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Diastereoselective Synthesis of Polyheterocycles 
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ABSTRACT: C-H activation offers huge potential in the generation of complex structures from simple starting materials. Herein 

we report the development of a highly diastereoselective palladium (II) catalyzed C-H functionalization cascade to produce novel, 

unsaturated polyhetereocycles from simple diene-tethered heterocyclic starting materials. The reaction is applicable to both indole 

and pyrrole based substrates, and tolerates a wide range of functional group substitutions around the heteroaromatic core. The poly-

heterocyclic products are formed as single diastereoisomers, with two new stereocenters formed in a single step.

Nitrogen-containing heterocycles such as indole are not on-

ly prevalent in natural products1 but are also of interest to 

pharmaceutical and agrochemical industries.2 Thus the func-

tionalization of such heterocycles is a highly desirable goal in 

organic synthesis. In recent years the direct functionalization 

of C-H bonds has come to represent a convenient, atom-

economic transformation in the construction of new C-C and 

C-N bonds, 3 and provides rapid access to medicinally relevant 

structures.4 Whilst great progress has been made in the func-

tionalization of N-heterocycles5 and olefins6, the 1,2-

difunctionalisation of 1,3-dienes remains relatively uncom-

mon.7 

We have previously reported investigations into palladium- 

catalysed cascade reactions proceeding through an intermedi-

ate -allyl palladium complex. Initially we reported the 1,2-

carboamination of electron poor dienes7d. Subsequently we 

extended this methodology to heterocyclic systems such as 1 

(Scheme 1A), where a pendant diene undergoes palladium-

catalyzed cyclization to give intermediate 2, followed by trap-

ping with the heterocyclic nucleophile to give polyheterocy-

clic compounds 3; such structures may be useful towards the 

synthesis of the Stemona alkaloid ring system.8 Recently both 

Rovis9 and Glorius10 demonstrated the use of rhodium(III) 

catalysis in the synthesis of pharmacologically active polycy-

clic structures such as 5 (Scheme 1B). This useful cascade 

sequence was achieved from O-hydroxamic acid ethers 4 

where the preformed N-O bond served as an internal oxidant 

for the Rh(I)/Rh(III) redox cycle. 

Following on from our previous work (Scheme 1A) and in a 

complimentary but mechanistically distinct approach to 

Scheme 1B, we now report a novel Pd(II) catalysed sequence 

to polyheterocyles via a C-H activation/nucleophile trapping 

cascade sequence from diene substituted heterocycles (Scheme 

1C). The methodology has an operational advantage in that a 

Cu(II) oxidant is used rather than the purification limiting 

quinone oxidants we and others have previously used. 

Scheme 1. Synthesis of polyheterocyclic compounds 

through transition metal catalysed cascade sequences. 

 

To begin our investigations we screened various pre-

catalysts, quinone-based oxidants, solvents and additives 

against a small range of heterocyclic substrates (Scheme 2, 9-

11). However, under the conditions screened no desired cas-

cade products 12 were observed. In the case of the urea sub-

strate 9 some Heck type cyclisation products were obtained in 

<10% yield, indicating that the initial C-C bond-forming step 

was feasible, but that redox of Pd0 was ineffective. This also 

suggested that the pendant nucleophile/directing group was 

too weakly nucleophilic, and/or that the length of the tether 

may have been impeding the desired cascade. Efforts were 

therefore focused on the N-Tosyl amide substrate 13, as such 

nucleophiles are known to be effective in the trapping of π-

allyl complexes.11 With a range of pre-catalysts and quinone-

based oxidants, no reaction was observed, which was surpris-

ing given our previous experience (Scheme 2). 
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Scheme 2. Attempted cyclisation substrates and optimiza-

tion studies of NHTs amide substrate 13. 

 

Pleasingly, on screening other oxidants we found that use of 

Cu(OAc)2 (3 equiv) in conjunction with Pd(OAc)2 (10 mol %) 

in DMF, with 1 equiv K2CO3,  resulted in a 47% yield of the 

desired cyclisation product 14a as a single diastereomer.12 

Control reactions performed to clarify the roles of the met-

als/reactants demonstrated that the absence of Pd(OAc)2 gave 

no product 14a, suggesting that Pd(OAc)2 is the pre-catalyst 

required for C-H activation. Exclusion of Cu(OAc)2 gave only 

trace quantities of 14a, confirming Cu(OAc)2 is the likely re-

oxidant in the sequence. However, the inability of alternative 

oxidants to effect catalytic turnover hinted at a more complex 

catalytic process.13 Exclusion of base (K2CO3) resulted in a 

much slower reaction and a reduction in yield (50%, by 1H-

NMR) of 14a. Crucially, a solvent swap to dioxane gave the 

product in an 82% yield and these conditions (10 mol % 

Pd(OAc)2, 2.5 equiv Cu(OAc)2) were therefore used going 

forward in the exploration of reaction scope.  

Using the optimized conditions an investigation of reaction 

scope was undertaken, with an initial focus on the effect of 

substitution around the indole ring (Scheme 3, examples 14a-

q). All the compounds were isolated as single diastereomers 

(with the syn configuration), clearly showing excellent dia-

stereoselectivity during the key ring-forming steps. Starting 

with the 5 position, both electron donating groups (Scheme 3, 

examples 14b,c) and withdrawing groups (Scheme 3, exam-

ples 14d-h) appeared to be well tolerated, giving cyclized 

products in moderate to excellent yields. The reduced yields 

for aldehyde 14g and nitro-indole 14h may be due to substrate 

solubility issues. Pleasingly the cascade sequence also toler-

ates halides, such as bromo-substituted 14i and chloride 14n. 

An electron withdrawing substituent in the 4-position (14l) 

was tolerated, as was a weakly donating group (14k), albeit in 

reduced yield. This may be due to a steric clash between the 

substituent and the N-tosyl amide causing twisting of this po-

tential directing group (vide infra) from the key indole C2 

hydrogen. With the electron donating 4-methoxy group (14m), 

none of the cyclized product was observed. We suspect this is 

a combination of steric factors and delocalization of electron 

density to the 2-position of the indole ring potentially deac-

tivating the indole C2 position.14 Further substitution around 

the ring in the 6 and 7 positions (examples 14n-q) were also 

well tolerated. This excellent functional group tolerance ena-

bles the rapid assembly of polycyclic indole containing mole-

cules with functional handles for further derivatization. The 7-

azaindole (14r) also gave cyclised product, albeit with a di-

minished yield. 

Extension of the diene chain from 3 to 4 methylene units 

was less successful and the 7-membered system 14s was ob-

tained in very low yield with notably poor stereoselectivity 

(2.6:1 dr). Similarly, introduction of a methyl group to the 

alkyl portion of the tether led to an inseparable mixture of 

isomers in greatly reduced yield (see Supporting Information, 

p 42). Methyl substitution at C2 of the diene (14t) gave cy-

clized product in poor yield and substitution at C3 of the diene 

inhibited the reaction completely. 

Scheme 3 – Indole based substrate scope 

 

Reaction conditions: Starting material (0.5 mmol), Pd(OAc)2 (10 mol %), 

Cu(OAc)2 (2.5 equiv), anhydrous 1,4-dioxane (10 mL, 0.05 M), N2 atmos-

phere, 90 °C, 18 h. All yields are isolated yields as single diastereomers 

unless stated otherwise. 

These examples all suggest a very delicate balance of fac-

tors for cyclisation and that entropic and steric factors are im-

portant in the bond forming processes of the two cyclisation 

events involved in the cascade (vide supra).  

Following success with the indole-based substrates, we 

sought to expand the cascade sequence to include alternative 

heterocyclic cores. Pleasingly, a range of pyrroles were ame-

nable to the reaction conditions, and without further optimiza-

tion gave a range of cyclized products. Yields were generally 

reasonable for the simpler substrates but dropped considerably 

with more complex systems (Scheme 4). For example the par-

ent system gave cyclized product 16a in moderate yield, again 

as a single diastereomer. Both 4-alkyl (16b) and 4-phenyl 

(16c) examples gave cascade cyclisation products in similar 

yields as single diastereomers. Methyl substitution in the 5-

position gave cyclised product 16d in 62% yield. Unfortunate-

ly addition of a thiophene ring at the 4-position of the pyrrole 

ring gave 16e with a significant reduction in yield, possibly 

due to sulfur catalyst deactivation and/or competing thiophene 

C-H activation. Surprisingly, the addition of an electron-

withdrawing group also caused a significant drop in yield for 

16f. This was unexpected due to the observed tolerance of 

such groups in the indole substrates, although in this case there 

may be competing C-H activation at the 4-position. 
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Scheme 4 – Pyrrole based substrate scope 

 

Reaction conditions: Starting material (0.5 mmol), Pd(OAc)2 (10 mol %), 

Cu(OAc)2 (2.5 equiv), anhydrous 1,4-dioxane (10 mL, 0.05 M), N2 atmos-

phere, 90 °C, 18 h. All yields are isolated yields as single diastereomers 

unless stated otherwise. 

Some preliminary investigaions into the mechanism have 

been performed. Initially, the modified substrate 17 (R = H) 

was synthesized, substituting the tethered diene for a simple n-

butyl group. This should impart similar electronic effects to 

the indole ring as the diene tether, though be unable to cyclise. 

When 17 was exposed to standard conditions with the addition 

3 equiv of D2O, D-incorporation was observed (18) at 3 loca-

tions, all proximal to the N-tosyl amide group. The greatest 

incorporation was at the 2-position (the usual site of C-H func-

tionalisation), with 70% incorporation. Incorporation of D was 

also observed on the tosyl ring at the ortho positions, and mi-

nor incorporation was observed at the 4-position of the indole 

ring. This evidence suggests that the N-tosyl amide is acting as 

an efficient directing group in a reversible metalation step.15 

Exposing the N-methyl derivative (17, R = Me) to identical 

conditions gave no D-incorporation, further strengthening this 

argument. In order to ascertain the influence of diene geome-

try on the diastereoselectivity of the reaction, we subjected 3:2 

cis:trans mixture of substrate 19 to the cascade sequence 

which surprisingly gave only the diastereomer 14a with none 

of isomer 20 observed (Scheme 5). 

On the basis of these observations we can propose the fol-

lowing plausible catalytic cycle using substrate 13 as an ex-

ample (Scheme 5). Under the influence of base the N-Pd(II) 

amide 21 is formed which then undergoes C-H insertion by a 

concerted metalation-deprotonation (CMD) mechanism16 to 

form the Pd(II) complex 22. This is supported by the 4-

methoxy substituted example (Scheme 3, 14m) where no reac-

tion was observed. Here it could be argued that the electron 

donating OMe group deactivates the C2 indole position and 

disfavours metalation by a CMD process. This then undergoes 

migratory insertion leading to the π-allyl complex 23, which is 

followed by C-N bond formation to give the product 14a. The 

Pd(0) is then re-oxidised to Pd(II) by the Cu(OAc)2. The cy-

clisation of 22 to 23 by migratory insertion would appear to be 

strongly influenced by entropic (Scheme 3, entry 14s) and 

steric (Scheme 3, entries 14t) factors. It is important to note 

that the syn product was always observed in the cyclisation of 

21 to 14a, regardless of diene geometry (19, Scheme 5). It is 

possible that the syn isomer is thermodynamically favoured, 

perhaps via a reversible, Tsuji-Trost like addition of Pd(0) to 

an initially formed mixture of syn/anti (14a/20) products. 

 

 

Scheme 5. Preliminary mechanistic studies 

 
 

Finally, in order to broaden the synthetic utility of this cas-

cade sequence, we investigated the removal of the tosyl group 

from the amide. Sulfonamides are excellent nitrogen protect-

ing groups but can be difficult to remove, often requiring very 

harsh and unselective conditions. Pleasingly we were able to 

demonstrate that the tosyl group in 14a can be cleanly re-

moved to give the amide 24 in 88% yield using SmI2 in diox-

ane (Scheme 6).17 Neither the indole ring nor alkene were re-

duced in the process. 

 

Scheme 6. Deprotection of NTs group with SmI2 

 

 

In conclusion, we have developed a novel complexity-

building reaction, where simple starting materials undergo a 

palladium-catalyzed diastereoselective ring annulation cas-

cade. The exceptional diastereoselectivity, along with excel-

lent functional group tolerance, allow for the rapid generation 

of a range of polyheterocyclic compounds containing func-

tional handles. 

 

 

Pd(OAc)2 (10 mol %)

Cu(OAc)2 (2.5 equiv), K2CO3 (1 equiv)
dioxane (0.05 M), 90 °C, 18 h

15 16

N

NHTs

O

2

3

5

4

N

NTs

O

H

H

N

NTs

O
R

H

H

RR

16a: R = H, 50%
16b: R = Me, 46%
16c: R = Ph, 52%

N

NTs

O

H

H

Me

N

NTs

O

H

H

S

N

NTs

O

H

H
Ph

O

16d: 62% 16e: 10% 16f: 20%

N

n-Bu

O
N

Ts

R

N

n-Bu

O
N

S

H

Pd(OAc)2

Cu(OAc)2

K2CO3

dioxane
90 °C

H D

D

O O

D

D

70%

20%

50%

17 18

R = Me
no exchange

N

NHTs
O Pd(OAc)2

Cu(OAc)2

K2CO3

dioxane
90 °C
16 h

N

NTs

O

H

H
N

NTs

O

H

H

+

14a
observed

20
not observed

19
3:2 E/Z mixture

PdII

N

PdII

N

O
Ts

N

N
O

Ts

N

NHTs
O

Pd0

2Cu(OAc)2

2CuOAc

re-oxidation

attack on p-allyl
    complex

migratory
insertion

PdII

N

N
O

PdII

Ts

H

N-coordination

C-H metallation

+ K2CO3

+ KCO3H

H

13

21

22
23

14a

N

NTs

O

H

H

N

NTs

O

H

H

3 equiv SmI2 (0.1 M THF)

dioxane, rt
88%

N

NH

O

H

H

14a 24



 

ASSOCIATED CONTENT  

Supporting Information 

The Supporting Information is available free of charge on the 

ACS Publications website at DOI: xxxxxxx.  

Synthesis procedures, additional spectral and characterization 

data, including 1H, 13C NMR (PDF). 

AUTHOR INFORMATION 

Corresponding Author 

e-mail: k.booker-milburn@bristol.ac.uk 

ACKNOWLEDGMENT  

We thank the EPSRC and University of Bristol for a PhD student-

ship (MSW). 

REFERENCES 

(1) Ishikura, M.; Yamada, K.; Abe, T., Nat. Prod. Rep. 2010, 

27, 1630-1680. 

(2) (a) Sravanthi, T. V.; Manju, S. L., Eur. J. Pharm. Sci. 2016, 

91, 1-10; (b) Vitaku, E.; Smith, D. T.; Njardarson, J. T., J. Med. 

Chem. 2014, 57, 10257-10274; (c) Kaushik, N.; Kaushik, N.; Attri, P.; 

Kumar, N.; Kim, C.; Verma, A.; Choi, E., Molecules 2013, 18, 6620-

6662. 

(3) (a) Shaikh, T. M.; Hong, F.-E., J. Organomet. Chem. 2016, 

801, 139-156; (b) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; 

Zhang, Y., Org. Chem. Front. 2015, 2, 1107-1295; (c) Wu, Y.; Wang, 

J.; Mao, F.; Kwong, F. Y., Chem. Asian. J. 2014, 9, 26-47; (d) Yeung, 

C. S.; Dong, V. M., Chem. Rev. 2011, 111, 1215-1292; (e) Lyons, T. 

W.; Sanford, M. S., Chem. Rev. 2010, 110, 1147-1169; (f) Chen, X.; 

Engle, K. M.; Wang, D.-H.; Yu, J.-Q., Angew. Chem. Int. Ed. 2009, 

48, 5094-5115; (g) Ackermann, L.; Vicente, R.; Kapdi, A. R., Angew. 

Chem. Int. Ed. 2009, 48, 9792-9826. 

(4) Caro-Diaz, E. J. E.; Urbano, M.; Buzard, D. J.; Jones, R. 

M., Biorg. Med. Chem. Lett. DOI: 10.1016/j.bmcl.2016.06.036 

(5) (a) Taylor, A. P.; Robinson, R. P.; Fobian, Y. M.; 

Blakemore, D. C.; Jones, L. H.; Fadeyi, O., Org. Biomol. Chem. 2016, 

14, 6611-6637; (b) Broggini, G.; Beccalli, E. M.; Fasana, A.; Gazzola, 

S., Beilstein J. Org. Chem. 2012, 8, 1730-1746; (c) Ferreira, E. M.; 

Zhang, H.; Stoltz, B. M., Tetrahedron 2008, 64, 5987-6001; (d) Maes, 

J.; Maes, B. U. W., Chapter Five - A Journey Through Metal-

Catalyzed CH Functionalization of Heterocycles: Insights and Trends. 

In Adv. Heterocycl. Chem., Eric, F. V. S.; Christopher, A. R., Eds. 

Academic Press, 2016; Vol. 120, pp 137-194. 

(6) (a) McDonald, R. I.; Liu, G.; Stahl, S. S., Chem. Rev. 2011, 

111, 2981-3019; (b) Schultz, D. M.; Wolfe, J. P., Synthesis 2012, 44, 

351-361; (c) Garad, D. N.; Mhaske, S. B., Org. Lett. 2016, 18, 3862-

3865; (d) Manna, M. K.; Hossian, A.; Jana, R., Org. Lett. 2015, 17, 

672-675; (e) Sharma, U.; Kancherla, R.; Naveen, T.; Agasti, S.; Maiti, 

D., Angew. Chem. Int. Ed. 2014, 53, 11895-11899; (f) Rosewall, C. 

F.; Sibbald, P. A.; Liskin, D. V.; Michael, F. E., J. Am. Chem. Soc. 

2009, 131, 9488-9489; (g) Scarborough, C. C.; Stahl, S. S., Org. Lett. 

2006, 8, 3251-3254. 

(7) (a) Hatano, M.; Nishimura, T., Angew. Chem. Int. Ed. 

2015, 54, 10949-10952; (b) Khan, I.; Chidipudi, S. R.; Lam, H. W., 

Chem. Commun. 2015, 51, 2613-2616; (c) Zhao, D.; Lied, F.; Glorius, 

F., Chemical Science 2014, 5, 2869-2873; (d) Houlden, C. E.; Bailey, 

C. D.; Ford, J. G.; Gagné, M. R.; Lloyd-Jones, G. C.; Booker-

Milburn, K. I., J. Am. Chem. Soc. 2008, 130, 10066-10067. 

(8) Cooper, S. P.; Booker-Milburn, K. I., Angew. Chem. Int. 

Ed. 2015, 54, 6496-6500. 

(9) Davis, T. A.; Hyster, T. K.; Rovis, T., Angew. Chem. Int. 

Ed. 2013, 52, 14181-14185. 

(10) Shi, Z.; Boultadakis-Arapinis, M.; Koester, D. C.; Glorius, 

F., Chem. Commun. 2014, 50, 2650-2652. 

(11) Fraunhoffer, K. J.; White, M. C., J. Am. Chem. Soc. 2007, 

129, 7274-7276. 

(12) Similar conditions with electron-poor indoles have been 

reported: Pintori, D. G.; Greaney, M. F., J. Am. Chem. Soc. 2011, 133, 

1209-1211. 

(13) Anand, M.; Sunoj, R. B.; Schaefer, H. F., J. Am. Chem. 

Soc. 2014, 136, 5535-5538. 

(14) We suggest this supports a CMD-type mechanism 

(15) Aryl N-tosylamides are known to direct C-H activation: (a) 

Péron, F.; Fossey, C.; Cailly, T.; Fabis, F., Org. Lett. 2012, 14, 1827-

1829; (b) Péron, F.; Fossey, C.; Sopkova‐de Oliveira Santos, J.; 

Cailly, T.; Fabis, F., Chem. Eur. J. 2014, 20, 7507-7513; (c) Zhu, C.; 

Falck, J. R., Org. Lett. 2011, 13, 1214-1217. 

(16) (a) Gorelsky, S. I.; Lapointe, D.; Fagnou, K., J. Org. Chem 

2012, 77, 658-668; (b) Gorelsky, S. I.; Lapointe, D.; Fagnou, K., J. 

Am. Chem. Soc. 2008, 130, 10848-10849; cGorelsky, S. I., Coord. 

Chem. Rev. 2013, 257, 153-164. 

(17) Knowles, H.; Parsons, A. F.; Pettifer, R. M., Synlett 1997, 

1997, 271-272. 

 

 


