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Abstract

The Univalence axiom, due to Vladimir Voevodsky, is often taken to be
one of the most important new discoveries arising from the Homotopy Type
Theory (HoTT) research programme. It is said by Steve Awodey that Uni-
valence embodies mathematical structuralism, and that Univalence may be
regarded as ‘expanding the notion of identity to that of equivalence’. In this
paper we explore the conceptual, foundational and philosophical status of
Univalence in Homotopy Type Theory. We extend our Types-as-Concepts
interpretation of HoTT to Universes, and offer an account of the Univalence
axiom in such terms. We consider Awodey’s informal argument that Univa-
lence is motivated by the principle that reasoning should be invariant under
isomorphism, and we examine whether an autonomous and rigorous justifi-
cation along these lines can be given. We consider two problems facing such
a justification. First, there is a difference between equivalence and isomor-
phism and Univalence must be formulated in terms of the former. Second,
the argument as presented cannot establish Univalence itself but only a
weaker version of it, and must be supplemented by an additional principle.
The paper argues that the prospects for an autonomous justification are
promising.
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1 Introduction

In mathematical practice, if two structures have been shown to be isomor-
phic they will often be treated as a single entity under two different guises.
However, in standard foundational systems arbitrary isomorphic entities
are not identical, and formally the notions of identity and isomorphism are
distinguished. One of the main innovations of Homotopy Type Theory, a
new proposed foundation for mathematics, is the Univalence axiom due to
Vladimir Voevodsky [Voevodsky, 2009; Awodey et al., 2013].1 In a Uni-
valent theory, identity and isomorphism (or rather, a related notion called
‘equivalence’; see Section 6) are regarded as equivalent notions in a precise
sense to be explained below. For example in such a theory the Klein four-
group and the product Z2 × Z2 of two copies of the cyclic group of order 2
are not just isomorphic but are identical.

Univalence is taken to be one of the most important new discoveries
arising from the ‘Homotopy Type Theory/Univalent Foundations’ research
program initiated by Vladimir Voevodsky and Steve Awodey. It is said by
Steve Awodey that Univalence embodies mathematical structuralism: since
isomorphism is ‘sameness of structure’, if Univalence says that isomorphic
entities are identical then it entails “that two mathematical objects are
identical if and only if they have the same structure [. . . ] In other words,
mathematical objects simply are structures.” [Awodey, 2014b, pp. 10-11]

This should not be thought of as ‘collapsing isomorphism to identity’, as
that would lead to a theory in which there are no non-trivial isomorphisms.
Moreover, an important lesson from category theory is that collapsing iso-
morphic structures by identifying them tends to throw away important in-
formation – hence Baez & Dolan’s injunction “never mistake equivalence
for equality” [Baez and Dolan, 1998] (which on the face of it appears to be
in direct opposition to Univalence). Rather, the intended interpretation of
Univalence is, according to Awodey, to regard it as “expanding the notion
of identity to that of equivalence.” [Awodey, 2014b, p. 9]

In this paper we explore the conceptual, foundational and philosophical
status of the Univalence axiom in Homotopy Type Theory. In particular, we
address the question of whether Univalent HoTT (that is, HoTT with the
Univalence axiom) can be given an autonomous presentation as a foundation
for mathematics in the sense defined in [Ladyman and Presnell, 2016].

1 We will assume familiarity with HoTT, as set out in [The Univalent Foundations Program,
2013] (henceforth the ‘HoTT Book’). For a more basic introduction to the language of HoTT,
see [Ladyman and Presnell, 2014].
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1.1 The justification of Univalence

A mathematician might say that Univalence, like any other axiom, needs
no justification beyond its interest or its usefulness. However, if HoTT is
to be a foundation for the whole of mathematics (in the sense explained in
[Ladyman and Presnell, 2016], in which a ‘foundation’ goes beyond merely
a language or framework in which mathematics can be developed) then
each of its definitions, rules, and axioms must be explained and justified in
a way that does not require appeal to concepts that must be spelled out
using pre-existing mathematics, or to connections with other sophisticated
branches of mathematics, or to the intuitions of mathematicians. Moreover,
for these purposes the motivation offered for a given axiom must justify that
choice of axiom in particular, and not something weaker that follows as a
consequence of the axiom. The rules of basic HoTT can all be explained and
motivated from pre-mathematical principles (as demonstrated in [Ladyman
and Presnell, 2016]), which supports the claim that basic HoTT can serve
as an autonomous foundation for mathematics. What remains, then, is to
provide a justification for Univalence.

One approach to justifying Univalence begins with the observation that
in HoTT identity is always identity of tokens in a type, which may be under-
stood as identity qua some structure. For example, the Euclidean plane and
the Hyperbolic disc are not identical qua metric space, the corresponding
tokens of the type topological space are identical in that type. The things
we can say within the language of HoTT about some entity depend upon
what type that entity belongs to, i.e. upon what kind of structure it is being
regarded as. Hence one might think that Univalence could be justified as
an expression of the Principle of the Identity of Indiscernibles: briefly, that
facts about the identity of tokens of a type are exhausted by, and may be
reduced to, facts about what can be predicated of those tokens. [Ladyman
and Presnell, 2015a] considers the relationship between identity and indis-
cernibility in HoTT and argues that a re-interpretation of identity types as
denoting indiscernibility cannot be sustained, and thus cannot be the basis
for a justification of Univalence.

Another approach is to change the formal system itself. There are ap-
proaches within the broader HoTT research programme (for example, the
‘Cubical Type Theory’ of [Bezem et al., 2014]) that define a different but
related type theory to the one considered here, and in which Univalence may
be proved as a theorem rather than posited as an axiom. One could, then,
alternatively seek to give an autonomous presentation of such a system.
This is beyond the scope of the present discussion.

In this paper we consider the informal argument given by Awodey in
[2014b] (which, to be clear, is not intended to offer a justification of the
above kind; see Section 7.2 for further discussion) that Univalence is moti-
vated by the “Principle of Structuralism” that “isomorphic objects are iden-
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tical”, and thus that reasoning should be invariant under isomorphism.2 We
examine whether an autonomous argument for Univalence can be produced
by developing a more rigorous version of Awodey’s argument, and consider
two problems that must be overcome in doing so.

1.2 Outline of the paper

Since the Univalence axiom is formulated in terms of universes, the next
section explicates the notion of universes making explicit the conceptual fea-
tures they are taken to have in [HoTT Book, Section 1.3]. It also explains
how to understand universes in terms of our Types-as-Concepts interpre-
tation [Ladyman and Presnell, 2016]. The formal definition of Univalence
is given in Section 3, with one detail suppressed. Section 4 briefly reviews
some of the most important formal consequences of Univalence.

Following the account of the criteria for a foundation for mathematics
outlined in [Ladyman and Presnell, 2016] (involving five interrelated com-
ponents: a framework, semantics, metaphysics, epistemology, and method-
ology) Section 5 considers the meaning of Univalence in relation to the
explanation of universes given in Section 2. In Section 5.1, consideration
of mathematical metaphysics leads to a possible motivation for adopting
Univalence which, on closer inspection, turns out to be inadequate for the
purposes of this paper.

Section 6 examines how to fill in the detail that was suppressed in Sec-
tion 3, namely the definition of ‘equivalence’ involved in the statement of
Univalence, and Section 6.5 observes that if Univalence is formulated in
terms of isomorphism (as commonly understood) this leads to inconsistency.
This adds a complication to any attempt to give an autonomous justification
for Univalence.

Section 7 examines Awodey’s informal motivation of Univalence in terms
of an Invariance Principle [2014b], and discusses the obstacles that must
be overcome in order to produce from it a rigorous justification for the
Univalence axiom that could form part of an autonomous foundation for
mathematics.

Section 8 suggests that rather than attempting to justify Univalence as
a fundamental part of the foundations of mathematics, it should instead be
viewed as an optional extra axiom, motivated on methodological grounds.

2 The question of whether a mathematical structuralist should endorse the idea that “isomor-
phic objects are identical”, and the broader question of the relationship between Univalence and
mathematical structuralism suggested by Awodey in the quotations above, are the subject of a
future paper and are not studied in detail here.
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2 Universes

Informally, Univalence states that identity and equivalence are equivalent.
More precisely it says that for two types A and B, the type expressing their
identity is equivalent to the type expressing their equivalence. Of course,
this is not intended to talk about just some specific two types A and B

but rather is intended to be a general statement about arbitrary types. It
therefore requires a way to quantify over types.

The basic rules of HoTT allow quantification over the tokens of an ar-
bitrary type by the use of dependent pair types and dependent function
types (which correspond roughly to existential and universal quantifiers).
For example, given a predicate P defined on type A, a token of ∏a∶A P(a)
certifies that every token of A satisfies the predicate. Quantification over
types therefore requires a type whose tokens are themselves types. Such a
type is called a ‘universe’.

While a complete understanding of universes involves many technical
details that are beyond the scope of the present paper, Section 2.1 presents
the core conceptual content of what’s needed from universes in order to use
them in HoTT and to understand Univalence. Section 2.2 briefly considers
some of the technical details of implementation. Section 2.3 gives an account
of universes that is compatible with the Types-as-Concepts interpretation
of HoTT [Ladyman and Presnell, 2016] and explains how universes should
be understood in an autonomous account of HoTT.

2.1 Rules for universes

Universes are introduced in [HoTT Book, Section 1.3] by the following facts:
• A universe U is a type whose elements are types.
• There is no universe U∞ of all types.
• We have a hierarchy of universes U0 ∶ U1 ∶ U2 ∶ . . .
• Universes are cumulative: elements of Ui are also elements of Ui+1.
• Every type (including every universe) inhabits some universe, and for

any collection of types there is a universe containing them all.
• Universes are closed under the basic type-forming operations.
• A universe may be the domain or codomain of a function.

Before presenting an account of universes in an autonomous foundation, we
first expand upon and explain the above.

Types in HoTT are ordinarily given in terms of token constructors and
elimination rules. For example, the type of natural numbers N is defined
in terms of constructors z ∶ N and s ∶ N → N which tell us what tokens
of N can be produced, along with a means of defining functions that take
natural numbers as input. Universes, although they are also types, are not
presented in quite the same way. We are instead told that “A universe is

6
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a type whose elements are types”, and “When we say that A is a type, we
mean that it inhabits some universe Ui” [HoTT Book, Section 1.3]. There
are not token constructors that produce the individual types that belong to
a given universe. Rather, if anything plays this role for universes it is the
basic rules of the language themselves, according to which for any universe
U we have 0 ∶ U and 1 ∶ U , and given A,B ∶ U we have A × B ∶ U , and so on.3

In practice, when defining a type we generally begin with some concept
or proposition that we intend to capture in that definition – for example,
the type of natural numbers, or the type corresponding to the statement of
a particular theorem – and then work out how to express that idea in the
language of HoTT. In contrast, a universe is not conceived of by starting
with some defining idea that is to be expressed. Rather, the defining char-
acteristic of a universe is, in general, just a particular collection of types
that it is conceived of as having as its tokens. In this sense, whereas a type
is conceived of intensionally as the realisation of a concept, a universe is
conceived of as an extensional collection of types – those that are asserted
to belong to the universe, along with those that can be constructed from
them by application of the type formation rules of HoTT. 4

In particular, if we conceive of a universe U as having types A,B, . . .
amongst its tokens, then we must already have defined these types before
defining U itself. Since U itself is not yet defined it cannot be one of these
types, and so there cannot be a universe that contains itself – U ∶ U is not
allowed.5 As a consequence of this, there can be no ‘universe of all types’,
since, being a type, this would have to contain itself as a token. In this way
we avoid the paradoxes of type theory analogous to Russell’s paradox in set
theory.

Although no universe can contain itself, every universe, being a type,
is contained in some universe. In particular we can define a universe that
contains U along with all the types that are contained in U . Moreover, we
take it that whenever we have two universes U and U ′ such that U ∶ U ′ then
U
′ contains all the types that are contained in U ; this principle is called

cumulativity.
Note that this means that a type is a token of multiple universes, in

contrast to the situation with ordinary types in which any token belongs to
exactly one type. Indeed, any type belongs to potentially infinitely many
universes: given any A ∶ U , since U is a type we can define a universe U ′

containing it, and by cumulativity we have A ∶ U ′ as well; but then by the
same argument we can introduce a further universe U ′′ with U ′ ∶ U ′′ and

3 In the more formal presentation in [HoTT Book, Appendix] this is realised in the way the
rules of the type theory are spelled out.

4 We are grateful to a referee for this journal for pressing us to clarify this point.
5 Indeed, if we allowed U ∶ U then the theory would be inconsistent. [Girard, 1972; Coquand,

1986]

7
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A ∶ U ′′, and so on (and since no universe can contain itself, each of U , U ′,
U
′′, etc. must be different).

Since any universe is a type, it can be the input or output type of a
function. This is one of the primary uses of universes. A predicate on some
type A is a function taking a token a ∶ A as input and returning a type P(a)

as output, i.e. a function of type A → U . The fact that universes may be
tokens of higher universes is essential to the expressive power of the theory.
In order to discuss properties of some type A ∶ U we need predicates P ∶ A→ U ,
but the type A → U cannot be a token of U . Thus in order to talk about
the type to which such a predicate belongs we require a higher universe U ′.
Similarly, to talk about properties of properties (e.g. satisfiability) we need
higher-order predicates, and corresponding higher universes to which their
types belong.

A universe may also be the domain of a function. This then allows us to
define dependent functions that quantify over all types in a universe. For
example, the token constructor of the identity type

refl ∶∏
C∶U
∏

x∶C
IdC(x,x)

is intended to be read as saying ‘all tokens of all types are self-identical’.
While we can use a universe to quantify over ‘all types’ in this sense, we
cannot quantify over all universes, since the domain of such a quantification
would be a universe containing all universes as its tokens, and as we have
said above no such universe exists. Thus we cannot translate a statement
of the form ‘for all universes U , . . . ’ into the language of HoTT.6

In general, the things we say about ‘all types’ within a given universe
don’t depend upon the particular features of that universe. For example,
the function refl can be defined for all types in any universe – the existence
of such a function isn’t a special feature of some universes but not others.
We can therefore understand these statements, definitions, and theorems
as being implicitly extendable to any universe that is introduced. This is
analogous to the situation in first-order logic, where we can’t quantify over
all predicates, but we regard first-order induction as a commitment to add
an appropriate axiom of induction for any predicate that we introduce. In
much the same way, instead of quantifying over all universes we can can
treat ‘U ’ as a dummy variable to be filled in with any particular universe,
and whatever universe we choose will make the same theorems true (i.e.
will allow us to carry out the same constructions). For many statements
involving quantification over types – for example, the definition of refl, the
token constructor for the identity type – this is the only reading that makes

6 Similarly, for example, there is no function that takes an arbitrary universe U as input and
returns as output a universe U ′ such that U ∶ U

′, since the input and output type of such a
function would again be the (non-existent) type of all universes.

8
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sense (in this case, that refl is defined for every type in every universe).
Of course, our reasoning may involve more than one universe – as discussed
above, we can have U ∶ U ′ and U ′ ∶ U ′′ and so on. All these can likewise be
treated as dummy variables, so long as we can fill in particular universes
in such a way as to maintain the stated relationships between them. This
informal technique of reasoning about an arbitrary universe U is called ‘typ-
ical ambiguity’, while the formal characteristic of the theory that enables
this kind of reasoning is called ‘universe polymorphism’. (For more on this
see [HoTT Book, Section 1.3] and [Shulman, 2012].)

2.2 Some technical details

This section makes a few technical observations about universes, but a com-
plete account is well beyond the scope of this paper.

One way to understand universes in HoTT is as a type-theoretic ana-
logue of Grothendieck universes in set theory.7 These are sets satisfying
particular axioms that ensure that they’re big enough to model ZFC (and
thus the existence of a Grothendieck universe is not something that can
be derived from the axioms of ZFC). Different approaches to the axioma-
tisation of Grothendieck universes place different constraints on how large
such a set must be. In particular, some allow the empty set to qualify as a
Grothendieck universe. Others demand that a universe may not be empty,
but may be a countable set – for example, the set Vω of hereditarily finite
sets. Other approaches impose N ∈ U as an axiom, which enforces that all
universes be uncountable. In the approach taken here no universe can be
empty (since we always have 0 ∶ U and 1 ∶ U) but universes are not required
to be uncountable.

Given the important differences between universes and other types noted
above – in particular, that they have types as their tokens, that types belong
to multiple universes rather than to exactly one, and that they are conceived
of extensionally rather than intensionally – one might wonder whether uni-
verses should be thought of as types at all, rather than treating them as a
different kind of thing altogether. There are indeed alternative approaches
that treat universes in a different way.

For example, we might think of the tokens of universes as being ‘codes’ for
types rather than types themselves, and then introduce an explicit ‘decoding’
function that produces for each code the corresponding type. This approach
preserves more of the similarities between universes and other types, but is

7 For a definition and discussion of Grothendieck universes, see [nLab, 2015]. To be clear,
universes in HoTT are not Grothendieck universes, since the latter are defined set-theoretically,
whereas set theory plays no role in HoTT. However, the analogy is sufficiently strong to be
illuminating.

9
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more cumbersome in practice.8 Alternatively, one might take universes to
be a third sort of thing (alongside tokens and types), and then modify the
definition of functions to preserve the ability to use them as the domains
and codomains of functions (which is an essential role that universes play
in the theory).

Similarly, the assumption that the universes can be ordered as U0 ∶ U1 ∶
U2 ∶ . . . can be dropped. This plays no essential role in the theory and may
be regarded as a notational convenience, providing an easy way to produce
names for universes. It is important to note that the indices used here are
not tokens of the natural number type N in the theory, and in particular
there is no function that maps a token i ∶ N to ‘the corresponding universe’
Ui (not least because the output type of any such function is not defined).9

Each of these is a viable alternative to the account given above, and each
has its own advantages and disadvantages. However, for simplicity (and for
similarity with the approach taken in the HoTT Book) we adopt the above-
described view of universes, and accept the fact that these must therefore
be types of a rather different nature than we have previously considered.
The next subsection gives some justification for these differences via the
Types-as-Concepts interpretation.

2.3 Universes in an autonomous foundation

If HoTT is to be an autonomous foundation for mathematics then, whether
or not Univalence is assumed, something must be said about how to under-
stand universes and why the above rules governing their use are as they are.
This subsection proposes an interpretation of universes that accounts for
the properties outlined in Section 2.1 and is compatible with the Types-as-
Concepts interpretation developed in [Ladyman and Presnell, 2016] which
takes types to correspond to general mathematical concepts (such as ‘natu-
ral number’) and a token of a type to correspond to a specific mathematical
concept qua instance of the more general concept (such as ‘2 qua natural
number’).

The Types-as-Concepts interpretation may be extended to universes by
understanding them as domains of discourse, where a domain of discourse
consists of the concepts and propositions that are understood and defined
in a given discussion. This is a pre-mathematical notion – to have any
discussion of any kind we must know what concepts and propositions are

8 This is often called ‘Tarski-style’ universes, as opposed to the ‘Russell-style’ universes we
have discussed (see [HoTT Book, Chapter 1 Notes]). For a more detailed comparison of the two
approaches see [Luo, 2012].

9 There are alternative proposals to augment the structure of universes by adding a ‘super-
universe’ to which all universes belong, in which case a function of this kind could be definable.
See [Palmgren, 1998; Dorais, 2014a;b].

10
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within the domain – and is therefore admissible as part of an autonomous
foundation. On this interpretation of universes we can explain and justify
the characteristics of universes outlined above.

To consider the question of whether a given concept is part of a given
domain of discourse it must be possible to conceive of the latter, and this
is the concept associated with the type U . There is nothing to a domain
of discourse beyond what particular concepts it contains, and so domains
of discourse are conceived of extensionally rather than intensionally (in the
sense described above).

To give a complete characterisation of a mathematical concept we do
not need to say anything about the domains of discourse that include it.
Likewise in the type theory, as mentioned above types are in general defined
without reference to any particular universe in which they may occur (except
to the extent that the definition of a type depends upon other types or
tokens, in which case any universe containing the type must also contain
those types upon which it depends). Thus in this sense types are primary.
Whereas the definition of tokens must follow the definition of the types to
which they belong, the definition of universes must follow the definition of
the types that they contain.10 This explains why no universe can contain
itself, and thus why there cannot be an ultimate domain of discourse that
contains every concept we may ever need to consider.

Since it is possible to consider and discuss any concepts that can be
precisely formulated, and any such concepts can be considered and discussed
together, for any collection of concepts there is a domain of discourse that
contains them all.

As argued in [Ladyman and Presnell, 2016; 2015b], the basic operations
of HoTT correspond to the basic logical operations. Thus, since we take
it that the discourse we are interested in is governed by logical rules, the
domains of discourse under consideration are closed under the basic opera-
tions of HoTT. Thus, for example, if we can talk about some concept A and
some concept B then we can also talk about their conjunction A&B; more
generally, if any concepts or propositions are part of our domain of discourse
then so too must be anything that can be logically composed from them.

The definition of a token depends essentially upon the type to which the
token belongs; we understand this in the Types-as-Concepts interpretation
by saying that a token of some type corresponds to ‘a particular concept
qua instance of a general concept’ – for example, ‘3 qua natural number’
as opposed to ‘3 qua rational number’. We might summarise this by saying
that any token has an essential intensional aspect that it derives from its

10 Note that if the identity of a type did depend on what universe it was being considered as
part of, then that universe (also being a type) would also have to be specified in terms of what
universe it belongs to, and so on. This would lead to an infinite regress, and so nothing in the
theory would be fully characterised.

11
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type: it is not merely an object, but an object thought about in a certain
way. This is used in [Ladyman and Presnell, 2016] to explain why each
token must belong to exactly one type.

The relationship between types and universes, however, is different. As
explained above, types are primary and do not depend for their definition
upon any particular universe to which they might belong. Rather their def-
inition is given by the type formation, token construction, and elimination
and computation rules, none of which (in general) refer to any particular
universe. Since the definition of, say, the natural numbers is given indepen-
dently of and without reference to any universe, it makes no sense to think
of ‘N qua element of universe U ’ as something different from ‘N qua element
of universe V’. We may summarise this by saying that types do not pick up
any further intensional character by being included in a particular universe.
This explains why, in contrast to the usual situation with tokens and types,
one type may belong to multiple universes.

We noted above that it is always possible to conceive of a particular do-
main of discourse itself, and that any precisely formulated concept belongs
to some universe. Combining these observations with the fact that no do-
main can contain itself (because the contents of a domain must be defined
before the domain itself can be), we see that each universe U must belong
to some further (distinct) universe U ′. In other words, in conceiving of a
particular domain of discourse we step outside that domain to a new one.
Furthermore, since nothing is lost in this transition – no concept that had
previously been defined is now no longer defined – the new domain contains
all the concepts that were in the previous one. This justifies the assertion
that domains of discourse are cumulative in the sense explained above.

A function between types A and B is something that, when given a token
of A, produces a token of B. If A and B are thought of as propositions, with
their tokens being ‘proofs’ or ‘certificates’, then this corresponds to material
implication between those propositions. More generally, in the Types-as-
Concepts interpretation, a function is something that takes an instance of
one concept and produces an instance of the other. This understanding still
holds when types A or B (or both) are universes. A function from a type A

into a universe U is something that takes a token of A and returns as output
a type belonging to that universe. In other words, when given a particular
concept it produces a general concept whose definition may depend upon
the given particular. In the other direction, a function from U to some type
B takes as input a type from that universe and returns as output a token of
B. In other words, it produces a particular instance of the general concept
that may depend upon the general concept that is given as input. In this
way, the use of universes as the domains and codomains of functions is just
a natural generalisation of the way functions are defined on ordinary types.

In summary: Universes are types corresponding to domains of discourse
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– at any point in our reasoning, the collection of types that we take to
exist at that point is a universe. Universes have types as their tokens (and
universes are the only types that have other types as their tokens), but no
universe can be a token of itself. Thus there is no universe of all types.
Universes are closed under all the basic rules of type formation. Thus there
is no empty universe: the smallest universe must contain 0 and 1 and all
the types arising from them via the basic rules.

As explained above, quantification over types involves specifying a uni-
verse. A ‘univalent’ universe is one in which Univalence holds of all the
types in it. With typical ambiguity, explained above, the Univalence Axiom
says that the universes we are working with are univalent.

The next section formally characterises Univalence.

3 The Definition of Univalence

Formally defining Univalence requires a definition of ‘equivalence’. However,
there is a subtlety to this which we postpone to Section 6. For now, think of
‘equivalence’ as a relation between types that is similar to isomorphism.11

As a placeholder, we write E(A,B) for the type corresponding to this relation,
whose tokens certify that types A and B are equivalent. For now we assume
only that it is reflexive, that, like isomorphism, it is witnessed by the exis-
tence of a function f ∶ A → B satisfying certain conditions, and in particular
that the trivial function 1A ∶ A → A that leaves its input unchanged always
counts as an equivalence.12

Recall that for any two tokens x,y of a type X there is an identity type
IdX(x,y), tokens of which are identifications of x and y. Since types them-
selves are tokens of any universe in which they live, there is an identity type
IdU(A,B) for any pair of types, and its tokens are identifications between A

and B.
Since the equivalence relation E is reflexive, there is a token of E(A,A)

for any type A. It therefore immediately follows by path induction that for

11 Indeed, to avoid complicating the informal presentation of [2014b], Awodey uses the word
‘isomorphism’ throughout much of the discussion and gives the standard category-theoretic def-
inition. Note that in HoTT a relation is not in general merely a fact that either holds or fails
to hold between two relata, but rather is represented by a family of types. We return to this in
Section 6.2.

12 It is possible instead to define an equivalence relation directly as a two-place predicate of type
A × B → U satisfying certain conditions (see, for example, [HoTT Book, Exercise 4.2].) However,
in general, rather than defining the equivalence relation E(A,B) directly we will instead define
a corresponding predicate isE(f) on functions f ∶ A→ B asserting that f satisfies the relevant
conditions. So, for example, rather than directly defining Iso(A,B) that says that A and B are
isomorphic, we will define isIso(f) saying that f is an isomorphism between A and B.

13
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any two types A and B there is a function

id-to-eq ∶ IdU(A,B)→ E(A,B)

mapping identifications between A and B to equivalences between them. In
other words, this function certifies that identical types are equivalent, as we
would expect. In particular, this function maps the trivial self-identification
reflA of type A to the trivial function 1A ∶ A→ A (along with the proof that
this trivial function is an equivalence).

Whereas the existence of the function id-to-eq follows from the basic
rules of HoTT, the existence of a corresponding function from equivalence
to identity does not. Moreover, in traditional mathematical frameworks it is
possible to produce objects that are isomorphic but provably not identical,
which therefore would block the introduction of such a function. In HoTT
no such counterexamples can be produced. This leaves open the possibility
of positing such a function.

When the Univalence axiom is added to the basic framework of HoTT
it provides, for each pair of types A and B, a function

eq-to-id ∶ E(A,B)→ IdU(A,B)

and so under the assumption of Univalence, given any token of E(A,B) wit-
nessing the equivalence of A and B, we can produce an identification between
A and B. Thus, under the assumption of Univalence, if we want to prove
that two types are identical to one another it suffices to demonstrate that
they are equivalent (in the particular sense denoted by ‘E’).

The existence of such a function eq-to-id is a radical departure from
standard foundations. It allows us to set aside distinctions between isomor-
phic structures and treat them as presentations of a single structure in a
fully rigorous way.

However, the Univalence axiom goes even further than this. Beyond
merely asserting that a function eq-to-id exists, it says that this function
and id-to-eq form an equivalence between E(A,B) and IdU(A,B) (again, in
the sense of the relation denoted by ‘E’). It therefore follows that the type of
equivalences between A and B and the type of identifications between them
are themselves equivalent:

∏

A,B∶U
E(IdU(A,B), E(A,B))

where we use quantification over the universe U to assert that this holds for
all pairs of types A,B.13

13 It is often said that this latter statement is the formal definition of Univalence. Strictly
speaking this is not quite right: univalence says not just that there is some equivalence between
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As noted above, in the basic framework of HoTT, Univalence cannot be
proved as a theorem. That is, although the above type can be formulated
in the language of HoTT, we cannot derive the existence of a token of that
type. (Indeed, even the existence of a function of type E(A,B) → IdU(A,B)
cannot in general be proved.) Thus to use Univalence we must introduce it
as an axiom by positing the existence of a token UA of this type.14

While the existence of a function eq-to-id is an important innova-
tion, and to some extent already satisfies many of the aims of a struc-
turalist approach to mathematics, it is important to note that the stronger
assertion that E(A,B) and IdU(A,B) are equivalent is an essential part of
many applications of Univalence. We therefore introduce the terminology
‘Semi-Univalence’ for the axiom that just asserts the existence of a function
eq-to-id ∶ E(A,B)→ IdU(A,B).

As Section 6 explains, like isomorphism, the equivalence relations E that
are considered assert a strong correspondence between the tokens of the two
types they relate: in particular, E(X,Y) entails that for each token of X there
is a unique token of Y, and vice versa. Thus the connection asserted by
Univalence between equivalence and identity allows any reasoning involving
equivalences to be reduced to reasoning involving identifications without
loss of information. In particular, if we want to prove that some property
holds of all equivalences we can first re-express an arbitrary equivalence as
id-to-eq(p) for some identification p, without loss of generality. This then
reduces the problem to that of proving that some property holds of all iden-
tifications, and thus we can apply path induction to simplify the problem.
In other words, the correspondence given by Univalence means that we can
extend path induction to a corresponding statement about equivalences: to
prove that a property holds of all equivalences it is sufficient to show that
it holds of the trivial equivalence function 1A for all A. (This is the strategy
involved in the proof of Theorem 3 in Section 6.5.)

Of course, to state the definition of Univalence properly we must fill
in a particular equivalence relation for the placeholder ‘E’. For each such
relation there is a corresponding variant of Univalence. In Section 6 we
consider some possible definitions, and see that in some cases the resulting
variant of Univalence is inconsistent, allowing us to derive contradiction.

IdU(A,B) and E(A,B), but specifically that the particular function id-to-eq provides such an
equivalence (with inverse given by eq-to-id). However, the technical reasons for making this
distinction need not concern us and we will disregard it in the remainder of the paper. In
Section 7.4 we address a different and more significant issue regarding the definition of Univalence.

14 In computational implementations of Univalent HoTT there are disadvantages to having
Univalence only as an axiom rather than a theorem. As noted in Section 1.1 here are therefore
efforts to develop alternative versions of HoTT in which a version of Univalence can be proved
as a theorem (for example, ‘Cubical Type Theory’ [Bezem et al., 2014]). However, such work
is beyond the scope of the present paper, and so we refer to ‘Univalence’ and ‘the Univalence
axiom’ interchangeably.
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Before doing so, however, we first examine some of the consequences of
adopting the Univalence axiom.

4 The Consequences of Univalence

4.1 Function Extensionality

An important consequence of Univalence is Function Extensionality (FE)
which says that for any types A and B, two functions f,g ∶ A→ B are equal
iff they agree at all input values:

(∏

a∶A
IdB(f(a), g(a))) → IdA→B(f,g)

In traditional mathematics this is taken as the identity criterion for func-
tions, but it cannot be proved in basic HoTT. To make use of this impor-
tant and useful principle, then, we must either assume FE directly as an
axiom, derive it from another axiom, or extend the basic theory in some
other way that gives FE.15 Voevodsky’s proof that FE can be derived as
a theorem in HoTT under the assumption of the Univalence axiom (recon-
structed in [Gambino et al., 2011]) makes essential use of the correspon-
dence between equivalences and identifications given by Univalence. Semi-
Univalence, which only asserts the existence of a function eq-to-id that
maps equivalences to identifications, is not sufficient.

4.2 Non-trivial identifications

Another important consequence of UA is the existence of non-trivial self-
identities.

HoTT is an intensional theory in the sense that tokens that are externally
or ‘judgementally’ distinct may be nonetheless internally or ‘propositionally’
identical (meaning that the their identity type is inhabited).16 However, the
theory without Univalence admits extensional models in which all all identi-
fications are trivial self-identifications. Put another way, without Univalence
it is consistent to posit a ‘reflection rule’ saying that internal identity en-
tails external identity. However, under Univalence we can directly prove the
existence of a non-trivial self-identity, thus ruling out extensional models.

15 One such approach is the addition of Higher Inductive Types [HoTT Book, Chapter 6]
to the theory. These are types whose definition involves not only constructors for tokens but
also constructors for identifications between tokens (and potentially higher identifications at all
levels). If these are allowed then we may posit an ‘interval type’ consisting of two tokens and an
identification between them. The existence of the interval type entails function extensionality.
[HoTT Book, Lemma 6.3.2]

16For more on identity in HoTT, see [Ladyman and Presnell, 2015a].
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Theorem 1. [HoTT Book, Example 3.1.9] Univalence entails the existence
of a non-trivial identification.

Proof. Let 2 ∶≡ 1+1, the coproduct of the Unit type with itself, whose tokens
are ⟨∗] and [∗⟩. The trivial function on 2 (that leaves its inputs unchanged)
is mapped by Univalence to the trivial self-identity refl2. Define the func-
tion swap ∶ 2 → 2 by swap(⟨∗]) ∶≡ [∗⟩ and swap([∗⟩) ∶≡ ⟨∗]. This is easily
seen to be an equivalence, since it is self-inverse. Applying Univalence to
swap gives an identification p ∶ IdU(2,2). Since swap and the trivial function
are distinct, by Univalence the corresponding identifications must also be
distinct, and so p is a token of IdU(2,2) that is not equal to refl2, i.e. a
non-trivial self-identification of the type 2. ∎

Note that this proof makes essential use of the correspondence between
equivalences and identifications given by Univalence – it is not sufficient
merely to have a function eq-to-id that maps equivalences to identifications
(as is given by Semi-Univalence), since this could not rule out the possibility
that the identification produced was refl2.

In an extensional theory in which internal identity entails external iden-
tity, Univalence entails that all equivalent types are externally identical
so there are no non-trivial equivalences. So although Univalence may be
thought of as a kind of ‘extensionality principle’ in a certain sense (see Sec-
tions 5 and 8.3), is only of interest in an intensional system with distinct
internal and external identities.

4.3 Other consequences

UA can be applied to the equivalence between identity types and equiva-
lence types. That is, from the equivalence between IdU(A,B) and E(A,B)
asserted by UA we can derive (by an application of UA) an identification of
IdU(A,B) and E(A,B). This means that the transport function [HoTT Book,
Lemma 2.3.1] associated with this identification can be used to translate
facts about equivalences into facts about identifications and vice versa.

Without the Univalence axiom, while all functions respect identity, this
does not extend to all predicates. It is true that for any function k ∶ A→ B,
if we have IdA(x,y) then we can derive IdB(f(x),f(y)). However, the corre-
sponding claim for predicates – i.e. given P ∶ A→ U , if IdA(x,y) then we can
derive IdU(P(x),P(y)) – does not hold.17 Without Univalence we can only
prove under these circumstances that P(x) and P(y) are equivalent. The in-
troduction of Univalence therefore puts predicates and functions on an even
footing in this respect, since from this equivalence between P(x) and P(y)

17 See, for example, [Awodey, 2014a, 00:44:30], where this is described as a version of inten-
sionality.
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a corresponding identification can be derived. Thus, under Univalence, all
predicates respect identity just as functions do.

The addition of Univalence imposes restrictions on what other axioms
we can add to HoTT – in particular, how broadly the Law of Excluded
Middle can be taken to apply. The basic rules of HoTT are grounded in
constructive logic (as discussed in [Ladyman and Presnell, 2016]), but this
does not constrain us always to use constructive methods because versions
of the Law of Excluded Middle can be taken as additional axioms. However,
there are limits to this: UA is inconsistent with the most general version of
LEM that says that every type is either empty or inhabited:

LEM∞ ∶≡ ∏

A∶U
A + ¬A

(The proof of this given in [HoTT Book, Corollary 3.2.7] makes use of the
non-trivial self-identity of 2 derived in Theorem 1 above.) It is consistent
with UA to assume a more restricted form of LEM that applies only to ‘mere
propositions’ (i.e. those types having at most one token, up to identity; see
[HoTT Book, Chapter 3.3] for further discussion of these types). Thus the
use of Excluded Middle in the fragment of HoTT corresponding to proposi-
tional logic is still compatible with Univalence. (The situation regarding the
Axiom of Choice is similar; see [HoTT Book, Section 3.8] for more details.)

Finally, an important consequence of Univalence with respect to the
comparison between HoTT and other foundational systems is that HoTT
with the Univalence axiom can recover standard ZFC set theory as well as
Lawvere’s Elementary Theory of the Category of Sets (ETCS). This entails
that in so far as the whole of mathematics can be reconstructed in those
theories, it can also be reconstructed in HoTT + UA. However, this is not
to say that this is how HoTT is supposed to provide a foundation for math-
ematics in practice, rather this is done directly not by going via set theory
[HoTT Book, Chapter 10].

5 The Meaning and Metaphysics of Uni-

valence

While Univalence may be understood as saying that equivalence and iden-
tity are equivalent, and thus (as noted in Section 4) that they are identical,
we must take care in interpreting this statement. Univalence does not say
that the two notions are externally equal, and so even under Univalence
we cannot replace identity by equivalence.18 Given that the difference be-

18 In particular, since equivalence is a relation between types, and no such notion is defined
for tokens that are not themselves types, there is no way that identity could be systematically
replaced by equivalence throughout the theory.
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tween equivalence and identity is still recognised, in the sense that they
remain externally distinct, what justifies their unification by UA? In this
section we consider how to understand Univalence, and how it relates to our
metaphysical picture of mathematics.

Univalence has been described as a kind of ‘extensionality principle’ for
HoTT, since it unifies equivalent types that would otherwise be treated as
distinct. However, note that, as mentioned in Section 4.2, in a type theory
that is extensional in the sense that external identity is reflected in internal
identity, Univalence trivialises equivalence. This is therefore not the sense in
which Univalence adds a degree of extensionality to the theory. To see what
it means to say that equivalent types are identical consider some examples:

(i) A × B and B × A are (externally) distinct types, but in almost any con-
text in which we are interested in them there is no effective difference
between them, so it makes sense to equate them.

(ii) The list-sorting algorithms MergeSort and InsertionSort are clearly
distinct algorithms, and in some contexts the differences between them
(e.g. their running times on a given list) are important. But in another
sense, regarded just as relations between inputs and outputs, they are
identical since they produce the same output when given the same
input.

(iii) All empty types, for example, even divisors of 9 and largest prime, are
equivalent to 0 and thus (under Univalence) identical to it.

In each case the types that are equated by Univalence, being equiv-
alent, were already indistinguishable within the language of HoTT, since
any predicate that holds of one also holds of the other. However, while no
predicate can discern two equivalent types this is not, in the basic theory,
enough to enable us to prove that they are identical.19 Thus while Univa-
lence introduces new identifications between types that could not otherwise
be produced, it only identifies types that were anyway already indiscernible.
Moreover, recall that these are internal identifications, not external ones:
the types involved remain externally distinct. In a sense, then, the external
distinctions between types identified by Univalence record ‘how the types
were constructed or defined’, which information is not accessible within the
language itself.20 So, for example, in the case of empty types the external
distinctions between them record what particular impossible criteria and
false propositions they correspond to, while internally the only fact about
them that can be accessed is that they are empty. Since HoTT has these two

19 As mentioned above, in [Ladyman and Presnell, 2015a] we investiate the relationship between
identity and indiscernibility in HoTT, and in particular whether identity types might be re-
interpreted as expressing indiscernibility. While this would naturally explain the various ways
in which ‘identity’ in HoTT is unusual compared with standard theories, we argue that such a
re-interpretation is not viable.

20 We are grateful to Thorsten Altenkirch for pointing this out to us.
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separate notions of identity we can still maintain the external distinctness
of equivalent types and examine these concepts separately. Univalent HoTT
therefore achieves a kind of identification without collapse, and so lets us
keep both perspectives simultaneously.

Another interpretational issue regarding Univalence is how to under-
stand the role of the universe U . Any particular statement of the Univa-
lence axiom in the language of HoTT involves quantification over all types
in some particular universe U . One way to read this is as a statement that
equivalence is equivalent to identity for all types in that particular universe
U . A universe for which this holds is called univalent [HoTT Book, Sec-
tion 2.10]. However, this is not the intended reading of the axiom. Rather
than understanding it as an assertion about some particular universe U , it
is instead intended to be read in a ‘typically ambiguous’ way (Section 2.1)
as an assertion about all universes, i.e. that all universes are univalent.

However, in the case of Univalence we may read the typical ambiguity in
an alternative way, not as a metaphysical claim about universes, but rather
as a methodological commitment to only consider univalent universes. This
is quite compatible with there being non-univalent universes which we choose
not to work with. Section 8 returns to this point.

5.1 Mathematical objects without Platonism?

The metaphysics of Univalence depends on the metaphysics of universes.
The Types-as-Concepts interpretation given in Section 2 takes universes
to be domains of discourse. On this interpretation, the two readings of
Univalence given above correspond to the claim either that all domains of
discourse are univalent, or the methodological commitment to restrict at-
tention to univalent domains of discourse. Note that domains of discourse
themselves may be interpreted in two different ways: as conceptual enti-
ties or as domains of objects. Platonists, who believe in the existence of
mathematical objects, may take either interpretation (but might favour the
latter), whereas non-Platonists are committed to the former interpretation.

In [1979, p. 32], Hersh records “a generally accepted fact about the
mathematical world today: Most mathematicians live with two contradic-
tory views on the nature and meaning of their work.” Citing Hersh, Shapiro
observes that

“it is typical for a mathematician to be a Platonist during the
week, when doing mathematics, and a formalist ‘on Sunday’,
when there is leisure to think about mathematics. [. . . ] This
suggests that it is conducive to mathematics as such to treat,
say, numbers as if they are part of an eternal, mind-independent
realm, even if traditional Platonism, as an articulated philosophy,
causes discomfort.” [1997, pp. 28–9]
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In this section we argue that Univalence may be seen as somewhat reconcil-
ing these two positions.

A Platonist can defend the Univalence axiom by appealing to the “eter-
nal, mind-independent realm” of mathematical objects that they believe to
exist. They can argue that equivalent types in the theory correspond to
alternative descriptions of the same mathematical object (or the same col-
lection of mathematical objects). Thus it makes sense to identify those types
in the theory, in order to ensure that mathematical discourse is carved up at
the right level of granularity, i.e. so that internally-distinct types correspond
to different mathematical objects, not to different descriptions of objects.

However, Platonism throws up its own problems: for example, “the
mathematician will wonder how it is possible to know anything about this
eternal realm” [Shapiro, 1997, pp. 28–9]. Taken as a claim about mathe-
matical ontology, then, Platonism is difficult to defend (see [Brown, 2011]
for a recent defence of Platonism). Nonetheless, as Shapiro and Hersh ob-
serve, despite such philosophical objections mathematicians still conceive
of mathematics in a Platonist manner, talking, writing, and (most impor-
tantly) thinking about mathematical entities as mind-independent objects.

This is where the Types-as-Concepts interpretation of HoTT brings an
advantage. As discussed in [Ladyman and Presnell, 2016], this interpreta-
tion is silent about mathematical ontology, taking no position on the exis-
tence of the mathematical objects of which mathematicians treat. Rather,
it takes the types of the theory to correspond to the concepts that are dealt
with by mathematicians, without insisting that these concepts correspond to
existing objects in the physical or Platonic realm. Our only ontological com-
mitment is to the existence of concepts, to which we were anyway committed
for non-mathematical reasons. Thus, on this interpretation, it is possible to
accommodate mathematicians’ Platonist treatment of mathematics without
being committed to a Platonist ontology. The entities to which mathemat-
ical language appears to refer are taken to be concepts, whose existence we
can comfortably assert without inflating our pre-existing ontology.

Moreover, on this interpretation we can employ the Platonist’s argument
for Univalence even without the corresponding ontology. Like the Platon-
ist, we can argue that equivalent types in the theory correspond to a single
mathematical concept under multiple different presentations. So, for exam-
ple, it is natural to take “conjunction of A and B” and “conjunction of B

and A” to be two different presentations of the same concept, and therefore
to identify them in the theory.

Identifying types in HoTT lets us, in effect, create new types that are ag-
glomerations of multiple finer-grained types. Whereas other systems, having
a single identity relation, would require the addition of new entities to serve
this function, HoTT does not need to do this. We can maintain the (exter-
nal) distinctness of the original types, and so retain the intensional character
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of the theory, while expressing their (internal) identity. So instead of hav-
ing two classes of entities, namely ‘objects’ and ‘names’ (or ‘references’),
we have one class of entity and two ways of carving them up. One level of
distinction is intensional, the other is extensional. Thus with Univalence we
get the best of both worlds in an economical manner.21

However, while an argument along the above lines may indicate the ap-
peal of a univalent theory and show how it fits naturally with mathematical
practice and thought, there is more to be done. The account given in [Lady-
man and Presnell, 2016] showed how the components of the basic language
of HoTT – not including Univalence or function extensionality – could be
motivated and justified from elementary pre-mathematical considerations,
thereby defending the claim that HoTT may serve as an autonomous foun-
dation for mathematics, not dependent upon any other foundational theory.
If Univalent HoTT (i.e. the basic theory plus the Univalence axiom) is
likewise to serve as an autonomous foundation then we must provide a pre-
mathematical justification for the addition of the Univalence axiom. In par-
ticular, this must be an argument not just for the general idea of Univalence,
such as the one sketched above, but for the exact Univalence axiom itself.
So, before we can examine in detail the arguments for Univalence we must
first fill in the remaining detail in its definition, namely the ‘equivalence’
relation denoted by ‘E’ in Section 3.

6 Equivalence and Isomorphism

In standard mathematical parlance an equivalence relation is any relation
that is reflexive, symmetric, and transitive. However, in most approaches to
mathematical structuralism the relevant kind of equivalence is specifically
the relation of isomorphism, while in category theory a weaker relation of
equivalence between categories is appropriate, and in [HoTT Book, Chap-
ter 4] a number of other equivalence relations are defined. This Section
considers how the notion of equivalence should be formulated in HoTT, and
how this affects the formulation of the Univalence axiom.

6.1 Isomorphism

According to the standard traditional definition of isomorphism, two struc-
tures A and B of some kind (for example, two groups, two manifolds, two

21 We might try to get the same result without Univalence by using quotients. However,
given that all equivalent types are being identified, it makes sense to do so in a uniform way
by introducing a single axiom. Also, using quotients may involve constructing new types with
counterparts and identifications, so introducing complications, whereas adding Univalence lets
us keep the original types unchanged but adds identifications between them.
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vector spaces) are isomorphic iff there exists a structure-preserving map
f ∶ A → B that has an inverse, i.e. a structure-preserving map g ∶ B → A
such that g ○ f = idA and f ○ g = idB. (As noted in footnote 11, this is the
definition that Awodey gives in [2014b, p. 9].)

The most straightforward translation of this into the language of HoTT
is as follows: an isomorphism between types A and B is a function f ∶ A → B

having an inverse g ∶ B→ A such that g○f = idA and f○g = idB. Alternatively,
if we wish to avoid using the axiom of function extensionality (which governs
the identity conditions for functions, see Section 4.1) we may replace the
conditions on f and g with

isPostInvf(g) ∶≡ ∏

a∶A
(g ○ f)(a) = a

isPreInvf(g) ∶≡ ∏

b∶B
(f ○ g)(b) = b

which say respectively that g is a post-inverse to f and a pre-inverse to f.22

We may then define

isIso(f) ∶≡ ∑

g∶B→A
(isPostInvf(g) × isPreInvf(g))

a token of which is a triple (g, α, β) ∶ isIso(f), where g ∶ B→ A is the inverse
function and α ∶ isPostInvf(g) and β ∶ isPreInvf(g) together certify that
g is an inverse to f.23

6.2 Mere propositions and truncation

Standardly in classical logic any proposition is merely either true or false.
However, in HoTT we may interpret the types as corresponding to proposi-
tions, with tokens of types corresponding to certificates (or proofs) of those
propositions. The possibility therefore arises that the type corresponding to
a proposition may be inhabited by multiple distinct tokens, each of which
certifies the truth of that proposition in different ways. We say that HoTT is
a ‘proof-relevant’ system, in contrast to the ‘proof-irrelevant’ systems used
in standard mathematics.

Some types, called ‘mere propositions’, behave more like the propositions
of traditional proof-irrelevant logic, because they can be proved to have at
most one token up to internal identity (i.e. any two tokens of the type
are internally identical). Thus a token of a mere proposition provides just

22 Post- and pre-inverse are more commonly called left- and right-inverses.
23 In the HoTT Book (Definition 2.4.6) such a g is called a ‘quasi-inverse’ for f, and the word

‘isomorphism’ is reserved for the case where types A and B satisfy a further condition (making
them ‘sets’ or ‘0-types’ in the terminology of the HoTT Book). We do not adopt that terminology
in this paper.
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the information that the proposition is true and no additional information.
(Contrast with the proposition that some natural number n is composite,
the proof of which might also provide us with a particular factor of n.)

In order to accommodate proof-irrelevant mathematics within the proof-
relevant framework of HoTT, the HoTT Book introduces an operation of
propositional truncation of a type [HoTT Book, Section 3.7].24 Given
a type A, its truncation ∣∣A∣∣ is a type having a token for each token of A,
all of which are identified. Thus by definition it is a mere proposition that
is inhabited iff A is. Taking the propositional truncation of a type instead
of the type itself may be thought of as ‘throwing away’ information about
which token of the type we may have and retaining only the fact of whether
any such token exists at all, i.e. the truth or falsity of the corresponding
proposition.

Since traditional approaches to mathematics have been proof-irrelevant
by default (since no other option was available), when we come to translate
ideas and definitions from standard mathematics into HoTT we sometimes
have to choose between different possible formulations.25 No clear guidance
is given in the HoTT Book about when it is appropriate to use truncation
in the translation of definitions into the language of HoTT. Thus any use of
truncation in a translation should be given a specific justification, and we
should not assume that definitions must be propositionally truncated (or,
correspondingly, that types must be mere propositions) simply because the
traditional definition necessarily was.

6.3 isIso is not a ‘mere property’

Classically, being an isomorphism is merely a property that a given function
f ∶ A → B either has or does not have. But in HoTT, for a given function
f ∶ A → B there may be multiple distinct tokens of the type isIso(f), each
certifying that f is an isomorphism.

We can rule out the possibility that f might have multiple inverses that
behave differently, since if g,g′ ∶ B → A are both inverses to f then we have
g(b) = (g ○ f ○ g′)(b) = g′(b) for any b ∶ B. But in general, for arbitrary f,
given an inverse g to f we cannot prove that all possible tokens (g, α, β)
and (g, α′, β′) of isIso(f) are identical to one another. That is, we cannot

24 The truncation operation cannot be defined in the basic language of HoTT without the
addition of further axioms such as LEM [HoTT Book, Exercise 3.14] or the impredicative axiom
of ‘propositional resizing’ [HoTT Book, Axiom 3.5.5, Exercise 3.15]. Alternatively it can be
defined in HoTT extended with ‘Higher Inductive Types’, i.e. types whose constructors can
produce identifications as well as tokens [HoTT Book, Section 6.9].

25 This is similar to the situation we face when translating from classical to constructive
mathematics, where distinctions that were collapsed by classical logic are now opened up, and
we must choose which constructive variant best matches the original notion, or which best serves
our purposes.
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prove that for every function f the type isIso(f) is a ‘mere proposition’
[HoTT Book, Section 3.3].

Moreover, under the assumption of Univalence (and the presence of a
propositional truncation operator) it is possible to construct a function f for
which isIso(f) can be explicitly shown not to be a mere proposition [HoTT
Book, Theorem 4.1.3]. In the terminology of [HoTT Book, Section 3.10],
we might express this by saying that isIso fails to be a ‘mere property’ of
functions.

In itself, this is not obviously a problem. While it conflicts with the
assumption in standard mathematics that f’s being an isomorphism is a
simple yes/no matter, we could take it as a discovery – obscured by previous
proof-irrelevant frameworks – that being an isomorphism is a more complex
property that may be witnessed in multiple ways. As noted in the previous
section, we should not expect that every mathematical proposition that was
previously assumed by default to be a mere matter of fact should turn out be
so when translated into a richer proof-relevant system. Moreover we might
hope to gain new insight by studying the structural relations between the
various tokens of what was previously treated as a structureless mere fact.

In summary, then, there is initially no reason to think that there is
anything wrong with this direct and immediate translation of the definition
of isomorphism into HoTT (although we will see a very important reason in
Section 6.5).

Before considering the consequences of using this definition of isomor-
phism we first consider two alternative equivalence relations that are ‘mere
properties’, to see how they differ from isomorphism.

6.4 Truncated Isomorphism and Bi-invertibility

One way of ensuring that our translation of isomorphism into HoTT is a
mere property is simply to put in this fact by hand by the use of a suitable
truncation. If we define ‘truncated isomorphism’ ∣∣isIso∣∣, where for each f

we set ∣∣isIso∣∣(f) ∶≡ ∣∣isIso(f)∣∣, then by definition a given function f can
be a ‘truncated isomorphism’ in essentially one way. However there is no
obvious motivation for introducing such a truncation.

The HoTT Book gives a number of alternative equivalence relations, all
of which are mere properties in the sense defined in the previous section. In
this section we examine the simplest such alternative, ‘Bi-invertibility’.26

The definition of isIso corresponds to the standard definition of isomor-
phism, and requires proof that a single function g is both a pre-inverse and
a post-inverse to f. This condition can be relaxed slightly, instead requiring

26 For other examples, such as ‘half adjoint equivalences’ and ‘contractible maps’, see [HoTT
Book, Chapter 4].
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only that f has a pre-inverse and a post-inverse, without demanding in ad-
vance that the same function play both roles. This leads to an alternative
to isomorphism, called ‘bi-invertibility’ [HoTT Book, Definition 4.3.1]

isBiInv(f) ∶≡

⎛

⎝
∑

g∶B→A
isPostInvf(g)

⎞

⎠

× ( ∑

h∶B→A
isPreInvf(h))

with a corresponding relation between types

BiInv(A,B) ∶≡ ∑

f∶A→B
isBiInv(f)

A certificate that f is bi-invertible is a quadruple (g, αg,h, βh) ∶ isBiInv(f),
where g,h ∶ B→ A, αg ∶ isPostInvf(g) and βh ∶ isPreInvf(h). Thus bi-
invertibility requires only that a pre-inverse and a post-inverse to f exist,
without requiring that they be the same function.

It is straightforward to show that this condition is materially equivalent
to isomorphism:

Theorem 2. Let f ∶ A→ B be a function with a post-inverse g ∶ B→ A and a
pre-inverse h ∶ B → A. It follows that (i) g is also a pre-inverse to f; and (ii)
h is also a post-inverse to f.

Proof. Given f,g,h as above with (g ○ f)(a) = a for all a ∶ A and (f ○ h)(b) =

b for all b ∶ B it follows that for any b ∶ B, we have (g ○ f)(h(b)) = h(b)

and, since all functions respect identity, g((f ○ h)(b)) = g(b). Thus h(b) =

(g ○ f ○ h)(b) = g(b). Under the assumption of function extensionality it
would follow that g = h, which completes the proof; but even without this
assumption we have (i) for any b ∶ B, (f ○ g)(b) = (f ○ h)(b) = b; and (ii) for
any a ∶ A, (h ○ f)(a) = (g ○ f)(a) = a. ∎

The above theorem guarantees that the two functions g and h give the
same values at all inputs, which is sufficient to show that they are both
inverses of f (and under the assumption of function extensionality is suf-
ficient to show that they are internally identical). Thus any bi-invertible
function is also an isomorphism, and, trivially, any isomorphism with cer-
tificate (g, α, β) is bi-invertible with certificate (g, α,g, β).

In a traditional proof-irrelevant approach to mathematics, the proof that
isBiInv(f)↔ isIso(f) for all functions f would be taken to mean that for
all purposes bi-invertibility and isomorphism are completely interchange-
able. (This may explain why the notion of bi-invertibility never arises in
standard mathematics, since in that proof-irrelevant context this modifica-
tion of the definition of isomorphism is completely redundant.)

However, in the proof-relevant system of HoTT we can discern a differ-
ence between the two properties: using function extensionality it is possible
to prove that isBiInv is a mere property [HoTT Book, Theorem 4.3.2].
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Note that the distinction between isIso and isBiInv is a subtle one:
it is not a matter of which functions have the property, since, as we have
seen, any function having one property also has the other. Necessarily,
then, the two criteria agree on which pairs of types count as ‘equivalent’.
Rather, the difference is a matter of what evidence must be presented to
demonstrate that a function has the property: in the former case, a single
inverse function bearing two properties; in the latter case, two ‘one-sided’
inverses, each bearing a single property. Moreover, as the above theorem
shows, the two functions involved in a token of isBiInv(f) can be shown
to be extensionally equal to one another, and thus each is a full inverse of
f and could therefore serve as part of a token of isIso(f). The distinction
between these two properties is therefore not only subtle but also a deeply
proof-relevant one. However, as we see in the next section, this distinction
makes a very important difference for the formulation of Univalence.

6.5 ‘Isovalence’ is inconsistent

Section 3 defined Univalence in terms of an as-yet unspecified relation of
‘equivalence’ that is “similar to isomorphism”, and noted that for each par-
ticular equivalence relation there is a corresponding variant of Univalence.
This section examines the result of defining Univalence in terms of the
straightforward translation of isomorphism, isIso defined in Section 6.1.
As we will be referring to this particular variant in subsequent sections, we
introduce the name ‘Isovalence’.

From isIso we define the corresponding relation between types

Iso(A,B) ∶≡ ∑

f∶A→B
isIso(f)

a token of which is a function f ∶ A → B along with a token (g, α, β) ∶

isIso(f). Thus Iso(A,B) may (very roughly) be understood as the type of
all isomorphisms between A and B or, read as a proposition, as the assertion
that such an isomorphism exists.

As in Section 3, it is straightforward to derive by path induction the
existence of a function id-to-iso ∶ IdU(A,B) → Iso(A,B) but in general
the basic rules of HoTT do not allow us to produce a function in the op-
posite direction, iso-to-id ∶ Iso(A,B) → IdU(A,B). Semi-Isovalence is the
assertion that such a function exists, whereas Isovalence proper says that
this function is an inverse to id-to-iso, and thus the types IdU(A,B) and
Iso(A,B) are isomorphic to one another:

∏

A,B∶U
Iso(IdU(A,B), Iso(A,B))

If we took isIso to be a natural expression of equivalence, being the
straightforward translation of isomorphism from traditional mathematics
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into the language of HoTT, then correspondingly we should take the above
statement to be the natural expression of the idea of Univalence, that ‘equiv-
alence is equivalent to identity’. However, this approach cannot be main-
tained as it leads to inconsistency.

For reasons of space we cannot give all the details of the proof here,
but the outline of the proof is as follows. First, the derivation of Function
Extensionality from Univalence (mentioned in Section 4.1) can be adapted
to show that Function Extensionality also follows from Isovalence. Using
this, it is then possible to reproduce the proof [HoTT Book, Theorem 4.3.2]
that isBiInv is a mere property, and the construction given in [HoTT Book,
Theorem 4.1.3] of a function f for which isIso(f) is not a mere proposition,
thus demonstrating that isIso is not a mere property.

So far, this is just a reproduction of facts that hold under any version
of Univalence. However, on the assumption of Isovalence we can also prove
that isIso is a mere property, in contradiction to the above.27

Theorem 3. Let A,B be any types and f ∶ A→ B any function between them.
Then on the assumption of Isovalence, isIso(f) is a mere proposition.

To demonstrate this, we first prove a lemma. For a given function f,
let iso-b be the obvious mapping that takes any token (g, α, β) ∶ isIso(f)
to (g, α,g, β) ∶ isBiInv(f), and let b-iso ∶ isBiInv(f) → isIso(f) be the
mapping whose existence is proved in Theorem 2.

Lemma 1. Isovalence entails that for any function f ∶ A → B, b-iso is a
post-inverse of iso-b, i.e. for any x ∶ isIso(f) we have

b-iso(iso-b(x)) = x

Proof. Isovalence says that every pair (f,x) ∶ Iso(A,B) is the output of
id-to-iso for some unique identification q ∶ IdU(A,B). Thus we may assume
without loss of generality that (f,x) is of the form id-to-iso(q). Then by
path induction we may assume that (f,x) is id-to-iso(reflA), which is
the trivial function 1A ∶ A → A that leaves its input unchanged, along with
the obvious demonstration that this is an isomorphism. It is straightforward
to show that the above equality holds in this case, and so by path induction
and Isovalence it holds for any function f and any x ∶ isIso(f). ∎

Theorem 3 now follows immediately:

Proof. For any tokens x,y ∶ isIso(f) we have iso-b(x) = iso-b(y), since
isBiInv(f) is a mere proposition. Thus by Lemma 1 it follows that x = y,
and so isIso(f) is a mere proposition. ∎

Note that the crucial step in the above proof essentially involves the
fact that Isovalence relates isomorphisms to identifications (specifically, it

27 The proof sketched here follows that of [Gaillard, 2016].
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allows us to reduce a statement about all isomorphisms to a statement about
all identifications, to which we can then apply path induction). Thus no
such inconsistency arises from a formulation of Univalence in terms of an
equivalence relation such as isBiInv that is a mere property. Note also that
the above proof of inconsistency makes essential use of Isovalence. ‘Semi-
Isovalence’ (i.e. the existence of a function iso-to-id) is not inconsistent,
and indeed follows from Univalence.

While it may seem entirely natural to define isomorphism in the stan-
dard way as isIso (as Awodey does in [2014b, Section 2]), and thus to read
Univalence as saying ‘isomorphism is isomorphic to identity’, we now see
that this reading leads to inconsistency.28 Thus any attempt to justify Uni-
valence as part of an autonomous foundation, along the lines discussed at
the end of Section 5, must account for this by explaining why isomorphism
as standardly defined, in the form of isIso, is not an acceptable formali-
sation of ‘equivalence’. (In particular, the ‘Platonist’ argument sketched in
Section 5.1 does not do this, since it simply takes the notion of ‘equivalence’
as given.)

In the HoTT Book [2013, Chapter 4] ‘equivalence’ is defined to be any
mere property that is materially equivalent with isIso. Under Univalence,
formulated in terms of any such relation, all these relations are equivalent
to one another (although of course isIso, not being a mere property, is
not) so the choice of which to use doesn’t matter. Throughout this paper,
unless otherwise indicated, we use ‘Univalence’ and ‘UA’ to denote such a
consistent version of the axiom.

In Section 7.3 we consider reasons for using equivalence rather than
isomorphism, as part of a discussion of an argument by Awodey that is the
subject of the next section.

7 Univalence, Invariance, and Structural-

ism

In [2014b] Awodey gives an informal motivation for Univalence as an ex-
pression of the “Principle of [Mathematical] Structuralism”, which he sum-
marises as “isomorphic objects are identical”.29 Section 7.1 explains this
informal argument in order to investigate whether it can be turned into an

28 Although we asume that the authors were always aware of the inconsistency of Isovalence
(which in [HoTT Book] is called qinv-Univalence), attention is not drawn to this fact: the
proof is set as an exercise [HoTT Book, Exercise 4.6], which does not appear in editions of the
book released before December 2013 [Bezem and Shulman, 2013].

29 In the present paper we do not question whether this is a suitable summary of the central
concept of mathematical structuralism, or a consequence of a structuralist approach to mathe-
matics. We take up this issue in a future paper.
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autonomous justification for Univalence. Sections 7.3 and 7.4 consider two
problems that such an approach must overcome.

7.1 Awodey’s argument for Univalence

Awodey begins with what he calls “the Principle of Structuralism”, namely
that “Isomorphic objects are identical” (and hence, a fortiori, have all the
same properties) [2014b, p. 1]. This is “a principle of reasoning embodied
in everyday mathematical practice” in the sense that “it makes no practical
difference which of two ‘isomorphic copies’ are used, and so they can be
treated as the same mathematical object for all practical purposes.” How-
ever, as Benacerraf observed [1965] this principle is not upheld by standard
set-theoretic foundations for mathematics. “Mathematical objects are often
constructed out of other ones, and thus also have some residual structure
resulting from that construction, in addition to whatever structure they may
have as objects of interest” [Awodey, 2014b, p. 2]. We could instead try to
find a system that upholds the weaker principle that ‘Isomorphic objects
have all the same properties’, or at least that they share all their “relevant
properties [. . . ] pertaining to the subject matter” [Awodey, 2014b, p. 2].
This again is not upheld by set-theoretic foundations. This motivates a
search for an alternative foundational system.

In order to develop this idea, ‘isomorphism’ must be defined. Awodey re-
jects a definition of ‘isomorphism’ as ‘having the same structure’, since this
presumes that a definition of structure (or sameness of structure) is already
available. Rather he gives the standard category-theoretic definition of iso-
morphism [2014b, Section 2] (which is the one stated in Section 6.1 above),
and takes ‘sameness of structure’ to be defined as isomorphism. This jus-
tifies a definition of ‘structural property’ as any property that is invariant
under isomorphism. Awodey then notes that in Martin-Löf’s constructive
type theory (on which the basic language of HoTT is based), “All defin-
able properties are isomorphism invariant” [2014b, p. 6]. He calls this the
“Principle of Invariance” (PI), which may be expressed formally as:

For any type P(X) definable over a basic type X,
A ≈ B P(A)

P(B)

This can be proved to hold of all definable properties P whose definition
does not involve any mention of the universe U , but when the language is
extended to include universes this proof no longer works.

Awodey argues that some further element should be added to the theory
in order to extend this invariance principle to properties involving universes.
With such an extended invariance principle we could take P(X) ∶≡ IdU(A,X),
with the corresponding instance of PI:

A ≈ B IdU(A,A)
IdU(A,B)
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and thus derive from A ≈ B the conclusion IdU(A,B). Such an inference
corresponds to the existence of a function from isomorphisms to identifica-
tions, i.e. a function iso-to-id as discussed in Section 3. Conversely, the
existence of a function iso-to-id entails PI, because trivially reasoning is
invariant under identity.

Thus if we want to build into our mathematical framework the idea
that “Isomorphic objects are identical”, and ensure that all our reasoning
is invariant under isomorphism (thereby satisfying the Principle of Invari-
ance), while allowing a language rich enough to encompass talk of uni-
verses, then Awodey’s argument demonstrates that the existence of a func-
tion iso-to-id producing identifications from isomorphisms is necessary
and sufficient.

7.2 The aim of Awodey’s argument

To be clear, Awodey does not claim to be giving a formal justification for
the Univalence axiom on the basis of the argument from Invariance. His
argument is not intended to be a derivation or mathematical proof of Uni-
valence from some more primitive assumptions. Rather, he asks whether
it is possible to have an “extended system of type theory with a universe
[in which] it is still the case that all definable properties are isomorphism
invariant”, noting that in such a system “isomorphic objects are identical”
[2014b, p. 7]. He then notes [2014b, Section 5] that Univalent HoTT is
indeed such a system, thus demonstrating that it is possible.

This observation that Univalence has, as one of its consequences, a prin-
ciple of invariance that strongly accords with structuralist practice in math-
ematics, provides a justification for the adoption of the Univalence axiom.
When we are choosing a mathematical foundation in which to work, several
criteria come into consideration such as simplicity, ease of use, and corre-
spondence with ordinary mathematical practice. None of the presently well-
established foundational systems for mathematics, such as ZFC set theory or
category theory, uphold the “Principle of Structuralism” that isomorphic ob-
jects are identical, nor the related “Invariance Principle” that all reasoning
should be invariant under isomorphism. Awodey’s argument demonstrates
that a system containing the Univalence axiom does uphold these two princi-
ples. Thus when choosing amongst extant foundational systems, Awodey’s
argument shows that structuralist considerations motivate us to choose a
system such as Univalent HoTT (or the Cubical Type Theory mentioned in
Section 1.1).

However, the aim of our project is slightly different from Awodey’s. [La-
dyman and Presnell, 2016] gives a presentation of HoTT as an autonomous
foundation for mathematics, showing how the components of the basic lan-
guage of HoTT (not including universes or Univalence) could be motivated
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and justified from elementary considerations. This section examines whether
an argument along the lines of the one sketched above can be used as part
of an autonomous presentation of Univalent HoTT. Our intention in the
remainder of this section is not to criticise Awodey [2014b], but rather to
attempt to clarify its details and extend it. The next two subsections iden-
tify two problems that must be overcome to do so.

7.3 The definition of isomorphism

As noted above, to avoid complication Awodey uses the word ‘isomorphism’
for the relevant relation involved in Univalence and gives the standard
category-theoretic definition of isomorphism [2014b, p. 3]. While he notes
that “Voevodsky’s Univalence axiom itself actually has a more general form”
involving a relation that is “a broad generalization of isomorphism” [2014b,
p. 8]), he does not mention that the version of Univalence formulated in
terms of isomorphism defined in this way (i.e. what we have called ‘Isova-
lence’) is inconsistent. However, of course, he does not intent his Argument
from Invariance to be a justification of the inconsistent principle of Isova-
lence. Awodey and others who are familiar with HoTT are acutely aware
of the difference between isomorphism and equivalence (as defined in Sec-
tion 6) and the reasons for preferring the latter over the former. They there-
fore understand ‘isomorphism’ as a simplification for the more correct term
‘equivalence’, and appreciate why the substitution must be made. However,
for more general readers not so familiar with HoTT this distinction and
its importance may not be apparent. Our first aim in clarifying Awodey’s
argument in this section is therefore simply to point out this detail.

Having observed that such a substitution must be made, we must now
proceed to justify it. For our purposes in this paper a proposed motivation
for Univalence is only adequate if each step can be given an elementary
pre-mathematical justification. To give an autonomous structuralist jus-
tification for Univalence along the lines of Awodey’s argument we need a
principled reason to think that ‘sameness of structure’ is captured best not
by isomorphism (defined as isIso) but by a relation that makes Univalence
consistent (i.e. something like truncated isomorphism or bi-invertibility that
is a mere property). That is, the argument should begin as follows:

(i) The Principle of Structuralism says that mathematical objects that
are equivalent in some suitable sense are taken to be identical;

(ii) By consideration of how we should understand mathematical objects
from a structuralist perspective, the appropriate way to define the
notion of ‘equivalence’ is as a mere property that is materially equiva-
lent with isIso, such as ‘truncated isomorphism’ or ‘bi-invertibility’,
whereas isIso itself fails to capture this notion correctly.

Such an argument needs to be spelled out in order to turn Awodey’s infor-
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mal motivation of Univalence into a more rigorous justification suitable for
inclusion in an autonomous account of HoTT.

We therefore need to motivate the idea that the standard definition of
isomorphism should be set aside and replaced with a relation such as trun-
cated isomorphism or bi-invertibility in terms of which Univalence can be
given a consistent definition. Note that, in doing so, it is not sufficient
merely to justify taking such relations to be admissible alternatives to iso-
morphism: we must also justify why isomorphism itself (in its standard
definition) should be regarded as inadmissible, or else Awodey’s argument
sketched above would still provide an equally good justification for Isova-
lence as for Univalence.

The authors of the HoTT Book say that isIso (which they call qinv
for ‘quasi-inverse’) is “poorly behaved” [HoTT Book, Section 2.4] and “un-
satisfactory because it is not a mere proposition, whereas we would rather
that a given function could ‘be an equivalence’ in at most one way” [HoTT
Book, Section 4.1]. But they do not present any specific argument for this
preference.30

Of course, we could simply say that, since Univalence turns out to be
such a useful principle, and since of course it must be formulated in a con-
sistent way, we are therefore left with no option but to discard isIso and
replace it with a relation such as isBiInv. While such a line of argument
is mathematically reasonable – mathematicians, after all, are free to define
their terms and choose their axioms in whatever way they find most useful
– this is not a justification of Univalence along the lines of Awodey’s argu-
ment, but rather a completely separate argument for Univalence in virtue
of its usefulness (or its harmony with other mathematical ideas). Moreover,
while arguments from mathematical usefulness or harmony have their place,
they are not suitable as part of an autonomous presentation of a theory since
they depend upon the sophisticated mathematical consequences that follow
from the principle. Thus, while it may be reasonable to conclude that HoTT
teaches us both that Univalence is a good idea and that isomorphism needs
to be truncated or replaced as a notion of ‘sameness of structure’, this can’t
be the answer we’re looking for.

Alternatively one might argue that, while notions such as material equiv-
alence of propositions, bijection of sets, and isomorphism of set-theoretic
structures are all appropriate notions of ‘sameness’ for their respective do-
mains, the study of more sophisticated mathematical domains reveals that
a more general notion of ‘sameness’ is required. In particular, in category
theory and homotopy theory notions of ‘weak equivalence’ and ‘homotopy
equivalence’ arise, which turn out to be a more suitable extension of the

30 To be clear, this is not intended as a criticism of those authors since their aim is simply
to present and explain the theory, not to motivate its various components from elementary pre-
mathematical principles.

33



DRAFT: 09:25, Friday 18th November, 2016 Section 7.3

above notions. However, while this is an important insight (and moreover
one that plays a crucial role in the unification of different domains at the
heart of Homotopy Type Theory), this argument appeals to sophisticated
mathematical developments and so cannot form part of an autonomous ac-
count of HoTT as a foundation.

A plausible elementary argument for equivalence and against isomor-
phism might proceed as follows. On a thoroughgoing structuralist view of
mathematics all entities are to be individuated as structures, with none
privileged as a separate category of entity with a distinct non-structural
identity relation. Thus a purely structuralist notion of ‘sameness of struc-
ture’ should not be grounded in some other notion of ‘sameness’ such as
identity, but should be free-standing. The definition of isomorphism, as
stated in Section 6.1, involves the equations g ○ f = idA and f ○ g = idB, and
therefore fails this criterion. We might modify the definition of isomorphism
to avoid this problem by replacing these two identities with some relation of
‘sameness’, but then this further notion of ‘sameness’ needs to be explicated.
This threatens to lead either to a regress or a circularity. However, this can
be avoided by giving a coinductive definition: any two mathematical entities

A and B are ‘∞-isomorphic’, A
∞
≈ B, iff there exist mappings f ∶ A → B

and g ∶ B → A satisfying g ○ f
∞
≈ idA and f ○ g

∞
≈ idB. While at first this

appears to be circular, it turns out to be possible to give a consistent finite
definition of such a relation.31 Further, it can be proved that this relation
is materially equivalent with isIso and is a mere property: that is, it is an
equivalence in the sense of Section 6.

In summary, a structuralist justification for rejecting isomorphism and
replacing it with an equivalence can indeed be given, as outlined above. In
the proof-irrelevant frameworks in which mathematicians have worked up
until recently this relation has been conflated with the materially equiv-
alent relation isomorphism. Thus mathematicians have mistakenly taken
isomorphism to be the natural criterion of ‘sameness of structure’, or have
mistakenly referred to bi-invertibility by the name ‘isomorphism’, and it
is only in a proof-relevant system such as HoTT that we can discern the
difference and thus recognise the error.

To incorporate this into an autonomous account of a mathematical foun-
dation we must address the objection that the notion of coinductive defini-
tion is itself mathematically sophisticated. This objection may be countered
by, for example, more closely examining what is required of an autonomous
foundation, and delineating between the motivating principles, which must
be elementary and pre-mathematical, and the particular implementation,
which involves mathematics. We defer more detailed examination of these
ideas to another paper.

31 Indeed, the notion defined in [HoTT Book, Section 4.2] as ‘half-adjoint equivalence’ is
modelled on this idea.
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In the remainder of this paper we set aside the above concerns and follow
Awodey’s usage of ‘isomorphism’ as a stand-in for the more correct relation
of ‘equivalence’, a relation in terms of which Univalence can be formulated
consistently. Even granting this, there is a more serious issue that remains
to be settled.

7.4 Semi-Univalence vs Univalence

In Section 3 we distinguished between Semi-Univalence, which asserts the
existence of a function eq-to-id from equivalences to identifications, and
Univalence itself, which says that this function is an equivalence. Many im-
portant uses of Univalence, such as the derivation of Function Extensionality
(Section 4.1), the existence of non-trivial identities (Section 4.2), and the
proof that Isovalence is inconsistent (Section 6.5) require the strong corre-
spondence between equivalences and identifications provided by Univalence,
and cannot be derived using only Semi-Univalence.

However, the informal argument sketched above only motivates Semi-
Univalence, not Univalence itself. If we are motivated by structuralist con-
siderations to adopt a mathematical framework that validates the Principle
of Invariance, Awodey’s argument shows that it would be sufficient to add
a function eq-to-id. As noted in Section 3, this is already a radical de-
parture from standard mathematical foundations such as ZFC set theory,
and is therefore in need of some kind of justification, which Awodey’s ar-
gument provides. But his structuralist argument from Invariance does not
in itself give us reason to assume further that such a function must be an
equivalence, as Univalence states.

Awodey says that “Voevodsky’s Univalence axiom itself actually has a
more general form” than the claim that isomorphic types can be identi-
fied, namely that there is an equivalence between equivalence and identity
[2014b, p. 9]. As we have argued, however, the difference between the Univa-
lence axiom and the principle that is directly motivated by Awodey’s infor-
mal argument is not a matter of “generalisation” but rather a considerable
strengthening. Awodey’s argument therefore provides a structuralist moti-
vation for Univalence in the sense that it shows that desired consequences
follow from that axiom, but does not give the complete justification that an
autonomous presentation requires, since it does not give a principled reason
for the adoption of Univalence as opposed to Semi-Univalence.

Of course, to some mathematicians it may seem obvious that once we’ve
argued for a mapping that produces identifications from isomorphisms, then
it is most natural to instantiate this in a canonical way, demanding that
each identification correspond to a unique isomorphism and vice versa. But
such an appeal to what seems natural to the intuitions of a mathematician
cannot play a role in a autonomous justification of Univalence from pre-
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mathematical principles.
Note, finally, that the ‘Platonist’ motivation for Univalence sketched in

Section 5.1 suffers from the same flaw. While it motivates us to identify
equivalent types by considering them as alternative presentations of a single
underlying mathematical concept, this is only sufficient to justify Semi-
Univalence.

An argument due to Dan Licata [Licata, 2016] (generalising from obser-
vations by Egbert Rijke and Mart́ın Escardó [Rijke and Escardó, 2014] shows
that the gap between Semi-Univalence and Univalence may be closed by the
addition of a further principle that he calls uaβ. Recall that, given any iden-
tification between any two tokens i ∶ IdX(x,y) and any predicate P ∶ X → U ,
there is a transport function τPi ∶ P(x) → P(y) [HoTT Book, Lemma 2.3.1].
In particular, given any identification between types j ∶ IdU(A,B), the trans-
port of the trivial function 1U ∶ U → U gives a function τ1Uj ∶ A → B. The
principle uaβ says that for any equivalence f (i.e. any function f ∶ A → B

for which there is a token e ∶ isEquiv(f)), applying eq-to-id to this and
then transporting 1U along the resulting identification produces the original
function f itself, rather than some other function A→ B:

uaβ ∶ ∏
A,B∶U

∏

(f,e)∶Equiv(A,B)
τ1U
eq-to-id(f,e) = f

From Semi-Univalence and this further principle, Univalence can be de-
rived.32 Thus if this further principle can be given an elementary justifi-
cation then this would complete the autonomous presentation of Univalent
HoTT.

One might argue for uaβ as a ‘conservation principle’ along the following
lines. Given only a function f ∶ A → B that is known to be an equivalence,
it should not be possible to use the given features of HoTT (namely Semi-
Univalence and transport) to produce new functions A → B. However, an
argument based on this principle faces the problem that, even in the absence
of uaβ, it is not possible to prove that τ1U

eq-to-id(f,e) and f are distinct (or

else it would be inconsistent to posit uaβ). Thus, constructively, we have no
reason to believe that what has been produced is a new function from A to
B; rather, it is just a function whose identity has not been established. How-
ever, the advocate of such a conservation principle may consider that this
is already bad enough: if we have proved the existence of a function then
it ought to be possible to know what particular function we have produced.
Thus if we find the above conservation principle persuasive then this serves
as motivation to adopt uaβ in addition to Semi-Univalence. Moreover, the
above argument does not appeal to sophisticated mathematical ideas be-
yond what is already present in basic HoTT, so it is compatible with an
autonomous presentation of Univalent HoTT.

32 Licata’s proof, which he has formally verified in Agda, is given at the above citation.
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8 Conclusion

8.1 An autonomous justification for Univalence?

This paper addresses the question whether Univalence can be given an ele-
mentary justification that can be part of a presentation of Univalent HoTT
as an autonomous foundation for mathematics. It extends our Types-as-
Concepts interpretation of HoTT to give an account of universes as domains
of discourse, and argues that this captures and explains the features they
have in the theory. It explains the definition of Univalence and in particular
the definition of the equivalence relation that plays a central role in it, and
why this cannot be naively understood as isomorphism. Finally, it examines
Awodey’s informal argument for Univalence from structuralist principles,
identified two obstacles to developing it into an autonomous justification
for Univalence, and outlined possible arguments in response to those issues.
The adequacy of the resulting argument for Univalence therefore depends
upon the answers to the following questions:

1. Is the account of universes as domains of discourse given in Section 2
adequate and autonomous (and if not, can some other autonomous
account be given)?

2. Should we take a structuralist view of mathematics?
3. Does structuralism entail that “isomorphic objects are identical”?
4. Is the argument for ∞-isomorphism given in Section 7.3 autonomous,

or does the reliance on coinduction to guarantee the non-circularity of
the definition constitute an illegitimate appeal to mathematics?

5. Can the principle ‘uaβ’ be given an autonomous justification, perhaps
as a ‘conservation principle’, as outlined in Section 7.4?

Section 2.3 argued that 1 should be answered affirmatively. We postpone
discussion of 2 and 3 to a future paper. Arguably, both questions 4 and 5
can be answered affirmatively, but the case for this is not as clear as for
the definitions and rules involved in basic HoTT (as presented in [Ladyman
and Presnell, 2016]). However, even if these arguments are found to be
insufficient, the next subsection discusses an alternative reason to adopt
Univalence.

8.2 Univalence as a methodological commitment

Recall from Section 5 that there are three possible readings of the statement
of Univalence. Most straightforwardly, we might take it as the assertion
that some particular universe U is univalent – but this is explicitly not
the intended reading, since it is not possible to choose in advance a single
universe in which all mathematical reasoning will take place. Instead we
should take a typically ambiguous reading, viewing it either as the claim that
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all universes are univalent, or as a commitment to only consider univalent
universes.

If Univalence is understood as an assertion of mathematical fact that all
universes are univalent then it is harder to defend. On the one hand there is
no way within the theory to refer to, quantify over, or even conceive of ‘all
universes’; while on the other hand it is not part of the concept of a universe
that it necessarily be univalent, since it is entirely possible to conceive of non-
univalent universes. Likewise, under the Types-as-Concepts interpretation
of universes as domains of discourse (Section 2) this claim would correspond
to the assertion that all mathematical domains of discourse are univalent,
and yet it is quite consistent to conceive of and work in a non-univalent
domain.

Rather than defending the assertion that all universes are univalent, we
might instead adopt Univalence as a methodological commitment to only
consider univalent universes. Such an approach is much easier to motivate
and to defend, since it is no longer required that the Univalence axiom in
all its details be justified from pre-mathematical principles, and arguments
of the type discussed in Section 7.2 become available. Given that we have
reason to want an “extended system of type theory with a universe [in which]
all definable properties are isomorphism invariant” [Awodey, 2014b, p. 7] the
fact that Univalent HoTT provides such a system is reason enough to add
the axiom. (Likewise, if one were attracted to the ‘Platonist’ argument in
Section 5.1 then this too would provide sufficient reason to adopt Univalence
in this way.)

What would be sacrificed on this approach, then, is the idea that Univa-
lence is true, that it forms part of the foundation of mathematics offered by
HoTT. Rather, it would be regarded as an optional additional axiom to be
added to the basic rules of the foundation as required, just as, for example,
the Law of Excluded Middle might be added in some particular applications.

This makes sense, since, despite the appeal of Univalence, we may some-
times have good reasons to work in basic HoTT (i.e. the theory without
the addition of UA). For example, if we wanted to study a version of HoTT
with the addition of a generalised form of the Law of Excluded Middle (ap-
plying to all types, not just mere propositions) this could not be done in the
framework of Univalent HoTT, since this axiom is inconsistent with Univa-
lence (Section 4.3). All the reasons we had to find basic HoTT interesting
– for example, the parallels with homotopy theory and computer science
– still apply and are not undermined by the existence of Univalent HoTT.
The basic theory is therefore still worth studying even despite the greater
strength of the Univalent theory.
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8.3 The uses of Univalence

Regardless of the foundational status of the axiom, most of the use that
is made of HoTT in practice assumed Univalence, which accords with the
fact that the axiom is introduced early in [HoTT Book] and is then used
throughout the remainder. Arguably the reason Univalence is useful is that
it represents how mathematicians think by identifying types that would
otherwise not be identified even though they are indiscernible. As explained
in Section 4, Univalence allows us to exploit the benefits of the intensional
nature of HoTT – viz. non-trivial identities and higher identity structure –
whilst recovering the extensional character of much mathematical thought.

The language of HoTT without Univalence is so fine-grained as to distin-
guish types that differ only in how they are described, even if no property
that can be defined in the language is able to distinguish them. Univa-
lence allows us to identify such types, thus dispensing with such internally-
imperceptible distinctions. The existence of two notions of identity – exter-
nal and internal – lets us carve up types in a fine-grained way and a coarser-
grained way. The existence of the fine-grained intensional view allows the
formal language of HoTT to more faithfully reflect the way in which math-
ematical concepts are thought about and put together, while the coarse-
graining blurs distinctions that are not mathematically important. Purely
intensional theories such as basic HoTT are too fine-grained for ordinary
mathematical practice in the sense that we do not have identifications be-
tween things that it is inconsistent to posit distinctions between. Purely
extensional theories such as set theory collapses some of these distinctions,
but introduce unwanted distinctions between different ways of representing
mathematical structures (such as ordered pairs). By introducing an element
of extensionality into the intentional theory of HoTT, Univalence strikes a
balance between these two extremes.
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