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1 Nonlinear Servo Motion Control Based
2 on Unknown Input Observer

3 Ligang Wang, Yunpeng Li, Jing Na, Guanbin Gao and Qiang Chen

4 Abstract This paper presents an alternative control method based on a new
5 unknown input observer (UIO) for servo motor systems with unknown
6 time-varying nonlinear dynamics and disturbances. By defining auxiliary filtered
7 variables, an invariant manifold is derived and used to design the estimation of
8 unknown dynamics. The new observer has only one scalar to be set, and thus can be
9 easily incorporated into the control design to achieve precise output tracking. The

10 convergence of the proposed estimator is compared with other three well-known
11 schemes. Comparative simulation results show the satisfactory estimation and
12 control performance.

13 Keywords Servo motion control ⋅ Unknown input observer ⋅ Nonlinear
14 systems ⋅ Disturbance observer15

16 1 Introduction

17 Servo motors are a kind of widely used driving motors in the industry applications
18 [1]. To achieve high precision motion control of such mechanisms, it is essential to
19 derive accurate model of the whole systems. However, this is not a trivial task. In
20 practical applications, the uncertainties that degrade the motion control performance
21 include both internal and external disturbances such as friction, load, torque, and
22 also modeling error. To handle such uncertainties and disturbances, there are two
23 widely used approaches: adaptive control and disturbance observer. In the adaptive
24 control framework, e.g., [2, 3], an important assumption is that the unknown
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25 dynamics should be strictly reformulated as a linearly parameterized form. To relax
26 this assumption, some functional approximators, e.g., neural network, fuzzy system,
27 were further incorporated into the control synthesis of nonlinear servo motion
28 mechanisms [4–6]. However, the function approximation is only valid for contin-
29 uous functions in a compact set, and only semi-global stability can be proved.
30 In the past decades, disturbance observer (DOB) [7, 8] was also proposed, where
31 the disturbances and modeling uncertainties are lumped as a time-varying distur-
32 bance, which is estimated using an observer. The traditional design methods of
33 DOB are based on frequency domain techniques so that it cannot be extended to
34 nonlinear systems [9]. In [7], a two-stage design procedure to improve disturbance
35 attenuation ability of linear/nonlinear controllers is proposed. The DOB-based
36 control can compensate the unparameterizable uncertainties, and has a simplified
37 structure. In generic nonlinear DOB design, an observer has a similar structure to
38 original system and there are several parameters to be set. In our recent work [10],
39 we proposed a simply yet effective UIO to address the engine torque estimation.
40 The convergence and robustness are also rigorously analyzed.
41 The aim of this paper is to exploit the idea of UIO proposed in [10] for the
42 precision motion control of nonlinear servo systems with disturbances. First, we
43 present the design of UIO based on available system variables to design the dis-
44 turbance estimators. We also compare the estimation response of the proposed UIO
45 to other three estimators, e.g., extended state observer (ESO) [11, 12], nonlinear
46 disturbance observer (NDO) [13], and sliding model observer [14]. The proposed
47 UIO is incorporated into the control design to alleviate the effects of these unknown
48 dynamics, e.g., friction and disturbance. Comparative simulations are included to
49 show the satisfactory control performance.

50 2 Problem Formulation

51 In this paper, the following servo motion system driven by a linear DC motor as
52 [15] will be considered as follows:
53

x1̇ = x2
x2̇ = ax ̇1 + u− ff − fr − fl

� �
̸b

�
ð1Þ

5555

56 where u is the control voltage, x1, x2 are the motor rotation position and speed; ff is
57 the friction force, fr is the ripple force, and fl is the applied load force. The
58 parameters a, b denote the effect of mechanical and electrical dynamics, whose
59 nominal values are available for most physical systems.
60 The objective of this paper is to introduce an alternative control scheme for
61 system (1) in the presence of unknown dynamics ff , fr, fl. In particular, the UIO
62 proposed in [10] is modified to estimate and then compensate these unknown
63 forces, which leads to a simple but efficient two-step control design procedure.

2 L. Wang et al.

Layout: T1 Standard STIX Book ID: 421067_1_En Book ISBN: 978-981-10-2334-7

Chapter No.: 49 Date: 16-8-2016 Time: 6:36 pm Page: 2/10

A
u

th
o

r 
P

ro
o

f

Andris
高亮
Traditional

Andris
高亮
they

Andris
高亮
Unknown input observer (UIO)



U
N
C
O
R
R
EC

TE
D
PR

O
O
F

64 3 Disturbance Observer Design

65 We first consider the estimation of the unknown dynamics using the unknown input
66 observer. Thus, we rewrite the second equation of the system (1) as
67

x2̇ = ½ax2 + u−Fðx1, x2Þ� ̸b ð2Þ
6969

70 where Fðx1, x2Þ= ff + fr + fl is the lumped unknown dynamics.
71 This section first presents theoretical developments of a new input observer to
72 estimate the unknown dynamics. Without loss of generality, we assume the
73 derivative of Fðx1, x2Þ is bounded, i.e., supt≥ 0 F ̇ðx1, x2Þ

�� ��≤ℏ holds for a constant
74 ℏ>0.

75 A. Unknown Input Observer Design
76

77 We define the filtered variables x2f , uf of x2, u as
78

kx ̇2f + x2f = x2, x2f ð0Þ=0
kuḟ + uf = u, uf ð0Þ=0

�
ð3Þ

8080

81 where k>0 is a filter parameter.
82 An ideal invariant manifold [16] will be used to inspire the design of UIO.

83 Lemma 1 [10] Consider system (2) and filter operation (3), the variable
84

β= ðx2 − x2f Þ ̸k− ðax2f + uf −FÞ ̸b ð4Þ
8686

87 is ultimately bounded for any finite k>0, and
88

lim
k→ 0

½ lim
t→∞

fðx2 − x2f Þ ̸k− ðax2f + uf −FÞ ̸bg�=0,

9090

91 Proof We refer to [10] for a similar proof. ◇

92 The above ideal invariant manifold provides a mapping from the filtered vari-
93 ables x2f , uf to the unknown dynamics F. Thus, it can be used to design an estimator
94 for F without knowing any information of x ̇2. Based on the invariant manifold, a
95 feasible estimator of Fðx1, x2Þ is given by
96 bF = ax2f + uf − bðx2 − x2f Þ ̸k ð5Þ
9898

99 Clearly, only the filter constant k>0 should be selected by the designer.
100 The convergence property of the proposed observer can be summarized as

101 Theorem 1 For system (2) with unknown input observer (5), the estimation error

102
eF =F − bF is bounded by eFðtÞj j≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2Fð0Þe− t ̸k + k2 ℏ2

q
and thus F→ bF holds for

103 k→ 0 or ℏ→ 0.

Nonlinear Servo Motion Control Based on Unknown … 3
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104 Proof We apply a low-pass filter ð ⋅ Þf = ½ ⋅ � ̸ðks+1Þ on both sides of (2), so that
105

s
ks+1

½x2�= a
b
⋅

1
ks+1

x2½ �+ 1
b
⋅

1
ks+1

u½ �− 1
b
⋅

1
ks+1

F½ � ð6Þ
107107

108 We consider (6) together with the first equation of (3) and have
109

x2̇f =
x2 − x2f

k
=

ax2f + uf −Ff

b
ð7Þ

111111

112 where Ff is the filtered version of F given by kF ̇f +Ff =F. Then it follows from (5)

113 and (7) that bF =Ff , that is, the estimator gives the filtered version of the unknown
114 dynamics. In this case, we can prove that the estimation error can be small using
115 sufficiently small k. For this purpose, we derive the estimation error as
116

eF =F − bF = 1−
1

ks+1

� �
F =

ks
ks+1

½F� ð8Þ
118118

119 To facilitate the convergence proof, we further represent the estimation error (8)
120 in the time-domain as
121

eḞ =F ̇− bF ̇=F ̇−
1
k

F −Ff
� �

= −
1
k
eF +F ̇ ð9Þ

123123

124
Select a Lyapunov function as V =

1
2
e2F , then its derivative can be given as

125

V ̇= eFeḞ = −
1
k
e2F + eFF ̇≤ −

1
k
V +

k
2
ℏ2 ð10Þ

127127

128 We can calculate the solution of (10) as VðtÞ≤ e− t ̸kVð0Þ+ k2ℏ2 ̸2, so

129
eFðtÞj j≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2Fð0Þe− t ̸k + k2ℏ2

q
. In this case, one can verify that eFðtÞ→ 0 for k→ 0

130 and/or ℏ→ 0. ◇

131 B. Comparison to different disturbance estimation methods

132 In this subsection, we will compare the proposed UIO with other three estimators
133 for system (2) to show their convergence and implementation.

134 B.1: Extended state observer (ESO)
135 ESO was initially proposed by Han in [11, 12], and has gained many applications
136 [1]. The basic idea of ESO is to regard the lumped disturbances as a new state
137 variable of the system, which can be estimated via a high-gain observer. Consid-
138 ering F as an extended state as x3 =F, then the Eq. (2) can be rearranged as

4 L. Wang et al.
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139 x2̇ = ðax2 + u−FÞ ̸b
x3̇ = c tð Þ

�
ð11Þ

141141

142 where c tð Þ=F ̇ is assumed to be bounded. Thus we can design an ESO as
143

z1̇ = − ½z2 − β1 z1 − x2ð Þ� ̸b+ u ̸b+ ax2 ̸b
z2̇ = − β2 z1 − x2ð Þ

�
ð12Þ

145145

146 where β1, β2 are the feedback gains in the observer, z1 is the estimation of x2 and z2
147 is the estimation of F. A feasible way to determine β1, β2 can be given as
148 s2 + β1s+ β2 = ðs+ pÞ2, where p>0. As analyzed in [17], if F ̇ is bounded, then
149 z1 → x2 and z2 →F hold for p→∞. In this paper, to make a trade-off between the
150 convergence and robustness, we set p=1000 in the simulations. The induced
151 high-gain of ESO leads to a potential peaking phenomena as shown in [17], which
152 may degrade the transient control response when the estimated state z2 is used.

153 B.2: Nonlinear disturbance observer (NDO)
154 The authors of [13] provide a nonlinear disturbance observer to estimate the
155 unknown disturbances. From system (2), we know F = − bx ̇2 + ax2 + u. Then we let
156 L>0 as the observer gain, so that a direct DO with exponential convergence can be
157 formulated as
158 bF ̇= − LF ̂+L − bx ̇2 + ax2 + uð Þ ð13Þ
160160

161 However, the above DO requires prior knowledge of acceleration signal x ̇2,
162 which may not be available or measured in actual systems.
163 To address this issue, we design an auxiliary variable z=F ̂+Lbx2, and then
164 design the following NDO as
165 bF = z−Lbx2

ż= − Lz+ Lðax2 + u+ Lbx2Þ
�

ð14Þ
167167

168 Then the observer error is derived from (14) as
169

eḞ =F ̇−L − z− ax2 − u− Lbx2 + bx ̇2ð Þ= − L F − bF	 

+F ̇= − LeF +F ̇ ð15Þ

171171

172 It is interesting to find that the error dynamics of NDO shown in (15) are in the
173 same form of that of the proposed UIO. Thus, it can be proved that the observer
174 error eF of (15) will converge to zero for F ̇=0 and/or L→∞. Thus, the response of
175 NDO is the same as UIO. However, no auxiliary variable needs to be defined in the
176 proposed UIO.

Nonlinear Servo Motion Control Based on Unknown … 5
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177 B.3: Sliding mode observer (SMO)

178 We assume the disturbance FðtÞ is bounded, i.e., ( ) ( )F t t≤ holds for ( ) 0t > .
179 Then, we can define the following sliding mode observer
180

x ̂2̇ =
1
b
½ax2 + u− σ sign ðx2 − x2̂Þ� ð16Þ

182182

183 with a small positive constant  t  .
184 Then the observer output error between (2) and (16) can be obtained as
185 ef = x2 − x2̂, so that its derivative is
186

be ̇f = −F + σ sign ðef Þ ð17Þ
188188

189 Based on the sliding mode theory and the equivalent control method [14], we
190 know that ef will reach the sliding mode surface ef =0 in finite time, and thus

191 ( )sign( )FF eσ= + for any bounded disturbance F. However, a well-recognized
192 issue in the sliding model observer is the chattering due to the signum function. To
193 reduce the chattering, a low-pass filter is adopted to give the following estimator:
194 bF =

1
ks+1

σ sign ðef Þ
� � ð18Þ

196196

197 In this case, we can verify the estimator error of (18) is the same as (8). Con-
198 sequently, the steady-state convergence response of the sliding mode observer (16)
199 is comparable to those of UIO and NDO. However, the estimated dynamics may
200 not be smooth although the high-frequency switching can be reduced by intro-
201 ducing the low-pass filter in (18). This will be further shown in simulations.

202
Moreover, the upper bound ( )t of the unknown dynamics FðtÞ should be known in

203 the sliding mode observer design to determine the constant σ.

204 4 Control Design with Disturbance Observer

205 In this section, we will incorporate the proposed UIO into the control design for (1)
206 to achieve output tracking for a given command x1d. System (1) with the estimator
207 (5) can be given as
208

x1̇ = x2
x2̇ = 1

b ½ax2 + u− bFðx1, x2Þ− eF�
�

ð19Þ
210210

6 L. Wang et al.
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211 We define an auxiliary variable defined as
212

p= e ̇+ k2e ð20Þ
214214

215 where e is the tracking error as e= x1 − x1d , and k2 is a positive constant.
216 Then we get the derivative of p as
217

p ̇= e ̈+ k2e ̇= ½ax2 + u− bFðx1, x2Þ− eF� ̸b− x1̈d + k2e ̇ ð21Þ
219219

220 The controller can be designed as
221

u= − k1p+ bF − ax2 − bðk2e ̇− x1̈dÞ ð22Þ
223223

224 where k1 > 0 is the feedback gain.
225 Then the following theorem summarizes the main results of this paper:

226 Theorem 3 For the motor system (1), the controller (22) with the estimator (5) is
227 designed. Then, for any unknown dynamics F, the estimation error eF and the
228 tracking error e will converge to a small compact set around zero, whose size
229 depends on the bound supt≥ 0 F ̇

�� ��≤ℏ.

230 Proof Substituting (22) into (21), we have the tracking control error as
231

p ̇=
1
b

− k1p− eFð Þ ð23Þ
233233

234
Select a Lyapunov function as V =

1
2
bp2 +

1
2
e2F , so that its time derivative can

235 be calculated along as
236

V ̇= bpp ̇+ eFeḞ = − k1p2 − peF −
1
k
e2F + eFF ̇≤ − αV +

η

2
ℏ2 ð24Þ

238238

239 where α=min f2ðk1 − η ̸2Þ ̸b, 2ð1 ̸k− 1 ̸ηÞg is positive for k1 > η ̸2>
240 k ̸2, k>0. Thus, we can obtain from (24) that VðtÞ≤ e− αtVð0Þ+ ηℏ2 ð̸2αÞ holds
241 and this implies that p and eF will exponentially converge to a compact set defined

242
by Ω: = p, eFj pj j≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηℏ2 α̸b

p
, eFj j≤

ffiffiffiffiffiffiffiffiffiffiffiffi
ηℏ2 α̸

pn o
. ◇

243 5 Simulations

244 This section will present comparative simulation results to demonstrate the validity
245 of the proposed method, and to compare the estimation response of the above
246 mentioned four estimators for F. The parameters of model (1) can be found in [15],

Nonlinear Servo Motion Control Based on Unknown … 7
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247 which lead to the lumped parameters a= − 123, b=0.69. Moreover, the ripple
248 force is given by
249

fr =Ar sin 2πx1 ̸P+φð Þ ð25Þ
251251

252 where ω=2π P̸=314 and φ=0.05π. The friction model is given as
253

ff = fc + fs − fcð Þe− x2 ̸xṡð Þ2
h i

sign ðx2Þ+Bx2 ð26Þ
255255

256 where fs =20, fc =10, xṡ =0.1, B=10 define the effects of the maximum static
257 friction, the coulomb friction the Stribeck effect and the viscous friction. Moreover,
258 the external load is given as fl =50 sin ð2πtÞ. In the control design, the filter
259 parameter is k=0.001, and the feedback gains used in the controller are chosen as
260 k1 = 2, k2 = 500.
261 Figure 1a shows the tracking responses of the motor position and speed using
262 the presented control (22) with the proposed UIO. It is shown that fairly smooth and
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Fig. 1 Simulation results: a Tracking control response of the proposed control (22) with (5);
b Estimation performance of UIO (5), ESO (12), NDO (14) and SMO (18); c The zoom-in plot of
(b); d Estimator errors of UIO (5), ESO (12), NDO (14) and SMO (18)
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263 satisfactory control performance can be obtained. The profiles of the estimated
264 disturbances are given in Fig. 1b, c. The first picture of Fig. 1b shows the esti-
265 mation response of F using the four estimators, and its zoom-in view of the esti-
266 mation between 0.2 and 0.3 s is shown in Fig. 1c. We can see the major trends of
267 F can be accurately captured, although there is a small phase delay (about 0.001 s).
268 This phase delay comes from the introduced low-pass filter (3). It is noted that
269 k should be chosen as a trade-off between the estimation performance and
270 robustness.
271 Moreover, we compare their estimation error responses in Fig. 1d. It can be
272 found that the performance of NDO is indeed very similar to that of UIO, which are
273 all better than that of ESO and SMO. In particular, the phase delay of NDO is
274 smaller than that of ESO. Moreover, the implementation of the proposed UIO is
275 simpler than that of ESO. On the other hand, as we stated in Sect. 3, SMO creates
276 oscillated estimation results. The estimation errors of all these four different esti-
277 mators shown in Fig. 1d further conform the above analysis.

278 6 Conclusion

279 In this paper, we propose a new nonlinear disturbance observer for servo mecha-
280 nisms by extending the principle of a recently proposed unknown input observer.
281 This new UIO has only one constant to be selected and a simpler structure, while its
282 convergence response is comparable to that of generic NDO, ESO and SMO. The
283 proposed estimator is incorporated into the feedback control design to achieve
284 precision motion control. The closed-loop system stability including the UIO can be
285 rigorously proved. Simulations are given to verify the theoretical analysis. The
286 results demonstrate that the proposed UIO can achieve a superior estimation
287 compared to ESO and SMO. Future work will focus on the robustness analysis for
288 the proposed UIO and other estimators.
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