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Summary. In the two decades since the discovery of feathered dinosaurs [1–3], the range of 31	

plumage known from non-avialan theropods has expanded significantly, confirming several 32	

features predicted by developmentally informed models of feather evolution [4–10]. However, 33	

three-dimensional feather morphology and evolutionary patterns remain difficult to interpret, due 34	

to compression in sedimentary rocks [9,11]. Recent discoveries in Cretaceous amber from 35	

Canada, France, Japan, Lebanon, Myanmar, and the USA [12–18] reveal much finer levels of 36	

structural detail, but taxonomic placement is uncertain because plumage is rarely associated with 37	

identifiable skeletal material [14]. Here we describe the feathered tail of a non-avialan theropod 38	

preserved in mid-Cretaceous (~99 Ma) amber from Kachin State, Myanmar [17], with plumage 39	

structure that informs directly the evolutionary developmental pathway of feathers. This 40	

specimen provides an opportunity to document pristine feathers in direct association with a 41	

putative juvenile coelurosaur, preserving fine morphological details, including the spatial 42	

arrangement of follicles and feathers on the body, and micrometre-scale features of the plumage. 43	

Many feathers exhibit a short, slender rachis with alternating barbs and a uniform series of 44	

contiguous barbules, supporting the developmental hypothesis that barbs already possessed 45	

barbules when they fused to form the rachis [19]. Beneath the feathers, carbonized soft tissues 46	

offer a glimpse of preservational potential and history for the inclusion; abundant Fe2+ suggests 47	

vestiges of primary haemoglobin and ferritin remain trapped within the tail. The new find 48	

highlights the unique preservation potential of amber for understanding the morphology and 49	

evolution of coelurosaurian integumentary structures. 50	

 51	

Keywords: Coelurosauria; feather evolution; Burmese amber; Cenomanian 52	

 53	

Results and Discussion:  54	

Preservation. The tail within DIP-V-15103 is visible to the naked eye as an elongate and gently 55	

curved structure (length = 36.73 mm). A dense covering of feathers protrudes from the tail, 56	

obscuring underlying details, so Synchrotron Radiation (SR) X-ray phase contrast µCT scanning 57	

was employed to examine concealed osteological and soft tissue features (Figure 1). Soft 58	

tissues—presumably muscles, ligaments, and skin—are visible sporadically through the 59	

plumage, clinging to the bones in a manner suggestive of the desiccation common to other 60	
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vertebrate remains in amber [20]. These tissues have largely been reduced to a carbon film, 61	

retaining only traces of their original chemical composition. Based on analyses further described 62	

in the Supplemental Information, SR µ-XFI shows iron is present in the carbonized soft tissues, 63	

and as a series of fine linear features corresponding to exposed plumage (Figure 2). Copper is 64	

slightly more abundant in amber containing plumage, but this signal is cryptic and not a clear 65	

indicator for preserved pigments. Elements such as Ca, Sc, Zn, Ti, Ge, Mn appear associated 66	

with clay minerals filling voids in the amber. We derived the valence state of iron in the sample 67	

qualitatively by comparison to the standard XAS of Fe foil, Fe2O3, Fe3O4, and FeO. Our 68	

calculations indicate that more than 80% of iron in the sample is ferrous (Fe2+). Similar 69	

measurements have been made on vessels preserved within Tyrannosaurus and 70	

Brachylophosaurus bones, and interpreted as indicating the presence of goethite and biogenic 71	

iron oxides produced from haemoglobin decomposition [21]. The presence of large quantities of 72	

Fe2+ in DIP-V-15103 suggests that some primary iron from haemoglobin or ferritin remains 73	

trapped within the inclusion. SEM analyses show pyrite (FeS2) is also present, but not as a 74	

significant contributor to the distribution of iron within the specimen (Figure S3). 75	

The close contact between the skin and surrounding amber, paired with the mummified 76	

external appearance of the skin where it has shriveled across the surface of the vertebrae, suggest 77	

one of two scenarios. Either the tail-bearer was dead and partially desiccated before 78	

encapsulation, or rapidly dried due to resin interactions. Early-stage drying is further supported 79	

by the limited amount of cloudy amber surrounding the tail (Figures 1C, S2), which is a 80	

preservational feature related to decay products or moisture interacting with resin [22]. However, 81	

drying and resin impregnation were not sufficient to preserve cellular detail in the soft tissues. 82	

Based on the clays observed where bone breaches the amber surface, skeletal material was likely 83	

exposed on the surface after resin polymerization. The bone has been partially dissolved and 84	

infilled with clay from the surrounding matrix [17], much like insect body cavities in this deposit 85	

(Figure S2A). Presence of Fe2+ within the carbonized remains suggests that organic components 86	

were trapped early and remained undisturbed by subsequent events. Further taphonomic 87	

constraints are difficult to infer. It is unclear whether the lack of melanosomes within the keratin 88	

sheets of the surrounding feathers (Figures 2B, S3) might provide additional taphonomic 89	

information, or if their absence results from weakly pigmented feathers or the small sample area 90	

available for SEM analyses. Artificial maturation experiments [23] have shown the breakdown of 91	
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modern melanosomes at a range of temperatures, but this work was conducted at temperatures 92	

that would also degrade amber. The taphonomic pathway that led to the preservation of DIP-V-93	

15103 is not entirely clear, but it suggests promise for more detailed examinations of organics or 94	

pigmentation in vertebrate inclusions.  95	

 96	

Osteology. SR X-ray µCT scanning of DIP-V-15103 (Figure 1) revealed that soft tissues have a 97	

density insufficiently different from the partially replaced skeletal elements to permit X-ray 98	

imaging and virtual dissection of osteology alone. Consequently, many diagnostic and 99	

comparative osteological details remain obscured. However, two vertebrae are clearly delineated 100	

ventrally (Figure 1F–H). Extrapolating lengths of these vertebrae, the preserved tail section 101	

contains at least eight full vertebrae and part of a ninth. The vertebrae are elongate, with 102	

anteroposterior lengths double the maximum diameter of the tail (Supplemental Table 1). 103	

Vertebral proportions and tail flexion preclude membership within the Pygostylia [sensu 24]. 104	

Even with the skin adpressed to the bony surface, no features other than the grooved ventral sulci 105	

of two centra are clearly visible. This lack of topography suggests that the vertebrae lack 106	

prominent neural arches, transverse processes, or haemal arches. Therefore, the preserved 107	

segment is only a small mid to distal portion of what was likely a relatively long tail, with the 108	

total caudal vertebral count not reasonably less than fifteen, and likely greater than twenty-five. 109	

Based on specimen size, it also seems likely that the tail belonged to a juvenile. 110	

DIP-V-15103 is interpreted as a non-avialan coelurosaur tail: its vertebral profiles and 111	

estimated length rule out avebrevicaudan birds, oviraptorosaurs, and scansoriopterygians—112	

lineages generally characterized by a short caudal series with subequal centra [25–27], with the 113	

exception of Epidendrosaurus. The branched feathers have a weak pennaceous arrangement of 114	

barbs consistent with non-avialan coelurosaurs, particularly paravians. Although the feathers are 115	

somewhat pennaceous, none of the observed osteological features preclude a compsognathid [28] 116	

affinity. The presence of pennaceous feathers in pairs down the length of the tail may point 117	

toward a source within Pennaraptora [9], placing a lower limit on the specimen’s phylogenetic 118	

position. However, the distribution and shape of the feathers only strongly supports placement 119	

crownward of basal coelurosaurs, such as tyrannosaurids and compsognathids. In terms of an 120	

upper limit, the specimen can be confidently excluded from Pygostylia; and it can likely be 121	

excluded from the long-tailed birds, based on pronounced ventral grooves on the vertebral 122	
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centra. Additional taxonomic assessment details are provided in Supplemental Information. 123	

 124	

Plumage. Both SR X-ray µCT reconstruction and standard light microscopy confirm feather 125	

attachments throughout the preserved tail length (Figure 1). A bilaterally paired series of 126	

posterodorsally oriented feathers extends from the dorsal midline (Figure 1D,E). Another row of 127	

feathers is present at mid-height on each side of the tail, with feathers extending posterolaterally 128	

at roughly 45° to its long axis (Figure 1D–G). These follicle pairs appear evenly spaced along the 129	

length of the tail. Where the outlines of two vertebral centra are visible, follicles are located at 130	

the mid-lengths of centra and at intervertebral joints. Ventral plumage is sparse, consisting of fine 131	

feathers that follow the long axis of the tail closely (Figure 1 B,G,H). Overall, the plumage forms 132	

laterally directed keels on either side of the vertebral column, providing a unique opportunity to 133	

observe feather counts and orientations within the contour-like caudal plumage of a coelurosaur. 134	

DIP-V-15103 does not show the splaying of large pennaceous rectrices observed alongside the 135	

posteriormost caudals of long-tailed birds [29]. Either splaying was absent in this individual, or 136	

only present caudally, beyond the preserved region. Nevertheless, the arrangement of feathers 137	

into lateral keels in DIP-V-15103 is similar to the paravian tail fan or frond [9]. Such 138	

arrangements, composed of different feather types, can occur not just at the distal tip but also 139	

along the entire length of the tail. Amber preservation suggests that the tail fans and fronds 140	

preserved in paravians are not merely a taphonomic artefact of compression.  141	

If DIP-V-15103 indeed represents a juvenile coelurosaur tail, the feathers most likely 142	

characterize adult plumage—however there is some room for uncertainty. Basal taxa within 143	

Pennaraptora, such as Similicaudipteryx, are thought to have undergone dramatic moults that 144	

affected the tail region [8], meanwhile some basal members of Pygostylia have precocial 145	

juveniles with adult-like plumage [14]. The pennaceous feathers and barbules of DIP-V-15103 146	

suggests an adult-like plumage, where feathers would not have been replaced by different 147	

morphotypes in subsequent moults. Alternatively, the feather-bearer may not have conformed to 148	

the moult patterns found in modern birds. 149	

The feathers of DIP-V-15103 are similar to each other in morphology, regardless of position 150	

on the tail (Figures 3, S4). All preserved feathers have a weakly defined rachis that is nearly 151	

indistinguishable from the barb rami apically, and slightly thickened basally (Figure 3). Both 152	

rachises and barbs are sub-cylindrical in cross section. Although the rachis thickens basally, the 153	
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maximum diameter near the follicle is approximately three times that of an adjacent barb ramus 154	

(Figures 3, S4). Feathers near the anterior end of the dorsal series have the greatest basal 155	

expansion observed among the plumage, with rachis widths approaching 60 µm (Figures 3, 156	

4A,B). Rachises among these feathers become as narrow as 18 µm in apical positions, while barb 157	

rami have widths ranging from 15 to 23 µm. Within individual feathers, barbs are positioned 158	

alternately along the rachis, approaching an opposite arrangement basally, with wide spacing 159	

between, and a weak planar arrangement (Figure 4). Flexion within the amber indicates barb 160	

rami were flexible, and the rachis itself was somewhat flexible. The open, flexible structure of 161	

these feathers is more analogous to modern ornamental feathers than to flight feathers, showing 162	

structural similarities to the distal components of contour feathers in certain Anseriformes 163	

(Figures 3, S5). The paired feather arrangement is similar to rectrices in modern birds, 164	

suggesting that tracts had become established in basal tail plumage before pygostyle 165	

development, with tail plumage becoming more specialized over time. If the entire tail bore 166	

plumage similar to that trapped in DIP-V-15103, the feather-bearer would likely have been 167	

incapable of flight. 168	

The feathers of DIP-V-15103 display exquisitely preserved barbules. Strikingly, the simple 169	

barbules branch not only within individual barbs but also unmodified from the rachis (Figures 3; 170	

4; S4G,H). In this regard, the feathers are comparable to the contours of many modern birds, 171	

which also possess some barbules that originate from the rachis (rachidial barbules), although 172	

usually from the proximal barb base and in reduced form. In DIP-V-15103, barbules branch in an 173	

evenly spaced, paired, and nearly symmetrical manner. This pattern remains consistent in both 174	

proximal and distal barbules, from proximal to distal barbs, and along the rachis. Barbules are 175	

consistently blade-shaped, with pigmentation outlining five basal cells followed by a poorly 176	

differentiated pennulum lacking discernible nodes or nodal protrusions (Figure 3E–H). Close 177	

spacing between barbules, combined with the orientation of their flattened surfaces (parallel to 178	

the feather’s long axis), yields open-vaned feathers that are largely pennaceous. 179	

The weakly developed rachis and contiguous barbule branching in DIP-V-15103 represents 180	

a novel combination among theropods. Within the evolutionary developmental model of feathers 181	

[5], DIP-V-15103 appears intermediate between stages IIIa (rachis with naked barbs) and IIIb 182	

(barbs with barbules, lacking a rachis), but does not exactly fit Stage IIIa+b (rachis with barbs 183	

bearing barbules) (Figure 4C). In DIP-V-15103, barbs exhibit an alternating arrangement along a 184	
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poorly defined rachis, with nearly dichotomous branching apically, and barbules continue along 185	

the surface of the rachis and barbs. The weakly developed rachis appears to have formed through 186	

fusion of individual barbs that already possessed barbules (Stage IIIb), instead of fusion of naked 187	

barbs (Stage IIIa) [5]. The barb branching pattern continues largely uninterrupted toward the 188	

follicle, as do the pervasive, undifferentiated barbules. Unless the condition observed in DIP-V-189	

15103 represents a secondary reduction of the rachis, the evolutionary pathway for feathers in 190	

this coelurosaur may have been through Stage IIIb (barbs with barbules), not Stage IIIa (fusion 191	

of naked barbs). Cytological observations of barbule development along the barb vane ridge 192	

support the evolutionary coupling of barbs and barbules [19,30]. Feather morphology of DIP-V-193	

15103 contrasts with the reduced rachis and long, naked, filamentous barbs in the branched 194	

caudal plumage of the dromaeosaurid Sinornithosaurus [6,8] and the therizinosauroid 195	

Beipiaosaurus [31]. This either suggests a greater diversity of tail plumage in coelurosaurians 196	

than previously suspected, or a simplified form of more derived pennaceous feathers in DIP-V-197	

15103. 198	

The unusual barbule configuration in DIP-V-15103 suggests that barbules were primitively 199	

distributed evenly throughout the length of the feather and only later became restricted to the 200	

barbs and proximal rachis and oriented so that their edges face the feather surfaces, as in modern 201	

avians. In modern birds, barbule cells originate in the subperiderm and merge into a syncytium 202	

on either side of the barb vane ridge [32,33]. The symmetrical arrangement of barbules along the 203	

barbs in DIP-V-15103 implies symmetry of barbule cells across the barb vane ridge. The 204	

contiguous barbule branching along the rachis probably occurs along the barb vane ridge leading 205	

to the apicalmost barb. In the lineage leading to birds, the barbules became spatially restricted to 206	

the barbs and the proximal portion of the rachis, presumably to accommodate increasing barb 207	

number and density related to rigid pennaceous feathers (Stage IIIa+b and/or IV) [5]. 208	

Alternatively, the barbule pattern in DIP-V-15103 may represent a highly derived and potentially 209	

experimental character state unrelated to the avian lineage. Whichever the case, DIP-V-15103 210	

suggests that non-avialan theropods had a greater variety of feather forms than predicted from 211	

developmental phenotypes in modern feathers [4,5,10].  212	

Traces of pigmentation exist within the entombed plumage. Discrete bands corresponding to 213	

basal cells within each barbule are visible due to loosely confined pigments (Figure 3C–H). 214	

Pigmentation is more pronounced within apical portions of each barbule, and in the barb rami 215	
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and rachis of dorsal feathers (Figures 1C, S4H). Coloration varies little within individual 216	

feathers, but dorsal plumage is significantly darker than ventral plumage. Preserved coloration 217	

suggests a chestnut brown dorsal surface, contrasting against pale or almost white ventral 218	

plumage (Figures 1A–C, S4A–D); however, taphonomic impacts on visible colors are unclear. A 219	

small section of the pale ventral plumage was available for SEM observations. No melanosomes 220	

were observed, suggesting ventral plumage was either unpigmented or pigmented through 221	

alternative means, such as carotenoids [34]. Keratin sheets are visible within the feather layer, 222	

displaying the distinctive, porous, laminar structure also observed in modern avian barbules 223	

under SEM (Figure S2A,B). 224	

The theropod tail reported here is an astonishing fossil, highlighting the unique preservation 225	

potential of amber. Importantly, in the context of bird origins, feathers and flight are key 226	

elements contributing to the success of the clade. Recent finds from Asia [1–4,6,8–11] have 227	

revealed unexpected diversity in feather morphologies and flight modes among the proliferation 228	

of small Jurassic–Cretaceous theropods near the origin of birds with powered flight. DIP-V-229	

15103 adds another morphotype to this diversity. The integration of developmental studies 230	

[5,7,33] and paleontology yields enriched models of morphological character evolution that help 231	

explain major evolutionary transitions in key clades such as theropods, including birds.  With 232	

preservation in amber, the finest details of feathers are visible in three-dimensions, providing 233	

concrete evidence for feather morphologies and arrangement upon the tail, and supporting an 234	

important role for barbs and barbules in feather evolution. 235	

 236	

Experimental Procedures: 237	

DIP-V-15103 was imaged and observed using propagation phase contrast Synchrotron Radiation 238	

X-ray microtomography (PPC-SR X-ray µCT); standard microscopy, micro- and 239	

macrophotography (including transmitted, incident, dark field, and UV lighting); and scanning 240	

electron microscopy (SEM). Chemical composition was analyzed using Synchrotron Radiation 241	

micro-X-ray fluorescence imaging (µ-XFI), and X-ray absorption spectroscopy (XAS). Full 242	

details of experimental procedures for imaging and chemical analyses are provided in 243	

Supplemental Experimental Procedures. Feather morphological terms follow [5] and [35], while 244	

pigmentation terminology follows [36]. Institutional abbreviations include DIP (Dexu Institute of 245	
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Palaeontology, Chaozhou, China); RSM (Royal Saskatchewan Museum, Regina, Canada). 246	

Specimen measurements are based on ocular micrometer readings, or 3-D reconstructions (with 247	

commentary). 248	
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Figure 1. Photomicrographs and SR X-ray µCT reconstructions of DIP-V-15103. (A) 351	

Dorsolateral overview. (B) Ventrolateral overview with decay products (bubbles in foreground, 352	

staining to lower right). (C) Caudal exposure of tail, showing darker dorsal plumage (top), milky 353	

amber, exposed carbon film around vertebrae (center). (D–H) Reconstructions focussing on 354	

dorsolateral, detailed dorsal, ventrolateral, detailed ventral, and detailed dorsal aspects of tail, 355	

respectively. Arrowheads in (A), (D) mark rachis of feather featured in Figure 4A. Asterisks in 356	

(A) and (C) indicate carbonized film (soft tissue) exposure. Arrows in (B), (E–G) indicate shared 357	

landmark, plus 358	

bubbles 359	

exaggerating rachis 360	

dimensions; 361	

brackets in (G) and 362	

(H) delineate two 363	

vertebrae with 364	

clear transverse 365	

expansion and 366	

curvature of tail at 367	

articulation. 368	

Abbreviations for 369	

feather rachises: d, 370	

dorsal; dl, 371	

dorsalmost lateral; 372	

vl, ventralmost 373	

lateral; v, ventral. 374	

Scale bars 5 mm in 375	

A,B,D,F; 2 mm in 376	

C,E,G,H. See also 377	

Figure S2. 378	

	  379	
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Figure 2. SR µ-XFI maps and scanning electron micrographs of DIP-V-15103. (A) Elemental 380	

maps and ROI image for exposed soft tissue preservation in DIP-V-15103; black carbon film 381	

surrounds clay minerals infilling void between vertebrae or partially replacing them; milky 382	

amber related to decay surrounds vertebrae and plumage (ROI prior to clay flake removal better 383	

visible in Figure S3H). (B) Patchy keratin preservation with traces of fibrous structure in DIP-V-384	

15103 ventral feather. (C) Fibrous keratin sheets and isolated melanosomes from barb of modern 385	

Indian peafowl (Pavo cristatus; Galliformes). Scale bars = 2 mm in A; 1 µm in B,C. See also 386	

Figure S3. 387	
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Figure 3. Photomicrographs of DIP-V-15103 plumage. (A) Pale ventral feather in transmitted 389	

light (arrow indicates rachis apex). (B) Dark field image of (A), highlighting structure and visible 390	

color. (C) Dark dorsal feather in transmitted light, apex toward bottom of image. (D) Base of 391	

ventral feather (arrow) with weakly developed rachis. (E) Pigment distribution and 392	

microstructure of barbules in (C), with white lines pointing to pigmented regions of barbules. (F-393	

H) Barbule structure variation and pigmentation, among barbs, and ‘rachis’ with rachidial 394	

barbules (near arrows); images from apical, mid-feather, and basal positions respectively. Scale 395	

bars = 1 mm in A, 0.5 mm in B–E, 0.25 mm in F-H. See also Figure S4. 396	

	  397	
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Figure 4. DIP-V-15103 structural overview, and feather evolutionary-developmental model fit. 398	

(A,B) Overview of largest and most planar feather on tail (dorsal series, anterior end), with 399	

matching interpretive diagram of barbs and barbules. Barbules omitted on upper side and on one 400	

barb section (near black arrow) to show rachidial barbules and structure; white arrow indicates 401	

follicle. (C) Evolutionary-developmental model and placement of new amber specimen. Brown 402	

= calamus, blue = barb ramus, red = barbule, purple = rachis [after 5, 12]. Scale bars = 1 mm in 403	

A,B. 404	


