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Abstract. Combining multiple classifiers can give substantial improvement in predic-
tion performance of learning algorithms especially in the presence of non-informative
features in the data sets. This technique can also be used for estimating class member-
ship probabilities. We propose an ensemble of k Nearest Neighbours (kNN) classifiers
for class membership probability estimation in the presence of non-informative fea-
tures in the data. This is done in two steps. Firstly, we select classifiers based upon
their individual performance from a set of base kNN models, each generated on a
bootstrap sample using a random feature set from the feature space of training data.
Secondly, a step wise selection is used on the selected learners, and those models
are added to the ensemble that maximize its predictive performance. We use bench
mark data sets with some added non-informative features for the evaluation of our
method. Experimental comparison of the proposed method with usual kNN, bagged
kNN, random kNN and random forest shows that it leads to high predictive perfor-
mance in terms of minimum Brier score on most of the data sets. The results are also
verified by simulation studies.
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1 Introduction
In numerous real life applications, class membership probabilities of individ-
uals are required in addition to their class labels. For example, in safety-critical
domains such as surgery, oncology, internal medicine, pathology, paediatrics
and human genetics, these probabilities are needed. In all the aforementioned
areas, probability estimates are more useful than simple classification as they
provide a measure of reliability of the decision taken about an individual (Lee
et al. (2010), Malley et al. (2012), Kruppa et al. (2012), Kruppa et al. (2014a,
2014b)). Machine learning techniques used mainly for classification can be
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used as non-parametric methods for class membership probability estimation
in order to avoid the assumptions imposed in parametric models used for the
estimation of these probabilities (Kruppa et al. (2012), Malley et al. (2012)).

In many real life problems, one often encounters imprecise data such as
data with non-informative features. These features dramatically decrease the
prediction performance of the algorithms (Nettleton et al. (2010)). Feature
selection methods that investigate the most discriminative features from the
original features are usually recommended to mitigate the effect of such
non-informative features (Mahmoud et al. 2014a, 2014b). However, different
feature selection methods result in different feature subsets for the same data
set thus varying feature relevancy. This encourages combining the results of
several best feature subsets.

It has been investigated in the last two decades that combining the outputs
of multiple models, known as ensemble techniques, results in improved pre-
diction performance (Breiman (1996), Hothorn and Lausen (2003), Kuncheva
(2004)) and are more resilient to non-informative features in the data than
using an individual model (Melville et al. (2004)). Recently, an ensemble of
optimal trees has been suggested for class membership probability estimation
by Khan et al. (2015).

k Nearest Neighbour (kNN) learning algorithm is one of the simplest and
oldest methods. It classifies an unknown observation to the class of majority
among its k nearest neighbour points in the training data as measured by
a distance metric (Cover and Hart (1967)). Despite its simplicity, kNN gives
competitive results and in some cases even outperforms other complex learn-
ing algorithms. However, kNN is vulnerable to non-informative features in
the data. Attempts have been made by researchers to improve the perfor-
mance of Nearest Neighbour algorithm by ensemble techniques (Bay (1998),
Li et al. (2011), Samworth (2012)). In this manuscript, we propose an ensemble
of subset of kNN classifiers (ESkNN) for the task of estimating class member-
ship probability, particularly in the presence of non-informative features in
the data set and compare the results with those of simple kNN, bagged kNN
(BkNN), random kNN (RkNN) and random forest (RF).

2 Proposed Ensemble of Subset of kNN algorithm
To construct the ensemble of subset of kNN models (ESkNN), a two stage
strategy is implemented. Consider a training data set of n×(d+1) dimensions,
consisting of data points L = (x,y), an instance is characterized by d features
along with the corresponding class label. The training data setL is randomly
divided into two sets, a learning set and validation set and the ensemble is
developed in the following steps.

1. Draw m random feature sets of size l from d input features, l < d and
draw m bootstrap samples on these feature sets from the learning set.
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Fig. 1. A flow chart of the steps of ESkNN for class membership probability estimation.

2. Build m kNN models and select h of the m models that give the highest
accuracy on the out-of-bag observations (observations that are left out
from the bootstrap sample).

3. In the next stage add the selected h models one by one starting from the
best model and assess its collective performance on the validation set. The
process is repeated until all the h models are evaluated in the ensemble.

4. A model is selected if it gives minimum Brier score (BS) on the validation
set. Let BS〈r−1〉 be the Brier score of the ensemble without the rth model
and BS〈r〉 is the Brier score after adding the model, the rth model is selected
if

BS〈r〉 < BS〈r−1〉. (1)

5. The group membership probability estimate of the test instance is the
averaged probability estimate over all t selected models.

A flow chart of the procedure of ESkNN is shown in Figure 1.
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3 Performance Measure of the Methods
As a performance measure, we use Brier score introduced by Brier (1950). It
provides a measure of accuracy of the predicted probabilities. It is the most
common and appropriate criterion for binary class outcome and can be used
for the evaluation of predicted probabilities by a machine learning algorithm,
in situations where the true probabilities are unknown (Malley et al. (2012)).
Gneiting and Raftery (2007) stated that the Brier score is a proper measure and
its minimum value can only occur if the calculated probabilities are taken as
the true probabilities which are unknown. It follows that a machine learning
technique that has the smallest value of the Brier score will be performing
best in estimating group membership probabilities. The Brier score is given
as:

BS = E(yi − p(yi|x))2, (2)

where yi ∈ {0, 1} and p(yi|x) is the true but unknown probability of the state
of the outcome for yi given the features. An estimator for the above score for
t test observations is:

B̂S =

∑t
i=1

(
yi − p̂(yi|x)

)2

t
. (3)

4 Results and Discussion
4.1 Experiments and Discussion on Bench Mark Problems

The performance of the ESkNN in terms of the Brier score, is evaluated on
a total of twenty five data sets taken from UCI, KEEL databases and from
within R-Libraries, mlbench, mboost, ipred, gclus and mmst. Summary of the
data sets is given in table 1.

The ESkNN is assessed in two scenarios. Firstly, all the methods are ap-
plied on the data sets with their original features and secondly, the feature
space of all the data sets are extended by adding 500 randomly generated
non-informative features. The results for both the cases are given in Table
2 and 3. Each of the data sets is divided into test and training parts where
the training part consists of 90% of observations and the remaining 10% is
reserved for testing. The methods are applied on each data set in a total of
1000 runs and are evaluated on the testing data set in each run. The final
Brier score is the average of Brier scores of the 1000 runs. The experiments
are carried out using the R-Program. The values of the hyper parameters for
the methods are selected by using the ”tune” function within the R-Package
“e1071”.

The results from Table 2 reveal that ESkNN is giving the smallest Brier
scores on 23 data sets out of the total 25 data sets among all kNN based meth-
ods, whereas on Bands data set it gives better probability estimate than kNN
and BkNN and comparable to RkNN. When comparing to random forest it
gives low Brier scores on 10 data sets.
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Table 1. Summary of the data sets. The first five data sets are microarray.

Data Sets Sample size Features Feature Type
(Continuous/Discrete/Catagorical)

Adenocarcinoma 76 9869 (9869/0/0)
Prostate 102 6033 (6033/0/0)
Breast2 77 4869 (4869/0/0)
Leukemia 38 3052 (3052/0/0)
Colon 61 2000 (2000/0/0)
nki70 Breast Cancer 144 77 (72/1/4)

Glaucoma M 198 62 (62/0/0)
Wpbc 194(198) 33 (31/2/0)
Body 507 24 (24/0/0)
Biopsy 683(699) 9 (0/9/0)
SAheart 462 9 (5/3/1)
Diabetes 768 8 (8/0/0)
Appendicitis 106 7 (7/0/0)
Bupa 345 6 (1/5/0)
Dystrophy 194 5 (2/3/0)
Mammographic 830(961) 5 (0/5/0)
Transfusion 748 4 (2/2/0)
Hepatitis 80 19 (2/17/0)
Indian Liver Patients 583 10 (5/4/1)
Haberman 306 3 (0/3/0)
Phoneme 1000 5 (5/0/0)
Two Norms 1000 20 (20/0/0)
German Credit 1000 20 (0/7/13)
House voting 435 16 (0/0/16)
Bands 365 19 (13/6/0)
Sonar 208 60 (60/0/0)

In case of non-informative features in the data sets from Table 3, the ESkNN
outperforms kNN based methods on most of the data sets. Comparing to ran-
dom forest it gives low Brier scores on 10 data sets. These results indicate that
the ESkNN is better than the kNN and kNN based methods and comparable
to random forest.

ESkNN is evaluated for various values of k, the number of nearest neigh-
bours and m, the number of models in the initial ensemble. Figure 2 reveals
varied behaviour of ESkNN on different data sets for the choice of k and m. It
is recommended to fine tune the value of k by cross validation, for example.
Figure 2 (b) shows that a very small number of models are not reasonable and
a very large number of models might be computationally expensive hence a
moderate number of models is recommended.

4.2 Simulation Study

We evaluate the predictive performance of ESkNN by simulation study in
addition to the benchmark data sets. We used two examples in our simu-
lation study. The models proposed in our simulation study involve several
variations to gain an understanding of the behaviour of the methods under
different situations.

Simulation Model 1

In the first model, Model 1, binary class data is generated on 20 features. The
features for class 1 are generated from N(2,wΨ), while those of class 2 are
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Table 2. Brier scores on the data sets on five methods.

Data Sets kNN BkNN RkNN ESkNN RF

Haberman 0.199 0.197 0.181 0.171 0.199
Dystrophy 0.105 0.102 0.098 0.097 0.096
Mammographic 0.141 0.140 0.127 0.115 0.129
Transfusion 0.168 0.167 0.164 0.160 0.172
Bupa 0.221 0.215 0.217 0.215 0.190
Appendicitis 0.126 0.119 0.109 0.105 0.119
Diabetes 0.177 0.172 0.173 0.168 0.156
Biopsy 0.024 0.024 0.025 0.021 0.025
SAheart 0.209 0.207 0.203 0.200 0.189
Bands 0.235 0.231 0.207 0.208 0.183
German Credit 0.216 0.214 0.201 0.178 0.159
Body 0.019 0.019 0.036 0.012 0.031
Wpbc 0.182 0.182 0.176 0.172 0.168
Sonar 0.179 0.179 0.109 0.092 0.127
Glaucoma M 0.147 0.144 0.142 0.130 0.089
Indian liver 0.191 0.189 0.179 0.163 0.174
Phoneme 0.130 0.128 0.130 0.121 0.105
Two Norms 0.067 0.068 0.084 0.029 0.062
Hepatitis 0.310 0.259 0.209 0.221 0.195
House voting 0.065 0.065 0.065 0.044 0.030

Colon 0.145 0.144 0.139 0.138 0.129
Leukaemia 0.030 0.030 0.062 0.027 0.054
Breast2 0.243 0.241 0.233 0.230 0.210
Prostate 0.138 0.137 0.145 0.100 0.084
Adenocarcinoma 0.126 0.119 0.119 0.114 0.125

Table 3. Brier scores of the methods with added non-informative features to the data.

Data Sets kNN BkNN RkNN ESkNN RF

Haberman 0.204 0.202 0.196 0.191 0.196
Dystrophy 0.158 0.172 0.220 0.149 0.118
Mammographic 0.153 0.160 0.231 0.139 0.123
Transfusion 0.187 0.186 0.180 0.160 0.166
Bupa 0.229 0.228 0.243 0.222 0.230
Appendicitis 0.143 0.142 0.145 0.139 0.132
Diabetes 0.240 0.236 0.225 0.216 0.173
Biopsy 0.053 0.052 0.067 0.048 0.029
SAheart 0.252 0.247 0.228 0.225 0.218
Bands 0.237 0.235 0.222 0.213 0.221
German Credit 0.218 0.216 0.210 0.208 0.182
Body 0.082 0.082 0.107 0.078 0.065
Wpbc 0.196 0.190 0.180 0.179 0.181
Sonar 0.164 0.139 0.201 0.104 0.193
Glaucoma M 0.157 0.156 0.212 0.121 0.135
Indian liver 0.198 0.199 0.201 0.183 0.189
Phoneme 0.174 0.170 0.236 0.154 0.163
Two Norms 0.126 0.084 0.203 0.082 0.124
Hepatitis 0.239 0.230 0.239 0.223 0.234
House Voting 0.135 0.134 0.212 0.127 0.103

generated from N(1, 1). The values considered for w in class 1 are 3, 5, 10,
15 and 20. The predictive performance of the algorithms are investigated by
adding 50, 100, 200 and 500 non-informative features, generated from normal
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Fig. 2. Performance of ESkNN in presence of non-informative features in the data for;
(a): different values of k, (b): different values of m

distribution, to the data.

Ψ =


σ1,1 %1,2 , ..., %1,d
%2,1 σ2,2 , ..., %2,d
...

...
...

...
%d,1 %d,2 , ..., σd,d

 (4)

where %i j are the covariances between the features defined as:

%i j = (1/2)|i− j|, i, j = 1, ..., d, (5)

and σi j = 1 for i = j. The variables within class 1 are correlated among each
other and are exhibiting negligible/no correlation with the features of class 2.

Simulation Model 2
The second simulation model developed here is a four-dimensional model,
derived from the model proposed by Mease et al. (2007). The feature vector x
is a random vector uniformly distributed over [0, 100]. The class is determined
by the distance r, the distance of the feature vector x from the central point.
The class probabilities given the features are:

p(y = 1 | x) =


1 r < 110,
150−r

140 110 ≤ r ≤ 140,
0 otherwise.

The binary response variable y is generated from the above distribution using
a binomial random number generator. We extended the dimensions of the
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data by adding 50,100, 200 and 500 randomly generated non-informative
feature.

4.3 Simulation Results and Discussion

The results from Table 4 reveal that ESkNN consistently outperform the other
methods. In case of different values of w to the data in Model 1, as shown in
Table 4, random forest outperforms all the other methods. However, in kNN
based methods the ESkNN consistently gives higher accuracy than kNN,
BkNN and RkNN.

The Brier scores from Model 2 given in Table 5, show that ESkNN consis-
tently outperforms kNN, BkNN, RkNN and RF for the data with original 4
features and added 50, 100, 200 and 500 features.

Table 4. Brier score of the five methods with added non-informative features to the
data set from Model 1 and different values of w on 70 features (20+ 50 non-informative)
shown in first column. The best result is highlighted in bold.

Features kNN BkNN RkNN ESkNN RF

20 0.042 0.041 0.087 0.039 0.071
20+50 0.066 0.079 0.086 0.060 0.081

20+100 0.081 0.076 0.095 0.061 0.086
20+200 0.103 0.094 0.095 0.062 0.092
20+500 0.137 0.130 0.088 0.061 0.113

w kNN BkNN RkNN ESkNN RF

3 0.198 0.151 0.155 0.102 0.081
5 0.221 0.191 0.136 0.101 0.062
10 0.222 0.186 0.099 0.081 0.038
15 0.251 0.172 0.089 0.057 0.028
20 0.256 0.159 0.062 0.043 0.022

Table 5. Brier score of the methods on the data from Model 2 with the added non-
informative features. Results of the best performing method is highlighted in bold.

Features kNN BkNN RkNN ESkNN RF

4 0.101 0.101 0.145 0.090 0.112
4+50 0.158 0.157 0.185 0.146 0.176

4+100 0.165 0.164 0.190 0.152 0.186
4+200 0.179 0.178 0.196 0.162 0.177
4+500 0.188 0.182 0.209 0.151 0.180

5 Conclusion
We proposed an ensemble of subset of kNN models, ESkNN, for class mem-
bership probability estimation. The ESkNN improves the predictive perfor-
mance of kNN based methods. The ESkNN reveals better predictive perfor-
mance than the kNN, bagged kNN and random kNN in most of the cases (both
in bench marking and simulation) and gives comparable results to random
forest. The performance of ESkNN is also evaluated in order to deal with the



Ensemble of Subset of k-Nearest Neighbours Models 9

KNN BKNN RKNN ESKNN RF

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Model 1 with 200 Added Non−informative Features

B
rie

r 
S

co
re

KNN BKNN RKNN ESKNN RF

0.
05

0.
10

0.
15

Model 1 with 500 Added Non−informative Features

B
rie

r 
S

co
re

(a) (b)

KNN BKNN RKNN ESKNN RF

0.
12

0.
14

0.
16

0.
18

0.
20

Model 2 with 50 Added Non−informative Features

B
rie

r 
S

co
re

KNN BKNN RKNN ESKNN RF

0.
14

0.
16

0.
18

0.
20

0.
22

Model 2 with 500 Added Non−informative Features

B
rie

r 
S

co
re

(c) (d)

Fig. 3. Brier score, of simulated data from Model 1 and Model 2 for the five classifiers
kNN, BkNN, RkNN, ESkNN and RF with added non-informative features to the data.

issue of non-informative features in the data. The results demonstrate that the
ESkNN provides better estimates of class membership probability than the
other methods considered in the presence of non-informative features in the
data. Besides performance improvement, the ESkNN as using kNN classifier
is simple in implementation and interpretation. The ESkNN is implemented
in an R-package, ESkNN.
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