characteristic (ROC) analysis and the area under the curve (AUC)
were utilized to measure the wavelet-based features’ ability in distinguishing
between mitotic and non-mitotic cells. The SVM classification was repeated
for 100 trials via a 2-fold cross-validation scheme and reported the mean and
standard deviation values in the results.

4.4. Comparative Strategies

We compared our approach with seven state-of-the-art approaches using
the same MITOS dataset, developed by the research teams who participated
in the ICPR 2012 [58] or/and MICCAI 2013 [60, 64] competitions on mitosis
detection and ranked as the top 7 best performing methods. The first ap-
proach (IDSIA) developed a pixel-based deep neural network framework to
identify mitosis [20], which won the first place in both ICPR 2012 and MIC-
CAI 2013 contests. The second approach (IPAL) computed co-occurrence,
run-length and scale-invariant feature transform features for mitosis and non-
mitosis patches [18]. The third approach (SUTECK) used completed local
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(a) (b) (c)

(d) (e) (f)

Figure 4: Visual results of potential mitosis candidate detection in a sample image. (a)
Original image; (b) Blue-ratio image; (c) Nuclei detection before morphological operators
and thresholding; (d) Nuclei detection after morphological operators and thresholding; (e)
Results of cell segmentation marked mitotic and non-mitotic cells in yellow and blue color,
respectively; (f) Original image with ground truth marked mitotic cells shown in green
color. Magnified figures for segmented mitosis cell and ground truth are provided for a
better comparison.

binary patterns pixel-wise SVM classification in mitosis detection [65, 14].
The NEC team [21] and CCIPD/MINDLAB team [19] employed the learned
CNN-derived features for mitosis detection. The UTRECHT team extracted
size, shape, color and texture features of candidate objects for automatically
detecting mitotic figures [66]. The WARWICK approach modeled the pixel
intensities of mitosis by a Gamma-Gaussian mixture model in conjunction
with the SVM classifier [44].
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Table 1: The candidate detection performance (µ± σ) measured by MAD and DSC. The
number of the samples (N) is given in the parentheses.

Dataset I
Mitosis Non-mitosis Total

(N = 317) (N = 1173) (N = 1490)
MAD 8.81± 7.17 7.42± 11.84 7.72± 10.26
DSC 0.71± 0.23 0.72± 0.26 0.72± 0.25

Dataset II
Mitosis Non-mitosis Total

(N = 801) (N = 2141) (N = 2942)
MAD 11.39± 10.68 9.49± 14.81 10.01± 13.87
DSC 0.66± 0.26 0.71± 0.23 0.70± 0.24

5. Results and Discussion

5.1. Cell Segmentation

The potential mitosis candidates were identified and segmented via our
candidate detection method. Figure 4(e) shows the visual results of cell
segmentation for both mitotic (in yellow color) and non-mitotic cells (in blue
color), suggesting that the 2-step candidate detection method performs well
in segmenting mitotic cells compared to the ground truth (Figure 4(f)). The
candidate detection phase identified 40970 mitosis candidates (Dataset I:
12267; Dataset II: 28703), containing 1118 mitosis out of 1155 ground truth
(Dataset I: 317 out of 326 ground truth; Dataset II: 801 out of 829 ground
truth).

The MAD and DSC were used to quantitatively evaluate the segmenta-
tion performance shown in Table 1. The MAD and DSC calculations were
limited to the detected mitotic (N = 1118) and non-mitotic cells (N = 3314)
with available ground truth. We noted that Dataset II had slightly worse
performance of segmentation than Dataset I due to the inherent diversity of
tissue appearance. Also we applied stain normalization to Dataset II to be
aligned to Dataset I, which might induce artifacts in the images of Dataset II.
The quantitative results showed that our candidate detection method yielded
a good cell segmentation, which can provide accurate coefficient distributions
to ensure a more reliable modeling.

5.2. Non-Gaussian modeling

We computed KLD as a similarity metric to measure the accuracy of
model matching between the statistical models (GGD, SαS, Gaussian) and
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(a) (b)

(c) (d)

Figure 5: Two examples of model fitting for a mitotic cell (first line) and a non-mitotic cell
(second line). (a) SαS (Univariate: α = 1.04, γ = 4.98, KLD = 0.032; Bivariate: α = 0.83,
γ = 4.87, KLD = 0.024); (b) GGD (Univariate: s = 2.87, p = 0.36, KLD = 0.037;
Bivariate:s = 2.24, p = 0.52, KLD = 0.029) with univariate and bivariate models in
comparison with the estimated Gaussian distribution (µ = 1.65., σ = 0.19, KLD = 0.139).
(c) SαS (Univariate: α = 1.52, γ = 5.66, KLD = 0.042; Bivariate: α = 1.67, γ = 6.01,
KLD = 0.036); (d) GGD (Univariate: s = 2.03, p = 0.96, KLD = 0.049; Bivariate:s =
1.66, p = 0.81, KLD = 0.44) with univariate and bivariate models in comparison with the
estimated Gaussian distribution (µ = 1.24., σ = 0.30, KLD = 0.092).

wavelet coefficient distributions. The KLD values are listed in Table 3. Fig-
ure 5 shows two typical examples of a histogram of wavelet coefficients in a
particular subband for a mitotic cell and a non-mitotic cell, together with a
plot of the fitted estimated SαS model in comparison with the fitted GGD
model. The model parameters was obtained via the log-moment method [39]
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Table 2: Numbers of mitosis and non-mitosis in the training and testing sets for three
experiments.

Experiment Ztra
Before sampling After sampling Ztes Mitosis Non-Mitosis Non-

mitosis
Mitosis Non-

mitosis
mitosis

Exp. I I & II 1155 39852 1923 27220 I & II 1923 27220
Exp. II I 326 11950 539 8266 II 829 -
Exp. II II 829 27902 1406 18954 I 326 -
Exp. III I 226 7365 459 5047 I 100 -
I & II denote the Dataset I and Dataset II.

for SαS model and the maximum likelihood method [48] for GGD model.
The SαS model provides a better fit than the GGD in terms of modeling the
non-Gaussianity inherent in wavelet subbands. In addition, by incorporat-
ing the dependencies between parent and child coefficients across scales, the
bivariate models can accurately describe the persistency property of wavelet
coefficients, which is consistent with the KLD results (Table 3). By examin-
ing the figures, we noted that mitosis and non-mitosis have different subband
marginal distributions, which can be closely matched by non-Gaussian mod-
els.

5.3. Mitosis Classification and Detection

We conducted three experiments on two datasets using GGD and SαS
models. Experiment I was done to distinguish mitotic and non-mitotic cells
via a 2-fold cross-validation scheme. Experiment II and III were performed
to detect mitosis using two independent data cohorts for training and testing.
Table 2 shows the numbers of mitosis and non-mitosis in training and testing
sets. Over-sampling and down-sampling techniques were used to correct the
classification bias due to the unbalanced datasets. The performance metrics
are reported in Table 3.

5.3.1. Experiment I

The classification results in Table 3 demonstrated that the bivariate non-
Gaussian distributions outperformed the univariate distributions due to the
fact that the property of inter-scale dependencies across wavelet subbands
could be more accurately captured by the bivariate models than the univari-
ate models. These inter-dependencies of wavelet coefficients allow extraction
of discriminative features within the cells that are more likely to appear at
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Table 3: The classification (µ ± σ) and detection performance measured by TP, FP, FN,
TPR, PPV, F-score, and AUC. The KLD values were computed using different training
datasets.

Method TP FP FN TPR PPV F-score AUC KLD∗
Experiment I: {Ztra, Ztes} = Dataset I & Dataset II

Uni-SαS (15)∗∗ − − − 0.76± 0.14 0.71± 0.20 0.73± 0.16 0.77± 0.17 0.090± 0.056
Bi-SαS (11) − − − 0.79± 0.10 0.75± 0.18 0.77± 0.13 0.82± 0.15 0.074± 0.049

Uni-GGD (14) − − − 0.70± 0.15 0.69± 0.12 0.70± 0.13 0.72± 0.05 0.102± 0.050
Bi-GGD (12) − − − 0.76± 0.13 0.72± 0.16 0.74± 0.14 0.79± 0.08 0.079± 0.063
Gaussian (11) − − − 0.58± 0.23 0.48± 0.27 0.53± 0.24 0.59± 0.19 0.346± 0.178

Experiment II: {Ztra = Dataset I, Ztes = Dataset II}; GT = 829
Uni-SαS (13) 555 355 274 0.67 0.61 0.64 − 0.102± 0.068
Bi-SαS (12) 580 341 249 0.70 0.63 0.66 − 0.082± 0.061

Uni-GGD (14) 531 400 298 0.64 0.57 0.60 − 0.113± 0.047
Bi-GGD (13) 564 392 265 0.68 0.59 0.63 − 0.087± 0.073
Gaussian (10) 415 572 414 0.50 0.42 0.46 − 0.387± 0.187

Experiment II: {Ztra = Dataset II, Ztes = Dataset I}; GT = 326
Uni-SαS (12) 228 140 98 0.70 0.62 0.66 − 0.061± 0.043
Bi-SαS (10) 235 121 91 0.72 0.66 0.69 − 0.052± 0.037

Uni-GGD (13) 222 148 104 0.68 0.60 0.64 − 0.073± 0.055
Bi-GGD (11) 228 123 98 0.70 0.65 0.67 − 0.059± 0.042
Gaussian (10) 166 142 160 0.51 0.54 0.52 − 0.243± 0.166

Experiment III: {Ztra, Ztes} = Dataset I; GT = 100
Uni-SαS (11) 75 35 25 0.75 0.68 0.71 − −
Bi-SαS (10) 76 31 24 0.76 0.71 0.73 − −

Uni-GGD (14) 70 36 30 0.70 0.66 0.68 − −
Bi-GGD (11) 72 32 28 0.72 0.69 0.70 − −
Gaussian (9) 61 63 39 0.61 0.49 0.54 − −
IDSIA [20] 70 9 30 0.70 0.88 0.78 − −
IPAL [17] 74 32 26 0.74 0.70 0.72 − −

SUTECH [65] 72 31 28 0.72 0.70 0.71 − −
NEC [21] 59 20 41 0.59 0.75 0.66 − −

CCIPD/MINDLAB [19] 65 12 35 0.65 0.84 0.73 − −
UTRECHT [66] 68 65 32 0.68 0.51 0.58 − −
WARWICK [44] 57 65 43 0.57 0.47 0.51 − −

∗ KLD = Kullback-Leibler distance. KLD was computed using training dataset Ztra.
∗∗ The optimal number of features used in the classification chosen by the mRMR feature selection method.
Uni- = univariate; Bi- = bivariate; GT = ground truth; TP = truth positive;
FP = false positive; FN = false negative.
TPR = true positive rate; PPV = positive predictive value; AUC = area under the curve.

all different scales. This is particularly useful in characterizing small objects
with a large variety of appearances, such as mitotic and non-mitotic cells
present in histopathological images, in which salient information might be
corrupted by image artifacts. We noted that the SαS distributions achieve
better classification performance compared to the univariate and bivariate
GGD models, suggesting that non-Gaussian heavy-tailed behavior of wavelet
subband marginal distribution can be best modeled by SαS models.

5.3.2. Experiment II

In order to validate the presented method to the choice of whole slide
scanners and clinical sites, we performed two detection tasks using {Ztra =
Dataset I, Ztes = Dataset II} and {Ztra = Dataset II, Ztes = Dataset I}, re-
spectively, for automatically identify mitotic cells. The detection results are
shown in Table 3. Consistently, bivariate SαS distributions yielded the best
performances (F-score= 0.66 and 0.69) among all the models. By comparing
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Figure 6: Performance of our approach compared to other methods in the Precision-Recall
plane (Experiment III). It can be seen that the bivariate SαS model outperformed GGD
and univariate SαS model for distinguishing mitotic from non-mitotic cells.

these two detection tasks, we can see that our method yielded better classifi-
cation performance in terms of F-score by increasing the training sample size.
It seemed that a larger training set did enhanced the SVM classifier in the
generalization ability to distinguish mitosis and non-mitosis. We noted that
the classifiers were biased toward non-mitosis, which resulted in high num-
bers of false positive due to the unbalanced training sets. This issue could be
improved using a balanced cross-validation scheme as shown in PPV values
of Experiment I (Table 3).

5.3.3. Experiment III

Further, we compared our method with seven state-of-the-art methods
using Dataset I and the best results reported in their original publications
[6]. Our method achieved a higher F-score (0.73) than all other methods
except the IDSIA method (0.78) and the CCIPD/MINDLAB method (0.73).
Compared with the IDSIA [20], NEC [21] and CCIPD/MINDLAB [19] meth-
ods, our method did not require CNN model training which could take a large
amount of time (> 10 hours). It can be seen that the TPR values associated
with SαS models were higher than the other methods. However, we also noted
that our method yielded higher numbers of false positive compared to the ID-
SIA, NEC, and CCIPD/MINDLAB methods. In addition, our model-based
approach greatly outperformed the WARWICK method [44] (F-score=0.51),
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which also used statistical modeling and SVM. The same experimental results
using different statistical models are plotted in the Precision-Recall plane in
Figure 6. The Precision-Recall values of the other methods are also plotted
for comparison. Figure 6 shows that the performances of other methods (ex-
cept IDSIA and CCIPD/MINDLAB) lie in the interior of the areas spanned
by the curve of bivariate SαS models.

In summary, we demonstrated an effective technique through a frame-
work of combination of wavelet decomposition and non-Gaussian modeling
to identify mitotic figures with fair performance results. Compared to the
CNN-based methods, such as IDSIA and CCIPD/MINDLAB methods, our
approach was faster, requiring far less computing resources. Further, our
wavelet-based method provided more accurate results in detecting mitosis in
comparison with statistical modeling based WARWICK method. The disad-
vantage is that our method obtained high numbers of false positive due to a
great amount of potential mitosis candidates identified by the nuclei detec-
tion phase, which can be improved via a more accurate candidate detection
algorithm by considering the texture features within the neighborhood of
nuclei.

Our work did have its limitations, and as such, it is important to ac-
knowledge that this is a preliminary work with need for additional indepen-
dent validation of our initial findings. Additionally, we did not provide the
characteristics of the patients due to lack of patient information for Dataset
I. Owing to the limited size of the dataset considered in this study, we did
not conduct multiple statistical tests of comparisons on the features. We also
did not explicitly quantify the inter-observer variability in segmentation of
mitotic and non-mitotic cells between multiple pathologists.

5.4. Parameter Setting

In the nuclei detection, we computed a ratio of region area and the mean
area of detected large region candidates (areas are larger than the mean area
of all the regions) in the image as a thresholding to remove anomalously
small regions resulting from image artifacts. The thresholding values were
automatically selected from 0.2 to 0.5 and found that 0.35 gave the best per-
formance in removing the small regions, meanwhile preserving the nuclear
regions. Additionally, there were three parameters {µ, λ, α} defined in the
DRLSE model (Equation (8)) for segmenting nuclei. The model was not
sensitive to the choice of µ and λ, which were fixed as µ = 0.02, and λ = 5.0
reported as default values in [52]. The parameter α controlled additional
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external force to drive the motion of contour towards the true object bound-
ary. A large value of α would cause boundary leakage, which was undesirable
for small objects with week boundaries, such as mitotic and non-mitotic fig-
ures. Therefore, α was empirically tuned to yield the best segmentation
results by choosing relatively small values to avoid boundary leakage. In all
the experiments, we used α = 1.5 for Dataset I and α = 2.0 for Dataset
II. In the SVM classification, we used the Laplacian RBF kernel instead of
the standard Gaussian RBF kernels and linear kernel because its nonlinear
projection creates additional separation between the data points in the high-
dimensional SVM space, and hence simplifies the classification task [57, 67].
The classification parameters were tuned via a 10-fold cross-validation over
the training dataset to yield the best classification results.

5.5. Computational Time

In order to increase the computational efficiency and reduce the pro-
cessing time, we employed an image level parallelization with a bag-of-tasks
execution model on a multi-core CPU equipped machine. Each CPU core
was assigned an image and the tasks of nuclei detection, cell segmenta-
tion, and non-Gaussian modeling in that image. Multiple images were pro-
cessed concurrently on multiple CPU cores. This parallelization strategy has
been utilized to conduct cancer grading [9] and large-scale image retrieval in
histopathology [68].

The execution time with respect to candidate detection, wavelet decom-
position, model parameter estimation, and classification was measured using
the Matlab R2013a platform on a 2.67 GHz Intel Core 4 processor with 10GB
of RAM. Since the mitosis candidates used in the experiments have various
sizes containing different numbers of pixels, the computational times reported
here are the average values across the entire dataset. The running time for
segmenting a single mitosis candidate is 0.16 second(s). The UDT-CWT
decomposition and model fitting take 0.14s and 0.33s per cell, respectively.
For a classification task in Experiment I using all the model parameters, the
average computational time is 5.54s for one cross-validation. The running
time (including segmentation and feature extraction) for Experiment II (two
detection tasks) and Experiment III took about 3.5 hours, 8 hours and 2
hour, respectively, for the training stage without an optimized GPU imple-
mentation. At the detection stage, three tasks took about 1.2 mins to process
each H&E image.
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6. Concluding Remarks

We presented a wavelet based non-Gaussian modeling approach for auto-
mated detection of mitosis in breast cancer histopathological images. Since
mitotic cells exhibit highly various appearances and textures in the images,
there is no simple way to characterize mitosis based on shapes and pixel
intensities. In this study, bivariate non-Gaussian models of GGD and SαS
were employed to characterize both non-Gaussian heavy-tailed behavior of
wavelet coefficient marginal distribution and strong inter-scale dependencies
across wavelet subbands. The properties allow to capture the discrimina-
tive features that appear at both coarse scale and previous adjacent scale in
the wavelet domain. The model parameters estimated from wavelet coeffi-
cient distributions were used as cell attributes to train a SVM classifier. The
wavelet based non-Gaussian modeling method was evaluated on both the
benchmark MITOS dataset and an independent dataset from two clinical
sites. Compared to the univariate models and Gaussian model, the bivari-
ate SαS model achieved superior classification performance with the AUC
values of 0.82 in distinguishing mitosis from non-mitosis. The automated
mitosis detection method might assist pathologists in enhancing the opera-
tional efficiency and productivity as well as improving diagnostic confidence
during clinical practice. Indeed, the mitosis detection of critical importance
in breast cancer grading is a challenging task. In future work, we aim at
validating the approach on a larger dataset and extending to different types
of cancers. Furthermore, we also plan to investigate other statistical models
to improve the accuracy of mitosis detection.
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