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Abstract

Living organisms employ endogenous negative feedback loops to maintain homeosta-

sis despite environmental fluctuations. A pressing open challenge in Synthetic Biology
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is to design and implement synthetic circuits to control host cells’ behavior, in order to

regulate and maintain desired conditions. To cope with the high degree of circuit com-

plexity required to accomplish this task and the intrinsic modularity of classical control

schemes, we suggest the implementation of synthetic endogenous feedback loops across

more than one cell population. The distribution of the sensing, computation and actu-

ation functions required to achieve regulation across different cell populations within a

consortium allows the genetic engineering in a particular cell to be reduced, increases

the robustness, and makes it possible to reuse the synthesized modules for different

control applications. Here, we analyze, in-silico, the design of a synthetic feedback con-

troller implemented across two cell populations in a consortium. We study the effects

of distributing the various functions required to build a control system across two pop-

ulations, prove the robustness and modularity of the strategy described and provide a

computational proof-of-concept of its feasibility.

Keywords

synthetic biology, E. coli, synthetic microbial consortia, feedback control, gene networks,

mathematical modeling

The majority of living organisms can maintain homeostasis despite external stimuli or envi-1

ronmental fluctuations. Hormone secretion and signaling pathways functioning in multicel-2

lular organisms (1 ), as well as the control of bacterial chemotaxis (2 ), are only a few of the3

many examples in which the internal state of biological systems is regulated or maintained4

by employing a negative feedback mechanism.5

In the last few years, experimental approaches to implement exogenous negative feedback6

control schemes have been proposed in order to achieve real-time control of gene expression7
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in living cells (3–8 ). In all these applications, the experimental setup comprises a device to 1

grow cells, a sensing apparatus (cytofluorimeter or fluorescence microscope) to monitor cells’ 2

behavior (quantify fluorescence from fluorescent reporters), a PC running control algorithms 3

and a set of actuators to provide inputs to the cells according to the control objective and 4

their current status. 5

An open challenge in Synthetic Biology is to synthesize endogenous negative feedback 6

controllers, where all the sensing, computation and actuation functions are embedded in 7

living cells. The range of possible applications of synthetic regulators can span from the 8

optimization of chemical production in bioreactors (9 , 10 ), to targeted drug delivery in 9

multicellular organisms (11 ). 10

To address this challenge, the implementation of synthetic feedback control schemes in 11

single cells has been proposed. Typical control goals are set-point regulation (12 , 13 ), or 12

signal tracking control (14 ) of target proteins. These complex functions are achieved through 13

the design of generally complicated synthetic circuits that can be difficult to characterize and 14

integrate in a single cell, often resulting in metabolic burden that can be self defeating for 15

the host (15 , 16 ). Moreover, once cells have been synthetically engineered, any change in 16

the control strategy or its application requires re-engineering the entire system leading to 17

poor modularity and adaptability of the original design and its parts (17 ). 18

In order to overcome these drawbacks, inspired by the intrinsic modularity of classical 19

control schemes, we propose to distribute the sensing, computation and actuation functions 20

across different cell populations within a microbial consortium. Recently, the construction 21

and the study of a synthetic oscillator implemented across two distinct cell colonies has clearly 22

shown how the genetic engineering of interacting microbial populations can be exploited to 23

achieve complex and robust population-level behaviors (18 ). Indeed the interaction of mi- 24

crobial populations can be advantageous in accomplishing complicated tasks better than a 25

single population can do, whilst beneficially guaranteeing increased robustness to environ- 26

mental fluctuations (19 , 20 ). Moreover, the engineering of synthetic microbial consortia 27
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makes it possible to physically separate the components and modules required to achieve the1

desired functions, hence reducing the unwanted effects of retroactivity in biological circuits2

(as defined in (21 )) by which standard parts available in Synthetic Biology can significantly3

change their behavior upon interconnection (22 , 23 ).4

The aim of this paper is to present a thorough in-silico proof-of-concept analysis and5

design of a multicellular feedback controller in a consortium of two interacting populations6

where one (the ‘Controllers’) has the task of monitoring and controlling in real time the7

concentration of a target molecular species in the other (the ‘Targets’). We analyze the8

proposed implementation via two different computational approaches, one consisting of ODE-9

based models and the other implemented as an agent-based simulation of the consortium.10

After presenting the results of the in-silico model, we provide hints for the in-vivo realization11

of the proposed multicellular control scheme.12

Results and Discussion13

Multicellular feedback control design14

The goal of a control strategy is to make the output of a system of interest follow a desired15

reference signal (24 ). An example is that of temperature regulation, where feedback control is16

employed to maintain temperature at some desired constant value, or autopilots that need to17

make planes track a desired route. The structure of a classical feedback control architecture18

consists of different functional blocks interconnected with each other, each performing a19

specific function required to achieve the control goal. Specifically, a feedback control scheme20

comprises: a) a sensing apparatus for measuring the output of the system whose behavior21

is regulated, b) a comparator needed to quantify the control error, in terms of the mismatch22

between the measured output and the desired reference value, say r(t), c) a computational23

device (the controller or regulator) able to take a control decision and determine the action24

to be taken in order to minimize the control error and d) a set of actuators, receiving the25
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control decision calculated by the controller, and turning it into a physical action on the 1

system being controlled in order to steer its dynamics towards the reference. 2

In our proposed implementation these different functions are distributed across two inter- 3

acting microbial populations, where specifically one population (the ‘Controllers’) contains 4

synthetic circuits to sense and control the status of a process in the other (the ‘Targets’). 5

The Controllers can receive an external signal (e.g., an inducer molecule) so that the desired 6

reference level of the process to be regulated in the Target cells can be set (Figure 1a). The 7

two populations communicate with each other through the control input û (coming from 8

the Controllers to the Targets), and the process output ŷ (fed back from the Targets to the 9

Controllers). 10

A schematic biological implementation of the feedback control strategy is depicted in 11

Figure 1b. Here, communication within the synthetic consortium is achieved via the release 12

of signaling molecules into the growth medium. In the Controllers, an external reference 13

signal inhibits the production of the species A that, in complex with the signaling molecule 14

Q2, generates B. The latter, in turn, catalyzes the synthesis of another signaling molecule, 15

Q1, that is released in the growth medium as the input signal to the Targets. The feedback 16

loop is thus closed through species D which catalyzes the synthesis of the molecule Q2, 17

whose concentration in the growth medium is interpreted by the Controllers as the system 18

output readout. The proposed topology is such that the input signal (the concentration 19

of Q1) is an indirect function of the mismatch between the reference signal and the output 20

readout (Q2 concentration). In what follows, we use the subscript ‘e’ to denote concentrations 21

of the signaling molecules outside the cells and the subscripts ‘c’ and ‘t’ to denote their 22

concentrations inside Controller and Target cells respectively. 23

Note that this specific implementation of the feedback controller architecture can allow 24

re-use of the Controllers to steer different synthetic target populations, as long as the latter 25

are able to establish a bi-directional communication with the former. 26
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Model derivation1

The concentration of each species B, C, D, and of the active complex A:Q2 in the gene2

regulatory networks (GRNs) in the Controller and in the Target cells is modeled by Ordinary3

Differential Equations (ODEs), while spatial diffusion of the signals between the populations4

is modeled by means of Partial Differential Equations (PDEs).5

Activation, or repression, of each species x by its regulator s is governed by a Hill tran-6

scription function with dissociation constant Ks and exponent ns. Species A is simultane-7

ously activated by the signaling moleculeQ2 (forming the active complex A:Q2) and repressed8

by the incoming reference signal r(t) (i.e. is regulated by two independent and competing9

species), thus the dynamics of complex A:Q2 are concisely modeled as the product of the10

two Hill functions (25 ). Degradation of species x is governed by first order kinetics with11

corresponding degradation rate γx. Moreover, for each species x, characteristic parameters12

of transcription and translation are embedded in the basal (χx,0) and maximal (χx) activ-13

ity constants. The model consists of three key ingredients: i) a set of equations describing14

species concentrations inside the Controller cells, ii) a set of equations describing species15

concentrations in the Targets and iii) a set of equations to model communications between16

the two populations. Each of these three components of the consortium model is described17

below.18

Controller population The regulated product B is only produced in response to the19

active complex A:Q2, and is not induced by the individual inactive constituent components20

of this complex (Figure 1b). The dynamics of the molecular species’ concentrations in the21

Controller population can be written as:22

d [A:Q2]

dt
=

(
χA:Q,r,0 + χA:Q,r

Kr
nr

Kr
nr + [r]nr

)
·

·
(
χA:Q,a,0 + χA:Q,a

[Q2,c]
nq

Kq
nq + [Q2,c]

nq

)
− γA:Q[A:Q2],

(1)
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d [B]

dt
= χb,0 + χb

[A:Q2]
nb

Kb
nb + [A:Q2]

nb
− γB[B]. (2)

Target population The Target population receives the control input from the Controller 1

cells, by sensing the concentration of molecule Q1; this catalyzes the synthesis of the species 2

C, which in turn inhibits D (Figure 1b). The dynamics of the molecular species’ concentra- 3

tions in the Targets can be described by: 4

d [C]

dt
= χc,0 + χc

[Q1,t]
nc

Kc
nc + [Q1,t]

nc
− γC [C], (3)

d [D]

dt
= χd,0 + χd

Kd
nd

Kd
nd + [C]nd

− γD[D]. (4)

Communication between the two populations The two populations communicate 5

via two pathways, the first directed from the Controllers towards the Targets (pathway 6

1, molecule Q1), whereas the second goes from the Targets to the Controllers (pathway 7

2, molecule Q2). The two pathways are symmetrical, indeed for each of them a sender 8

and a receiver cell population can be defined. Furthermore, the following assumptions are 9

considered modeling the dynamics of Q1 and Q2 concentrations: 10

1. Q1 and Q2 are orthogonal so that no cross-talk occurs between different signals; 11

2. the two molecules diffuse across the cell membranes with the same diffusion coefficient 12

η and are degraded in the cells at the same rate γi; 13

3. the intra-cellular concentration in the sender depends on the rate of production of the 14

molecule (KQ), on the exchange rate with the extra-cellular environment, and on the 15

degradation inside the cell; 16

4. the intra-cellular concentration in the receiver is a function of the exchange with the 17

extra-cellular environment and of the degradation inside the cell; 18
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5. the extra-cellular concentrations are functions of the diffusion coefficient Θ in the1

growth medium, of the exchange between the cells and the extra-cellular environment2

and of the external degradation rate γe;3

6. the production of both Q1 and Q2 occurs through a synthesis process catalyzed by4

species B andD respectively, where the substrates required to synthesize both signaling5

molecules are in excess (26 ). Consequently the synthesis does not have any direct effect6

(which would only manifest as additional linear dilution terms in Equations (2) and7

(4)) on the concentrations of the species B and D.8

The dynamics of intra-cellular and external concentrations of Q1 (pathway 1, the Con-9

troller is the sender and the Target is the receiver) can therefore be described as:10

d
[
Q1,c

]
dt

= KQ1

[
B
]

+ η
([
Q1,e

]
−
[
Q1,c

])
− γi

[
Q1,c

]
, (5)

d
[
Q1,t

]
dt

= η
([
Q1,e

]
−
[
Q1,t

])
− γi

[
Q1,t

]
, (6)

∂
[
Q1,e

]
∂t

= η
([
Q1,c

]
−
[
Q1,e

])
+ η
([
Q1,t

]
−
[
Q1,e

])
− γe

[
Q1,e

]
+ Θ∇2[Q1,e

]
; (7)

while those for Q2 (pathway 2, the Target is the sender and the Controller is the receiver)11

as:12

d
[
Q2,c

]
dt

= η
([
Q2,e

]
−
[
Q2,c

])
− γi

[
Q2,c

]
, (8)

d
[
Q2,t

]
dt

= KQ2

[
D
]

+ η
([
Q2,e

]
−
[
Q2,t

])
− γi

[
Q2,t

]
, (9)

∂
[
Q2,e

]
∂t

= η
([
Q2,c

]
−
[
Q2,e

])
+ η
([
Q2,t

]
−
[
Q2,e

])
− γe

[
Q2,e

]
+ Θ∇2[Q2,e

]
. (10)

Note that equations (7) and (10) are PDEs describing the spatio-temporal dynamics of the13

8



concentrations of Q1 and Q2 in the extra-cellular environment. 1

Multicellular feedback control objectives and simulation scenarios 2

In agreement with the existing literature (3 , 5 , 7 , 24 ), as test-bed goals to validate the 3

effectiveness of the multicellular control approach we consider two different control objectives: 4

i) set-point regulation, where the concentration of the output species D has to reach and 5

maintain a specific fixed value; ii) signal-tracking, in which the system output D has to 6

track a desired time varying concentration profile. Specifically, we choose the following 7

representative reference signals: 8

1. set-point: r(t) = 3 · U(t− 100) (Figure S1; 9

2. multi set-point: r(t) = U(t− 300) + 2 · U(t− 700)− U(t− 1100) (Figure S1b); 10

3. trapezoidal: r(t) = α · (t− 100) · U(t− 100)− α · (t− 500) · U(t− 500)− α · (t− 900) · 11

U(t− 900) + α · (t− 1300) · U(t− 1300) (Figure S1c); 12

4. sinusoidal: r(t) = U(t− 300) + sin
(

2·π·(t−300)
400

)
(Figure S1d); 13

where U(t) is the Heaviside step function (24 ) and, α is the slope of the linear increasing 14

and decreasing sections of the trapezoidal signal. 15

Note that the model predictions show that the steady-state value of the output concen- 16

tration of D varies non linearly as a function of the reference signal. Specifically, when the 17

reference signal is varied slowly enough to allow the system to settle onto a steady-state for 18

each of the reference levels set between 0µM and 3µM, the resulting response is significantly 19

nonlinear for concentrations of the control reference signal in the interval [0, 1.5]µM (Fig- 20

ure S2). As done in many nonlinear control schemes (see (27 )), this information is exploited 21

to perform a nonlinear dynamic inversion, i.e. to calculate the amplitude of the reference 22

signals so that, in the control experiments, the corresponding desired system behavior can 23

be set as the control target (further details available in Supporting Information text). 24
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Next, in-silico experiments are carried out by contrasting two alternative numerical im-1

plementations of the model. Specifically, the following two scenarios are considered: i) an2

aggregate populations scenario where each of the two populations (Controllers and Targets)3

are modeled as a single average cell, and ii) an agent-based scenario in which individual4

cells’ dynamics are simulated via an agent-based interaction model. While the former im-5

plementation assesses the feasibility of the proposed feedback control scheme, along with its6

robustness and modularity, the latter is used to evaluate the effects of growth, motility, cell7

density, as well as to assess influence of varying the ratio between Controllers’ and Targets’8

populations and of cell-to-cell variability. Agent-based simulations provide highly accurate9

simulations of population-level dynamics, while allowing a more realistic representation of10

the geometry of the host environment where cells grow.11

Details of how the model is parameterized are provided in the Methods section and12

Supporting Information text.13

Aggregate populations scenario14

The aim of the analysis in this configuration is to test the overall system behavior for different15

control references (set-point and signal tracking regulation) in the presence of spatial diffusion16

of the inducer molecules between the Controller and Target cells, quantify the effect of varying17

the distance between the two interacting cells and assess the modularity of the proposed18

control implementation.19

In this scenario an average Controller cell is assumed to interact with an average Target20

cell in a mono-dimensional spatial domain at a distance of 20 µm from each other (which is21

realistic in standard microfluidic devices for bacteria (18 , 28 , 29 )).22

Control results Despite strong nonlinearities in the model and the presence of spatial23

diffusion of the signaling molecules, the multicellular feedback control strategy is effective24

in achieving set-point regulation with zero steady-state error, an output overshoot less than25
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10% of the desired value and a settling time of 150 minutes (Figures 2a, S3a). Similar results, 1

in terms of overshoot and settling time, are exhibited by the multicellular controller when 2

the goal is switched to that of tracking a multi set-point reference signal (Figures 2b, S3b). 3

Tracking of the trapezoidal and the sinusoidal control reference signals is acceptable with 4

a delay in the response of less than 50 minutes and an expected distortion of the reference 5

wave-forms that can be observed in the output (Figures 2c,d and S3c,d). 6

If communication from the Target to the Controller cell (pathway 2) is absent or suddenly 7

interrupted, the control is said to be in ‘open loop’ (24 ). In this situation, the Controller 8

population does not receive information on Target’s behavior and cannot compensate any- 9

more the deviation between the actual system output (concentration of the species D) and 10

the specific control reference as when this information is available (closed loop). This is 11

confirmed when open loop control is simulated to achieve set-point regulation of a perturbed 12

Target model (see Supplementary Information text for simulation details); the resulting sys- 13

tem response presents larger average output steady-state error (4.54%) and, more notably, a 14

considerably larger steady-state standard deviation (42%) computed across the repetitions 15

(Figure S4 a,c) than those achieved when closed loop set-point regulation is simulated on 16

the same perturbed system (average output steady-state error of 0.73% and standard de- 17

viation of 33%, Figure S4 b,c). The beneficial effects, on the system’s response, of closed 18

loop control are much more obvious in the case of signal tracking regulation. Indeed, when 19

open and closed loop strategies are employed to steer the same perturbed system to track a 20

sinusoidal reference, an even larger variability of the controlled variable is measured in open 21

loop (CVav = 50.77%) than that found in closed loop (CVav = 33.07%) (see Figure S5 and 22

Supporting movie S10). 23

Robustness analysis In order to assess the robustness of the proposed multicellular con- 24

trol scheme to environmental perturbations, the effect of varying cells’ distance in a mono- 25

dimensional domain is investigated in the case of set-point control. As the distance between 26
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the Controller and the Target cell is linearly increased from 2 µm to 1000 µm, the control1

action is still effective in regulating the system output to settle onto a fixed concentration,2

although the concentrations of the input as well as the output signal perceived by the con-3

cerned cells are attenuated (see Figure 3). In particular, an increase of cells’ distance leads4

to a significant reduction of the dynamical range of the controlled output when the cells are5

distant more than 500 µm from each other, from 0.7 µM at a distance of 20 µm, to 0.2 µM6

at 1000 µm which corresponds to a relative reduction of 71% (Figure 3 b). Moreover, as7

an effect of the input attenuation for increasing cells’ distances, the output overshoot drops8

until it finally disappears for distances larger than 500 µm (Figure 3 b). The range of dis-9

tances considered in this scenario is by far the worst case possible in a realistic microfluidic10

chamber in which cells usually grow much closer; thus, as confirmed by the results achieved11

via agent-based simulations presented below, the outcome of real microfluidics experiments12

is expected to exhibit a decay of the communication signals that is negligible with respect13

to that found in these in silico predictions.14

Modularity In order to better elucidate how the different modules (populations), within15

the consortium, contribute to the overall system behavior, the effect of parameter perturba-16

tions on the control effectiveness is evaluated by taking set-point regulation as the control17

goal. Specifically, modularity is assessed in three different instances: i) all the parameters18

are varied, ii) only Target’s parameters are perturbed in Equations (3), (4), (6) and (9)19

and iii) only Controller’s parameters are varied in Equations (1), (2), (5) and (8). In each20

perturbation case, parameter values are drawn from normal distributions centered in the cor-21

responding nominal values with a standard deviation of 20% (additional details are available22

in the Methods section). Despite parameter variations, the control action is still effective23

and robust in driving the average system response (computed across all the repetitions) to24

settle onto a constant value as required by the specific regulation task (Figure 4a-c). The25

variability across all the simulation repetitions is higher (CVav = 41.22%) when all parame-26
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ters are perturbed than in the cases in which only Target’s (CVav = 33.13%) or Controller’s 1

(CVav = 21.46%) parameters are varied (Figure 4a-c). Notably the Controller behaves well 2

even in the presence of consistent variations of the Target’s parameters. This finding is also 3

confirmed by more realistic agent-based in-silico experiments as reported below. 4

Agent-based scenario 5

The control performance is tested via an agent-based model using the BSim framework (30 ), 6

to account both for cell density and the extracellular environment (i.e., microfluidic devices, 7

which are optimal devices for real-time analysis of engineered bacterial population dynamics 8

(31 )). Cells represented using BSim’s E. coli bacterium model, with biologically realistic 9

cell motility (32 ), are inserted in an extra-cellular environment modeled as a rectangular mi- 10

crofluidic chamber with dimensions of 25×20×1 µm3, able to host a maximum (subsequently 11

referred to as a density of 100%) of 240 rod-shaped, or 480 spherical cells (29 ). 12

The chamber is open to the external flow only on both long sides, allowing for diffusion 13

of a reference signal into the chamber and diffusion of the signaling molecules out of the 14

chamber on those sides only (29 , 33 ). Additional model details are provided in Methods 15

section. 16

Control results The performance of the control feedback strategy in the agent-based 17

scenario is initially tested with the set-point regulation and multi set-point reference signals 18

(Figure S6) as in the case of the aggregate populations simulations. Direct comparison of 19

control outcomes in the agent-based scenario with those measured in the aggregate scenario 20

indicates that settling time is shorter (less than 50 minutes), though at the cost of greater 21

overshoot (up to 18% of the desired set point in the most extreme case) prior to settling. 22

The agent-based model is further simulated using the other two time-varying reference 23

signals, trapezoidal and sinusoidal, as defined in the previous section (Figure 5a,b). In-silico 24

experiments in this scenario confirm the effectiveness of the control strategy as depicted in 25
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Figure 5. The measured output averaged across the Target population (solid lines) tracks1

the reference signal (dashed lines) closely, for both input wave forms, with a negligible delay.2

Moreover, the standard deviation of the response across the population is less than 1% of3

the mean. Qualitatively, the signal-tracking performance is better than in the aggregate4

model (compare Figures 2 and 5). This is due to the presence in these simulations of a5

dense population of cells at a comparatively shorter cell-to-cell distance (< 5µm) than that6

considered in the aggregate scenario. Animations of the full simulations, along with the7

quantification of Target population output, are provided in Supporting Movies S11 and S12.8

Robustness analysis The multicellular controller is robust to changes in population den-9

sity in the agent-based implementation (Figure 6). Indeed, the measured output from the10

Target population maintains a desirable dynamical range even as the total density of cells11

in the microfluidic chemostat is reduced to 10%. However around this density, and below12

it, there is a dramatic reduction in the quality of the whole output response, with a clear13

decrease in the output dynamical range from approximately 0.7 µM to less than 0.1 µM as14

observed in Figure 6b.15

This dependence on density is essentially analogous to what is observed from the results16

in the aggregate populations scenario shown in Figure 3; an increase in density is associated17

with a decrease in average cell-to-cell distance. At the maximal cell density, average cell-18

to-cell distance is approximately 1 cell length (1µm for spherical cells, 2µm for rod-shaped19

cells), whereas at the minimal cell density (2.5%) of those shown in Figure 6 mean cell-20

to-cell distance is approximately 10µm. Cell positions were chosen such that a uniform21

spatial distribution and, therefore, even density of cells was ensured over the course of each22

experiment.23

In a similar manner, the control goal continues to be achieved robustly as the ratio be-24

tween Controller and Target cells is varied within a fixed global cell density (Figure S7).25

Even when Controllers’ proportion is as low as 10% of the total number of cells, the re-26
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sponse dynamical range and settling time for the set-point regulation task remain adequate 1

(Figure S7b). 2

Modularity To assess the effects of changes to the different GRN modules (Controller, 3

Target) in the agent-based scenario, average population response is measured when intro- 4

ducing local (per-cell) perturbations of model parameters in the case of set-point regulation. 5

Parameters within each sub-population of agents (all bacteria, only the Controllers and only 6

the Targets) are perturbed, according to the three instances introduced earlier in the ag- 7

gregate populations scenario. Moreover, in agent-based simulations cell division and growth 8

are explicitly modeled. As shown in Figure 4d-f the average output behaves adequately. 9

However, the averaged coefficient of variation is 2 percentage points higher than that ob- 10

served for the aggregate model case when all parameters are varied, and 7 percentage points 11

higher when only Target parameters are perturbed (Figure 4d,e). When only Controllers’ 12

parameters are varied, agent-based simulations show relatively little noise across the whole 13

population (Figure 4f). The lower output variability observed in this case arises from the 14

fact that all Targets’ parameters are the same (no variation across the Target population), 15

thus only the mean of their response is affected, and an overall lower noise is generated 16

(noise statistics calculated across cells). One representative simulation of those depicted in 17

Figure 4d is provided in Supporting Movie S13. 18

The results achieved in this scenario confirm what is observed in the aggregate population 19

simulations: the Controller module of the multicellular feedback control strategy remains 20

effective even when attempting to control Targets with a variety of response characteristics, 21

and that consequently a single Controller population could be used to effectively regulate 22

more than one type of Target. 23

Further in-silico experiments where perturbations of the parameters are introduced in 24

the absence of cell growth and division are reported in Figure S8, for the sake of comparison. 25

As shown in Figure S8a-c, better matching between the aggregate cell model predictions and 26
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the agent-based simulation can be obtained by introducing global parameter perturbations1

across the whole consortium by selecting the same set of perturbed values of the parameters2

for all cells being simulated. In the absence of perturbations, but presence of growth, a small3

amount of intrinsic noise resulting from cell division perturbs the system. A full simulation4

of the consortium’s response in the set-point regulation scenario, when growth and division5

are modeled but perturbations are excluded, is provided in Supporting Movie S14. It is6

clear that noise due to cell division produces only a small deviation in observed Target7

population output compared to that induced by direct perturbation of parameters (contrast8

the histograms in Supporting Movies S13 and S14).9

Conclusions10

We have described the design and the in-silico implementation of a multicellular feedback11

control strategy within a synthetic cellular consortium of two populations where one acts as12

a controller trying to regulate the concentration of one molecular species in the other. The13

two cell populations can communicate via the release of signaling molecules in the shared14

growth medium and a control reference signal can be provided to the controller population15

by means of an external inducer molecule.16

We have proposed a mathematical representation of the two interacting cell populations17

considering biologically realistic parameters (26 , 28 , 33–37 ).18

The in-silico experiments, carried out via two different computational approaches, have19

shown the effectiveness of the implemented feedback control strategy, despite the parts com-20

posing the whole circuit being spatially separated and thus the signals (control input and21

system output) attenuated by diffusion and propagation in the extra-cellular environment.22

The perturbation analysis performed has shown that the proposed multicellular control23

strategy is robust to large parameter variations. This highlights the inherent modularity24

of the approach; indeed, according to our in-silico results, the same Controller population25

could be used to efficiently regulate different synthetic Target cells.26
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We have analyzed the effects of varying cells’ spatial distribution (i.e., the distance in 1

the aggregate model scenario and the population density in the agent-based simulations), as 2

well as the relative number of Controller cells while maintaining a constant total consortium 3

size, demonstrating the dependence of the output dynamic range on the consortium density 4

and composition. 5

Concerning a possible biological implementation of the discussed control strategy, ad hoc 6

conceived microfluidic devices can be employed to grow the cells while precisely delivering, 7

from the external environment, only desired perturbations to them (i.e., the control reference 8

r) (29 , 31 ), as well as to regulate/set the ratio of the interacting populations and ensure a 9

proper diffusion of the signaling molecules enabling communication within the consortium. 10

Indeed, it has been demonstrated in (28 ) that microchemostat features (i.e., device topology 11

and structures’ aspect ratio) as well as experimental conditions (i.e., pressures and flow rates), 12

can significantly affect the outcome of synthetic circuits whose internal molecular species are 13

activated and/or inhibited as a response to the concentration of signaling molecules diffusing 14

in the growth medium. Moreover, orthogonal or synthetic quorum sensing systems can be 15

exploited to implement communication across the two populations within the consortium 16

(26 , 37 , 38 ). 17

On the basis of our predictions and of the engineering of microbial communities com- 18

pleted so far (18 , 19 , 38 , 39 ), we believe that the implementation of such a feedback control 19

strategy in living cells could provide a useful tool for the realization of embedded cellular 20

controllers. Synthetic microbial consortia can indeed be employed when a huge amount of 21

biological circuitry is needed to achieve a desired function, with the advantages of reducing 22

the metabolic load in a single cell population, guaranteeing the reliability of the intercon- 23

nected parts and modules and allowing re-use of engineered populations for different control 24

applications. 25
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Methods1

Model parameterization2

Model parameterization was carried out according to characteristic ranges of values available3

in the literature to describe the dynamics of the interacting molecular species of the proposed4

GRNs (28 , 33–37 , 40 , 41 ). The specific values selected are indicated in Table S1 in the5

Supporting Information text.6

Aggregate populations scenario7

Simulations The mathematical model was composed of 8 ODEs and 2 PDEs (Equations8

(1)–(10)). Simulations were carried out via the MATLAB software package (The MathWorks,9

Inc.). The PDEs (7) and (10) were discretized over the N points in which the spatial domain10

was divided by means of the method of finite differences, using a central step discretization.11

Dirichlet’s boundary conditions were imposed in order to solve the resulting system of 2N12

ODEs. The equations resulting from the discretization of (7) and (10) in the space domain13

and the other ODEs describing the full system were integrated with the ode15s MATLAB14

solver with a model sampling time of 5 minutes. Initial conditions were calculated by running15

a simulation (from random initial conditions) with r (t) = 0, thus obtaining, as model initial16

conditions, the steady state values consequently reached by the state variables in the model.17

Modularity analysis Parameters’ perturbation was carried out by performing 1000 Monte18

Carlo simulations and picking parameters’ values from normal distributions centered on the19

corresponding nominal value with a standard deviation of 20%. For all the three instances ex-20

plored (parameter perturbations of either all the cells, or just the Targets or the Controllers)21

the output average µ (t) and standard deviation σ (t) were calculated across all the simula-22

tions performed. These values were then used to calculate the time-averaged coefficient of23

variation CVav as:24
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CVav =
1

T

∫ T

0

σ
(
τ
)

µ
(
τ
)d(τ), (11)

where T is the simulation length in minutes. 1

Agent-based scenario 2

Agent-based simulations were performed using the BSim framework (30 ). The full source 3

code of BSim, including the code required to run the agent-based model presented here, is 4

available to download at https://github.com/BiocomputeLab/bsim. Further information 5

regarding details of the structure of a BSim simulation, its key features, and implementation 6

details are available at http://bsim-bccs.sourceforge.net/downloads.html. System dy- 7

namics were simulated both with and without cell growth and division. Simulations of signal 8

tracking (Figures 5 and S6; Supporting Movies S11 and S12), some simulations of parame- 9

ter perturbations (Figure S8), and all simulations investigating cell density and ratio effects 10

(Figures 6 and S7), were undertaken without considering growth in order to remove any 11

undesired variation in the number of cells present in the simulation, thus reducing unwanted 12

disturbances to the system while the effects of other perturbations were investigated. Sim- 13

ulations in Figure 4d-f and Supporting Movies S13 and S14 included the full model of cell 14

growth and division. 15

Simulations without cell growth For the experiments without growth, the baseline 16

conditions were as follows. Cells were simulated as individual agents with spherical geometry 17

with diameter of 1 µm, since in the absence of growth and division a full simulation of cell- 18

cell interactions with realistic capsule geometry would have introduced unnecessary extra 19

complexity to the model. Removing cell growth allowed for precise and consistent imposition 20

of cells’ density and ratio in the population and therefore isolated the investigation from any 21

consequent effect on the system’s response. Initial cell positions were chosen randomly, based 22

on a uniform spatial distribution. 23
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A cuboid geometry was chosen for the spatial simulation domain (referred to also as the1

chamber, or microfluidic chamber), with dimensions of 25 × 20 × 1 µm3 in the x, y, and z2

axes respectively (insets in Figure 5, and Supporting Movies S8 and S9). The chamber was3

closed on all sides except the two (y-aligned) long sides. Its design (specifically the choice of4

aspect ratio and boundaries) conformed to those commonly used in microfluidic experiments5

(29 ), however the simulated chamber was reduced in size compared to those used in in-vivo6

experiments. A chamber of this design is able to host a maximum of approximately 2407

rod-shaped, or 480 spherical, cells when cells are present at 100% density. In practice the8

number of rod-shaped cells may be lower at steady-state due to growth; we discuss this in9

the following section. The actual number of cells present in each simulation is indicated in10

the relevant Figures. All boundaries were closed to physical cell passage, so that cells were11

unable to leave the simulation thus maintaining a constant set ratio of Controllers to Targets12

and a constant average cell density over time.13

Simulations with cell growth In the experiments in which cell growth was taken into14

account, it was modeled using a per-cell ODE model of rod elongation over time as in15

(42 , 43 ), with division occurring once the mother cell passed a set constant threshold length.16

Cell radius was set to a constant value of 1 µm, and initial cell length was set to 2.5 µm with17

a maximal division threshold of 5 µm. When rod-shaped geometry and growth mechanics are18

included in the model, cells have on average a greater length than the minimum necessary for19

100% density (all rod-shaped cells are guaranteed to always exceed their minimum length).20

Therefore in practice a lower cell count than that discussed above is observed (approximately21

115 cells in total at steady state; Figure S9a). The actual number of cells present in each22

simulation is indicated in the relevant Figures.23

The elongation rate was chosen such that cell division occurred on average after 2524

minutes of growth. Upon division, daughter cells’ positions and lengths were perturbed by25

a small amount (randomly chosen, with an amplitude between ±5% of their length) at the26
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location of division in order to break axial symmetry (42 ). Cells’ positions were seeded at 1

t = 0 such that all cells were present at a uniform density, with Controllers occupying half 2

of the chamber and Targets the other half. This was in order to increase the chances of 3

maintaining the desired 1:1 ratio of Controllers to Targets throughout the simulation, in 4

spite of stochastic growth effects. 5

The chamber’s physical boundaries were modified such that the two long sides, through 6

which signal diffusion occurred, would permit passage of cells in order to model the removal 7

of cells via flow as occurs in real microfluidic experiments (29 ). A lateral force corresponding 8

to a typical flow rate of 250 µms−1 was then applied to any cells passing outside these two 9

open boundaries. Visualizations of full simulations with growth and cell division are shown 10

in Supporting Movies S13 and S14. 11

GRNs and signaling PDEs modeling the communication across the two different cell 12

populations (Equations (7) and (10)) were simulated using a finite volume discretization, 13

with diffusion and degradation rates specified in Table S1. Reflective boundary conditions 14

were applied to the discretized equations for the four closed sides of the domain. Dirichlet 15

boundary conditions were applied at the two open sides, with a constant zero external 16

concentration representing the diffusion-dominated flow out of the microfluidic chamber. 17

Internal GRNs were implemented in individual cells using the ODEs defined in Equations 18

(1) and (2) for the Controllers, and Equations (3) and (4) for the Target cells. The intra- 19

cellular embedded GRN equations were coupled to the discretized concentrations of Q1 and 20

Q2 at the position of each cell, and were solved using a fixed-step, 4th order, Runge-Kutta 21

method. Initial conditions for all GRN ODEs were set to the same values (uniformly zero) 22

as in the aggregate model scenario; simulations were run for a 100 minutes ‘burn-in’ period 23

in order for the resulting transient to settle, prior to each in-silico experiment. All plotted 24

results assume the convention that time t = 0 in a given experiment corresponds to the end 25

of this ‘burn-in’ period. 26
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Modularity analysis Two types of perturbation were applied in the agent-based scenario1

for modularity analysis: a local and a global perturbation. For both cases, the perturbation2

was applied either to all agents, only to the Target or only to the Controller agents. In the3

local case, the parameters of each agent were independently drawn from normal distributions4

centered on the parameter’s corresponding nominal value and with a standard deviation equal5

to 20% of each nominal value. In the global case, the same parameter values drawn from6

distributions as above were applied to all agents in the population of interest.7

As in the case of modularity analysis in the aggregate population scenario, the output av-8

erage µ
(
t
)
and standard deviation σ

(
t
)
were calculated across all the simulations performed9

for each single series of perturbations, and the time-averaged coefficient of variation CVav10

was calculated according to Equation (11).11

Supporting Information12

The material supplied as supporting information is organized as follows:13

• Supporting Information text14

• Supporting Figures S1-S915
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Figure Legends 1

Figure 1: multicellular feedback control design. (a) The Controller population contains
the sensor to retrieve information on the process status in the Targets, and the regulator
to provide inputs to the Target cells according to the control error e computed by the
comparator as the difference between the reference r and the measured output y. (b) Abstract
biological implementation of the proposed feedback control strategy where molecular species
contained in the Controller cell implement the comparing, sensing and regulating functions,
whilst species C and D in the Target represent respectively the actuator and the process
to be controlled. The roles of the actual control signal and the process output readout are
played by the two signaling molecules Q1 and Q2. Circles represent internal molecular species
and polygons signaling molecules.
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Figure 2: Aggregate populations scenario: control results for the set-point and the
tracking control tasks. System dynamical response in the case of set-point regulation (a)
and tracking of time varying reference signals (b-d); the concentration of the output species
D (solid line) and the desired output (dashed line) are plotted for each of the control reference
signals. (Insets) Concentration of the signaling molecule Q2 over the time, indicated in µM,
in the extra-cellular environment is depicted for each of the control tasks (Controller cell
located at xC = 0µm and Target cell located at xT = 20µm).
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Set-point regulation varying cell distance
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Figure 3: Aggregate populations scenario, effect of varying cell distance on set-
point regulation. (a) Surface plot of the trajectories obtained for the set-point regulation
task when linearly increasing the distance between the Controller and the Target cells from
2 µm to 1000 µm. Red lines highlight the trajectories depicted in panel (b). (b) Species D
concentration for distances between Controller and Target cells of 20 µm, 200 µm, 500 µm
and 1000 µm.
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Figure 4: Modularity analysis, aggregate populations and agent-based scenarios.
(a-c) System dynamical response in the aggregate populations scenario in the case of set-point
regulation as a result of a Monte Carlo simulation approach when all the model parameters
(a), only Target cell parameters (b) and only Controller cell parameters (c) are perturbed
as indicated in the text. (d-f) System dynamical response in the agent-based scenario, when
every agent’s parameters from complete populations (d), only the Target cells (e) and only
Controller cells (f) are sampled individually as indicated in the text. Per-cell growth and
division was included in the model, resulting in a stable number of approximately 115 cells
in the chamber on average (Figure S9a). Averaged output (solid line) and averaged output
+/− the standard deviation (dashed line) across all the simulations performed for each
perturbation type are plotted. In the aggregate scenario (a-c), statistics in each panel are
computed from 1000 Monte Carlo simulations; in the agent-based scenario (d-f), statistics
in each panel are computed from 10 simulations.

32



1 2 3 4 5 6

Time (min)

0 500 1000 1500

[D
] 
(µ

M
)

0.4

0.6

0.8

1

1.2

1.4

Signal tracking - trapezoidal control reference signal

Desired behaviour

Output

1 6

2 5

3 4

a)

1 2 3 4 5 6

Time (min)

0 500 1000 1500

[D
] 
(µ

M
)

0.4

0.6

0.8

1

1.2

1.4

Signal tracking - sinusoidal control reference signal

Desired behaviour

Output

1
2

3 5
4 6

b)

Figure 5: Agent-based scenario control results. Agent-based system’s response to a
trapezoidal reference signal (a) and sinusoidal control reference (b); the average output of
the Target population (solid line) and the desired output (dashed line) are plotted for each
of the control tasks. (Insets) Snapshots from simulations corresponding to the time points
indicated by arrows in panels (a) and (b). Cells are drawn as capsules, with Controllers
colored Blue and Targets colored red; the color intensity is directly proportional to [B] in
the Controllers and [D] in the Targets. The purple box indicates the extents of the simulation
domain. Simulations were performed with 120 rod-shaped cells, without growth and division.
The full simulations of the agent-based model, and corresponding quantification, are provided
in Supporting Movies S11 and S12.
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Figure 6: Agent-based scenario, set-point regulation varying total cell density.
(a) Set-point regulation dynamical response obtained in the agent-based scenario when the
number of total cells in the simulation is varied between a density of 2.5% up to a nominal
100% of 480 spherical cells. The ratio of Controllers to Targets was maintained at 1:1. (b)
Concentrations of species D for population densities of 10%, 50% and 90%, corresponding
to the red lines in panel (a). Simulations were performed without growth and division.
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