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Soft robotics provides a new and exciting approach to design robots. Often in-

spired by the remarkable performances of biological systems a number of soft
robotic designs have been proposed and implemented. Despite their great po-

tential with respect to safety, energy efficiency, and adaptivity, soft robotics still
faces a number of fundamental problems, e.g. their inherent complex dynam-

ics that makes it difficult to apply classical control approaches. Morphological

computation, a concept that understands that physical bodies can carry out
computation, has the great potential to overcome this challenge by providing a

novel point of view. Recent theoretical models on morphological computation

as well real-world proof of concepts suggest that these unwanted complex dy-
namics of soft bodies can be actually beneficial and that they can be exploited

as a computational resource. As a result, morphological computation allows

to simplify the control and learning tasks by outsourcing computation to the
physical body and, therefore, pointing to a potential solution for the control

problem in soft robotics.
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1. Introduction

Soft robotics is an exciting new field of robotics that provides a fresh ap-

proach to designing intelligent systems. There exists no general definition

for soft robotics, however, it is loosely accepted that it includes any type

of robot that is build (at least partially) with soft materials. This ranges

from completely soft silicone based structures like octopus arms1 to more

rigid actuation systems that are able to change their stiffness.2

Often, soft robots are directly inspired by biological systems, as ”soft-

ness” is an inherent property of most animals and plants. Since biological

systems widely outperform state-of-the-art robots in most tasks, it make
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sense to have a closer look at biological solutions for problems that roboti-

cist are seeking to solve. Such problems include stable, dynamic locomotion

in unknown terrain, energy efficient movements, adaptation to new tasks

and environmental conditions, and dealing with unknown objects in the

context of grasping – just to name a few. Intuitively, one can see that

softness plays a role in all of these remarkable performances. To give an

example from locomotion, the soft soles of the feet and the muscle tendon

systems in the leg are able to negotiate with most of the ”unevenness”

of the ground purely on the mechanical level. They are also able to store

and release energy, and during running they are even able to adapt their

stiffness to counteract different stiffness in the ground to locomote at the

most energy efficient level.3 All of these remarkable features are carried out

by the soft body. Biological systems have intelligent bodies and they are

intelligent, partly, because they are soft.4

Based on these insight soft robotics has the great potential to provide bet-

ter performing robots in a wide range of challenging tasks. In combination

with the additional benefit of being potentially safer to interact, the soft

robotic approach is highly relevant for the next generation of robots that

should share with us our working and living spaces. However, despite this

great potential, so far, soft robotics was not able to fulfill its promises. The

reason is that the approach brings with it a range of problems that have to

be solved before the ”soft revolution” can take place.

One of the biggest challenges are the inherent complex dynamics that are

typical for soft bodies. Compared to rigid robots, the body of soft struc-

tures exhibit a high dimensional state space, strongly nonlinear dynamics,

under-actuation, and high redundancy. All these properties make it diffi-

cult to model such systems and, consequently, make them hard to control.

Current robotic designs try to avoid these issues by using rigid body parts,

high torque servo motors, and fully actuated systems. The resulting robots

are predictable and easy to control with standard tools from control the-

ory. However, as pointed out before, this approach fails completely at tasks

where highly dynamic and complex interaction is needed.

By solving the ”control problem” in soft robots classical control approaches

have been pushed to their limits, see, e.g. Wittmeier et al.5 Since soft

robotics provide a radical new approach to design robots, we might have

to consider also a radical new approach to control them as well. Recent

theoretical results6,7 as well real-world proof of concepts1,8–10 suggest that

morphological computation might be the solution that we are looking for.

Instead of trying to suppress complex and nonlinear dynamics, we should
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embrace and exploit them for our needs.

2. Solving the Control Problem with Morphological

Computation

Morphological computation is a concept that also has been inspired by bi-

ological systems. It is based on observations in animals, but also in plants,

cellular structures and even down to the bio-molecular interactions, that

morphology plays a crucial role in intelligent behavior. These observations

suggest that physical bodies of biological systems are carrying out com-

putations that are beneficial for their interactions with the environment.

Something that can also be seen in the previously mentioned example of

running. The mechanical structure (i.e. soft sole and muscle tendon system)

is stabilizing the movement during dynamic locomotion without the need

of being controlled by the brain.

As one can see by this example, we consider morphology not only to be the

shape or form of the body. It includes also all physical parameters describ-

ing the dynamic behaviour, i.e. properties like stiffness, damping, friction,

etc. Moreover, even the morphology of the environment plays a part of the

computation as physical interaction always includes two sides, e.g. locomot-

ing on ground or grasping an object.

Typically, morphological computation is applied in robotics only as a source

of inspiration on how to design robots. However, in combination with en-

gineering ingenuity and parameter tweaking a number of impressive robots

have been produced.11 Until recently there has been no theoretical foun-

dation to support the approach. The work by Hauser et al.6,7 was the first

to provide theoretical frameworks to describe rigorously the computational

power of physical bodies. The underlying idea is to understand the complex

dynamics of a body as a computational resource that can be exploited.12

Hauser et al.6,7 demonstrated that this approach allows the implementa-

tion of a remarkable wide range of computations with the help of complex

morphologies.

For example, robotic bodies can be exploited for tasks to nonlinearly pro-

cess sensory input streams considering the history of input values (memory).

This is useful, e.g. in the context of an intelligent, dynamic sensor with a

morphology that is able to carry our some form of computational signal pre-

processing. Another successfully demonstrated task was to emulate given

complex, nonlinear differential equations. This shows the feasibility of an

implementation of nonlinear controllers in the physical layer within the

morphological computation approach. Hauser et al.7 even produced highly
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stable and robust, nonlinear limit cycles, which are especially useful for lo-

comotion.

However, the proposed morphological computation setup is even able to go

one step further. It has been shown7 that using morphology one can imple-

ment analog, finite state switching machines. For example, one can build

a morphological setup that can produce robustly different nonlinear limit

cycles, with the addition that a transition between them can be triggered

by a simply change in external forces. This means the body is not only able

to produce various useful signal for locomotion (e.g. different gaits), but it

is also able to sense a change in the environment and switch accordingly.

The underlying idea of the theoretical models are based on a supervised

machine learning technique called reservoir computing13 (RC). It uses a

randomly initialized network of nodesa to build a high-dimensional, non-

linear dynamical system, aka the reservoir. The sketch in the upper left

corner of Figure 1 shows an example of a standard RC setup.

If such a reservoir is excited by some low-dimensional input (input

stream), the reservoir responds by integrating these signals and combining

and transforming them nonlinearily into its high-dimensional state space.

The reservoir takes over the role of a kernel in a machine learning sense.6

Due to this property it is sufficient to simply add linear readouts from

the reservoir (see Figure 1) to get a powerful computational device. With-

out altering the reservoir itself, we can learn to emulate complex, dynamic

representation (given as input output data set) by simply finding optimal

linear, static readout weights.

The connection to morphological computation comes from the fact that

reservoirs don’t have to be in any specific form. In fact there exist different

flavors13 reflecting different ways to implement reservoirs. To be useful a

reservoir simply needs to be a highly complex dynamical system. Looking

at the bodies of biological systems and soft robots and their dynamics we

can immediately see that they can serve as reservoirs. We simply have to

add a readouts from their high-dimensional state space to exploit them as

computational resources.

The remarkable conclusion is by exploiting the complex body dynamics of

soft robots we can learn to emulate complex, nonlinear computations (like

the examples given in the beginning of this section) by simply finding some

linear and static output weights. Hence, the task to learn to emulate a

nonlinear dynamical system is, with the help of the soft body, reduced to

aThe nodes are typically modeled as simple, but nonlinear differential equations.
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Fig. 1. Figure adapted from Hauser et al.12 It shows the implementation of the reservoir
computing approach (top/left) and it various implementation in morphological computa-

tion approaches; (top/right) is the octopus arm setup;8 (bottom/left) the Kitty robot;9

(bottom/right) a pneumatic, modular robot arm.10

simple linear regression.

If we are able to emulate, e.g. a nonlinear controller with this setup and

consider that the readout is only linear and static, we can conclude that the

part of the computation that is dynamic (memory) and nonlinear has to

happen in the body. We can say in this case that nonlinearity and memory

is outsourced to the physical body, which is exactly what morphological

computation is all about.

Another remarkable implication of these theoretical models is the fact that

they imply a paradigm shift in robot design. When asked which proper-

ties physical body should have to be computationally powerful, the models
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provide a highly counterintuitive answer: To be computationally powerful a

robot body should have a high-dimensional state space, exhibit nonlineari-

ties, and should be compliant - even noise is beneficial. Note that all these

properties are deliberately suppressed in rigid robot designs. However, they

are inherently present in biological systems and, more importantly, they

describe quite accurately soft bodied robots.

In summary, complex body dynamics of soft robots, which are normally

seen as problematic, are from the view point of morphological computa-

tion beneficial, since they can be exploited as a computational resource. In

the next section, we discuss a series of real-world setups demonstrating the

applicability of this idea under real-world conditions.

3. Examples with Real-World Robots

Despite the fact that the approach is still new, there are already a number

of platforms, which have been successfully used to show the applicability

of the setup under real-world conditions.8–10 All of them use different soft

bodied structures as their reservoir ranging from an octopus inspired arm,

to a compliant spine in a quadruped, to a pneumatically driven modular

arm, compare Figures 1 and 2.

readout is directly multiplied with corresponding 
weights to generate the output O(t+1) (cf. violet 
area). To close the loop, a scaling function v(.)  
connects the target y(t) (learning phase case) or the 
output O(t+1) (evaluation phase case) with the 
input I(t). 
 

Implementation 
 
Considering the findings of the previous section, 
the next section describes the implementation of 
our morphological computation concept on a 
worm-like soft robot. Initially, the robotic setup is 
shown, then both open-loop and closed loop 
implementation details are given.   
 
Worm-like soft robot 
 
All implementations are performed on a modular 
robotic arm, which is driven by 12 soft actuators. 
The robot comprises 4 equal segments, each with 3 
controllable DOF – 2 DOF for bending, i.e. pan and 
tilt, 1 DOF contraction/extension. Hence, the robot 
can move in a worm-like manner. One segment is 
equipped with a set of 3 pneumatic artificial 
muscles (PAM), which are aligned parallel to the 
central axis of the segment. The PAM are 
surrounded by support springs to reinforce the 
structure and to avoid buckling of the PAM. 28 
sensors are distributed all over the robot to read out 
relevant system states: 12 pressure sensors, 12 
stretch sensors (detection of PAM 
length/curvature), 4 acceleration and gyroscope 
sensors with 6 DOF each. Added together, 48 
different sensor values are available to monitor the 
system’s behavior. For evaluation purpose, a 
supplementary electromagnetic tracking sensor can 
be integrated to gain absolute position information 
of the robot’s flange. This sensor allows us to 
measure the quality of the robot’s motions in an 
absolute manner with respect to a fixed external 
frame of reference, i.e. a static transmitter box. 
Figure 3 depicts a detailed view of one robotic 
segment. A real picture of the entire system is 
shown in Figure 4. 
 

 
Figure 3: Worm-like soft robot segment with 
actuators and sensors. 3 PAM move the segment, 
determination of states is realized by 3 pressure 
sensors, 3 stretch sensors, 1 6 DOF acceleration 
sensor/gyroscope and 1 optional electro-magnetic 
tracking sensor.  
 

 
Figure 4: Real setup including 4 segments, shown 
in deflected state. 

Fig. 2. Three different soft robotic platforms used to demonstrate the applicability of

the approach in the real world. (left) a soft octopus arm;8 (middle) quadruped with
compliant spine;9 (right) pneumatically driven modular robot arm10

There exist a series of publications using the artificial octopus arm of

Figure 1 (top/right) and Figure 2 (left). The arm was made of silicone and

is completely passive. It features 10 bending sensors distributed along the

arm, five on each side, which serve as readout. The arm was attached to

a rotational motor, which served as the input to the system. Nakajima et

al. demonstrate with this platform that it can be used to carry out com-
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putational tasks that included memory8 and complex nonlinear dynamics.1

They even showed that the octopus arm can be used to calculate a control

signal to robustly control exactly the same arm.8

Another successful example is the Kitty robot,9 see Figures 2 (middle) and

1 (bottom/left). Kitty is a quadruped robot that features a biologically

inspired, compliant, multi-joint spine. Locomotion is induced by a single

motor that bends the spine via a tendon system. In this case the reservoir

was the compliant spine, which had 30 force sensors embedded forming the

interface for the linear readout layer. Zhao et al. demonstrated that the

setup can be used to produce robustly different behaviours for the robot

like a bounding and trotting gait, and turning.

Finally, the concept has also been successfully applied to a robot arm de-

signed to work in an industrial environment, see Figures 2 (right) and 1

(bottom/right). The arm10 it pneumatically driven and comprises 4 equal

and decentralized controlled segments, each with 3 actuated degrees of free-

dom and a total of 48 sensors, including stretch and pressure sensors, and

accelerometers and gyroscopes. Again the morphological computation setup

has been used successfully to harness the complex dynamics, in this case,

to control the end point of the robot arm robustly along various desired

trajectories.

4. Conclusion and Discussion

We have discussed the possibility of morphological computation being a

solution for the control problem in soft robotics. The underlying idea is to

embrace and exploit complex body dynamics as a computational resource.

The idea is still new and, hence, there still remains a number of interesting

research opportunities.

One of this interesting research question is which computational tasks

should be outsourced to the body. While it seems to be quite obvious that,

e.g. long-term planning would be best carried out in the ”brain” of the

robot, and reflexes are better implemented in the body, there is a large

gray area in between to be explored.

Another question is related to the fact that in a morphological computation

setup the physical properties of the body are representing the ”programm”

of the implemented functionality. So, if we want to change the functionality,

we would have to change the bodyb. Recent results that use the concept of

bNote that if the body as a reservoir is complex enough, the change of the linear readout
is often sufficient. Actually, Hauser et al.6 showed that multiple computations can be
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morphosis (adaptive morphology)14 point to the possibility of highly versa-

tile morphologies by using the right design. Another possibility is to learn

to change to adapt the morphology, e.g. Hermans et al.15 This type of ap-

proach will be even more important in the future when artificially growing

and self healing systems will be available.
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