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Trench effects on lateral p-y relations for pipelines embedded in stiff 
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Abstract 

Existing relationships for lateral backfill pressures on pipelines assume that the trench is 

adequately wide to contain the failure surface. This condition is commonly violated in 

design and construction practice, putting at risk the pipeline safety. In this context, size and 

shape effects for trenches excavated in stiff soils and rocks, are numerically investigated, 

through experimentally-calibrated parametric analyses. It is shown that, for narrow 

trenches, ultimate pressures and yield displacements may increase up to an order of 

magnitude compared to “infinite-trench” values, while excavation of inclined walls reduces 

the above detrimental effects. Simplified relations are developed to aid pipeline design. 

1. Introduction 

It is widely acknowledged that trenches backfilled with loose to medium dense sand can 

drastically reduce design demands for buried pipelines subjected to permanent ground 

movement (e.g. fault rupture) in the core of stiff soil and rocky terrain. The reason is that the 

magnitude of soil pressures imposed to the pipeline is controlled by the properties of the 

backfill material and not by those of the much stiffer (in most cases) natural surrounding 

ground. Evidently, for the previous statement to be valid, the trench should be adequately 

large in order to fully contain the mobilized failure surface.  

It is noteworthy that the potential effects of trench size are acknowledged in current design 

guidelines [1–5], but only in a qualitative way. For instance, according to ALA-ASCE (2001), 

the backfill soil properties for the evaluation of soil pressures can only be used if the size of 
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the trench is “adequate”. Even though, and also despite the large number of studies dedicated 

to the response of buried pipelines [e.g. 6–14], research related to trench size effects 

remained limited until recently.   

To fill this gap, Kouretzis et al. [15] and Chaloulos et al. [16] investigated systematically the 

extent of sand backfill failure for the case of laterally displaced pipelines (e.g. at strike-slip 

fault crossings), with the aid of experimentally calibrated linear elastic-perfectly plastic 

numerical analyses. It was thus shown that, common trench sections rarely ensure the 

unobstructed development of the failure surface inside the backfill sand. For instance, in the 

common case of a D=30in (0.76m) diameter pipeline embedded at H=1.50m average depth 

(i.e. H/D≈2.0), the required net half-width of the trench for free development of the failure 

surface within the sand backfill exceeds 3m, not including the fault-induced displacement, 

as compared to the 0.2-0.5m allowed in common practice. Under these conditions, the 

pipeline response is not controlled by the backfill, but by the much stiffer surrounding soil 

thus increasing both the pressures applied to the pipeline and the associated pipeline strains. 

In light of the above, the present paper focuses upon the analytical computation of increased 

ultimate soil pressures and lateral yield displacements in the case of "narrow" and "shallow" 

trenches, i.e. when trench dimensions (width, depth and side wall inclination) are not 

adequate for un-hindered failure within the sand backfill. For this purpose, the numerical 

methodology that has been developed and verified in Chaloulos et al. [16] is now applied 

parametrically, for various backfill soil properties, pipeline diameters and embedment 

depths, in order to evaluate and incorporate trench boundary effects in the design of 

pipelines with the commonly applied "beam on Winkler soil springs" method. More 

specifically, the final output of the investigation is a set of equations that modify the Winkler 

soil spring characteristics according to the trench size and shape. To increase the application 

range of the proposed equations, trench size and shape effects are expressed in the form of 



correction factors which can be readily combined with existing relations for pipelines 

embedded in infinitely extending sand layers. To aid independent reading of the paper, 

Section 2 repeats briefly the numerical methodology that was used to simulate the problem, 

as well as the failure mechanism for laterally displaced pipes in uniform sand, obtained by 

Chaloulos et al. [16].   

2. Outline of Numerical Analyses and Results 

2.1 Numerical Methodology 

Figure 1 shows the finite difference mesh and the backfill sand that was used for the bulk of 

the parametric analyses: a cylindrical pipe section with diameter D is embedded at depth H, 

measured from the center of the pipeline, in an artificial trench backfilled with sand. The 

pipeline is displaced laterally to a maximum displacement y=ymax. The effect of trench 

geometry on the development of soil pressures was investigated by varying distances x and 

d, also shown in Figure 1. More specifically, the horizontal distance x defines the semi-width 

of the trench in the direction of pipeline movement (left side in fig. 1), and it is measured 

from the center of the pipeline (at its displaced position) to the lateral boundary. For the 

reference "infinite-trench" conditions, x was equal to 16D and was then step-by-step reduced 

to 0.75D for the most narrow trench conditions. Note that in the direction opposite to the 

pipeline movement (right side in fig. 1), the semi-width of the trench was kept constant and 

equal to 6.5D throughout the parametric investigation, based on the results of sensitivity 

analyses which showed that the exact location of the wall at this side of the trench, even for 

the small lateral distances used in practice, does not affect the development of soil pressures. 

The vertical distance d is measured from the bottom of the pipeline to the base of the trench. 

Finally, in the majority of the parametric analyses, the trench has vertical side walls, while a 

number of parametric analyses is also performed for outwards inclined trench walls. In this 



trapezoidal trench geometry, the aforementioned horizontal dimensions refer to the 

horizontal plane passing through the pipeline axis.    

All parametric analyses were performed with the finite difference code FLAC v7.0 [17]. The 

large strain formulation mode was activated, in combination with a mesh rezoning 

technique [16], in order to account for the large lateral displacement of the pipe section. 

Following sensitivity analyses the mesh was discretized into square elements of size 0.1D. 

Special attention was placed regarding the selection of proper boundary constraints. 

Namely, for the simulation of the experiments, the selection was based on comparative 

analyses either with rollers or with hinges, which revealed that the latter provided a more 

consistent agreement between experimental results and numerical predictions. For the 

parametric study, the selection of proper boundary constraints was guided by the nature of 

the problem. Namely, as the analysis assumes that the natural soil is much stiffer than the 

backfill sand, it is reasonable to expect that the sides of the excavated trench will be rough 

and failure will take place within the backfill and not along the backfill-trench interface. 

Consequently, the side boundaries were considered as “rough” and simulated with hinges. 

It is also of interest to note that, parallel analyses performed for "smooth" side boundaries, 

i.e. with vertical rollers instead of hinges, have shown that application of hinges is more 

damaging for the pipeline (leads to larger spring reactions), suggesting that the selection of 

hinged boundary constraints is conservative. 

The backfill material was given the characteristics of Cornell filter sand, i.e. the material of 

the model experiments that were used in order to calibrate the numerical methodology, with 

unit weight γ=14.8 and 16.4kN/m3 for loose and medium density respectively [18]. Note 

that the use of dense sand backfill is not recommended by design codes, as it would 

unnecessarily increase soil pressures on the pipeline, and consequently it was not 

considered in this study. The analyses for both sand backfill densities were performed using 



the elastic-perfectly plastic Mohr-Coulomb model. The friction angle was computed from 

the critical state value φcr=31o that was obtained from direct shear tests on Cornell Sand [18] 

and was consequently modified to to φcr,PS=37o in order to account for the actually prevailing 

plane strain conditions [19]. The critical state angle of dilation was ψ=0. The choice of this 

approach was straightforward for the case of loose sand backfill.  Furthermore, for the case 

of medium dense sand backfill, it was based on the observation that the lateral pipeline 

translation causes relatively large deformations in the backfill (re-meshing was found 

necessary in all analyses) and consequently full mobilization of the failure surface is much 

closer to critical state rather than to peak strength conditions. Note that the same assumption 

has been also adopted by Kouretzis et al. [15] and Chaloulos et al. [16] for the numerical 

simulation of lateral pipeline translation into infinitely extending loose and medium dense 

sand backfill. Finally, the Young modulus varied with vertical effective stress as [7]: 

 
13.7
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vE 2 10 '      (1) 

where γ the unit weight [kN/m3] and σ'v the vertical effective stress [kPa]. Note that eq. (1) is 

readily reduced to a more recognizable Hardin type formula [i.e. E=A· f(e)· (σ'v)0.5] if the unit 

weight is written as γ=γs/(1+e), where γs is the unit weight of the solid soil particles (γs≈26-

27kN/m3) and e is the void ratio. Moreover, this empirical equation has been developed by 

O'Rourke [7], strictly in connection with elastic-perfectly plastic analyses of embedded 

pipelines using the Mohr-Coulomb failure criterion for the sand backfill, and was thus 

preferred over other (more general) similar relations in order to optimize the accuracy of the 

numerical computations. Following the current practice for soil spring characterization (e.g. 

[1-5]), the pipe was conservatively simulated as a rigid body, i.e. ignoring any possible pipe 

ovalization effects. Furthermore, it was assumed that it is fixed at the vertical direction. Note 

that sensitivity analyses were also performed without vertical constraints on the pipe but 

yielded negligible differences. Interface elements were placed between the pipe and the soil 



in order to simulate the relative pipe-soil slippage. Zero cohesion was assigned to that 

interface while the friction angle was set equal to one half that of the soil, i.e. φint=1/2φcr,PS 

=18.5o, taking into account that interlocking between the pipeline steel and the sand backfill 

is minimal.  It is in addition noted that, sensitivity analyses performed as part of the present 

as well as previous studies (e.g. [12]) have indicated that the predicted p-y response is not 

particularly sensitive to the assumed interface friction angle value. 

The numerical methodology described above was calibrated against the experiments 

reported by Trautmann and O’Rourke [18], which involved lateral displacement of a 

D=0.10m diameter straight pipeline inside a trench backfilled with Cornell sand. The 

geometry of the numerical model that was used for the verification of the numerical 

methodology was identical to that of the experiment, as described in detail in Yimsiri et al 

[12]. Namely, the length of the model was equal to 2.3m and the height was variable based 

on the H/D ratio, leaving approximately 300m of space below the base of the pipeline. The 

pipeline was placed at a distance of 600mm from the right boundary and was pushed 

towards the left boundary. 

A typical comparison between predictions and test results is shown in Figure 2, for shallow 

and deep embedment ratios, H/D=1.5 & 5.5, as well as for loose and medium dense backfill 

sand. The agreement is fairly good, especially for the ultimate soil pressure which is of 

greater interest for the pipeline response assessment.  

2.2 Shape and size of failure surface 

As stated in the introduction, the shape and size of the failure surface was extensively 

investigated in the study by Chaloulos et al. [16]. Hence, the present section summarizes the 

main findings of that study, as they are considered necessary for the interpretation and 

understanding of the numerical results regarding trench effects. In short, the following three 

distinct failure modes were observed: 



 General Shear failure (Type I): A wedge type, general shear failure surface develops which 

emerges to the ground surface (Figure 3a). This failure mode applies to shallow 

embedment ratios, below approximately H/D=6.0 and 4.8 for loose and medium dense 

backfill sand respectively. 

 Local Shear failure (Type III): The failure mechanism has a circular shape and develops 

locally, around the pipe (Figure 3c). This mode of failure applies to large embedment 

ratios, beyond approximately H/D=10 and 9.5 for loose and medium dense sands 

respectively. 

 Intermediate shear failure (Type II): For intermediate embedment depths, the failure 

mechanism is not well defined, as it progressively switches from general (Type I) to local 

(Type III) shear failure (Figure 3b). 

In all analyses, the magnitude of the applied displacement was equal to 0.75D, a value that 

allowed for the load-displacement curves to reach a plateau and the failure surface to be 

completely formed. The maximum width, xmax, of the failure surface for each failure mode, 

measured from the displaced pipe axis (Figure 3), can be computed analytically as: 

Type I:   1

max / 3 0.1 /
c

x D H D    (2) 

Type II:   max / 13.1 1.2 /x D H D    (3) 

Type III:  max 2/x D c  (4) 

where c1=1.9 & 2.40 and c2=1.10 & 1.70 for loose and medium dense sand respectively. In a 

simpler way, although at some cost in accuracy, xmax can be normalized against the 

embedment depth H and expressed as: 
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The corresponding maximum depth, dmax, and the inclination, θmax, of the failure surface can 

be also evaluated analytically, as: 

max / 0.20 0.30d D     (6) 

max 45 65    (7) 

2.3 Load-Displacement (p-y) relations for lateral pipeline displacement 

The gray continuous line in Figure 4a shows a typical load-displacement (p-y) curve 

obtained from the numerical analyses, where p (kN/m) denotes the soil pressure over a unit 

length of the pipeline. It may be observed that the shape of this curve resembles closely a 

hyperbola, and can be analytically expressed as: 

ini ult
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where Kini is the initial stiffness of the curve and pult is the ultimate soil pressure. In a (y/p) 

vs. y coordinate system, the above equation transforms into a straight line with slope 1/pult 

and y-intercept equal to 1/Kini. Thus, the two hyperbola parameters in Eq. 8 can be 

estimated directly by fitting a straight line to the numerical predictions in a (y/p) vs. y 

system of coordinates, as shown in Figure 4b. 

When a bi-linear elastic-perfectly plastic p-y relation is used to model the soil spring 

response, as recommended in a number of pipeline design guidelines (e.g. ALA-ASCE 2001; 

PRCI 2009) and shown with dashed line in Figure 4a, the definition of pult should be 

accompanied by estimation of the corresponding ultimate (yield) displacement, i.e. the 

displacement at the transition point from the linear elastic to the perfectly plastic p-y 

response (yult in Figure 4a). To take into account the increased significance for the pipeline 

design of the post yield segment of the p-y response, the simplified bi-linear p-y relation was 

fitted to the aforementioned more exact hyperbolic relation at relatively high load levels, 



namely at p=0.70pult [e.g. 18, 20 & 21]. In that case, the yield displacement can be analytically 

computed from Eq 8 as yult ≈ 2.33 pult/Kini. 

3. Effect of trench width 

The effect of trench width (distance “x” in Figure 1) was first analyzed for trenches with 

vertical side walls which represent the standard construction practice today. A total of 160 

parametric analyses were performed for both loose and medium backfill sand, as well as for 

a large range of embedment depth ratios between H/D=1.5 and 16. For each sand density 

and H/D value, the response was initially obtained for “infinite-trench” conditions i.e. 

where the side walls of the trench were placed at a very large distance from the pipeline axis 

(x/D≈16). In the sequel, the width of the trench was gradually reduced to a minimum 

normalized distance x/D=0.75 and ultimate soil pressures and displacements were 

compared to the reference “infinite-trench” values. In the majority of the analyses the pipe 

diameter was D=0.10m, while potential scale effects were evaluated by selectively repeating 

a number of the analyses for D=0.70m with all other mesh dimensions proportionally scaled. 

3.1 Increase of ultimate soil pressure, pult 

The effect of trench width on ultimate soil pressures is illustrated in Figure 5a to Figure 5c 

for embedment depth ratios H/D=1.5, 6.5 and 11.5, corresponding to Type I, II and III 

failure modes respectively. Different symbols are used for loose and medium dense sand, as 

well as for pipe diameter D=0.10 and 0.70m. The vertical axis shows the ultimate soil 

pressure, pult, normalized against the reference “infinite-trench” value, pult,inf, while the 

horizontal axis shows the width of the trench x normalized against the maximum width of 

the failure surface xmax.  

As expected, there is a critical trench width, xcr, beyond which there is no effect of lateral 

boundaries on ultimate soil pressures, i.e. pult/pult,inf=1.0. It is noteworthy that the critical 



width does not necessarily coincide with the maximum width of the failure mechanism, but 

it is generally somewhat larger (i.e. xcr≥xmax). This is attributed to the elastic deformations 

which develop on both sides of the failure surface and may also affect the development of 

soil pressures when constrained. In addition, it is observed that for lower than the critical 

trench width (x<xcr), soil pressures increase substantially compared to the corresponding 

“infinite-trench” values, with the maximum difference being larger at shallow embedment 

depths (i.e. 6-8 times for H/D=1.5) than for deeper ones (i.e. 2-3 times for H/D=11.5). The 

effect of embedment depth may be attributed to the much larger width of the general shear 

(Type I) failure surface which develops at shallow depths as compared to the local shear 

(Type III) failure surface that will develop at large depths. Thus, the same shortening of the 

trench width will provide a more drastic constraint of the failure surface in the first case, 

leading to the observed much larger increase of soil pressures.  

The numerical predictions in Figure 5 may be analytically described by the following power 

relation: 

pb

ult

ult ,inf max

p x
1.0

p x



 
  

  
 (9) 

The form of the above equation and the physical meaning of the associated parameters α 

and bp are demonstrated in Figure 6a, for the random case of H/D=6.5 and medium dense 

backfill sand. Note that, when the ultimate pressure and the trench width axes are drawn in 

logarithmic scales, Eq. 9 implies a linear increase of normalized ultimate soil pressures with 

decreasing trench width ratio x/xmax, at a rate equal to bp, while α corresponds to the critical 

value of x/xmax at which boundary effects become negligible. Based on the above 

interpretation, parameters α and bp were subsequently back-calculated for each embedment 

depth, sand density and pipe diameter combination considered in the parametric 

investigation.  



Figures 6b and 6c show the correlation of parameters a and bp with embedment depth ratio 

H/D. Different colors and symbols are used for loose and medium dense sand backfill, as 

well as, for pipe diameter D=0.10 and 0.70m. It is first observed that, in both figures, pipe 

size effects are efficiently accounted for by normalizing the embedment depth against the 

pipe diameter. It is further noted that α remains approximately equal to one for embedment 

depth ratios up to H/D ≈ 6.5, implying that the critical trench width practically coincides 

with the maximum width of the failure surface at shallow and intermediate embedment 

depths. For the reasons discussed at the beginning of this section, α increases at larger 

depths to a final value which is approximately equal to α≈4.5 for loose and α≈2.1 for 

medium dense backfill sand. These trends may be analytically expressed as:  

 

 

2.7 1.8 tanh 0.6 H / D 8.5 , for loosebackfillsand

for mediumbackfillsand1.5 0.6 tanh 0.6 H / D 8.5 ,

       
  

      
 (10) 

Exponent bp is much less affected by the sand backfill density. Furthermore, it decreases 

with embedment depth ratio H/D, reminding that the effect of trench width is more severe 

for shallow pipeline embedment. In analytical form, the variation of bp in Figure 6c may be 

described as: 

 pb 1.1 0.6 tanh 0.32 H / D 3.2        (11) 

Figure 7a provides an (one-to-one) comparison between analytical and numerical 

predictions of pult/pult,inf, while Figure 7b shows the associated relative error. Different 

symbols are used to indicate the three different modes of failure shown in Figure 3. The 

comparison shows a consistent agreement, regardless of failure mode, with less than 20% 

relative error for 93% of the data points. 



3.2 Increase of ultimate displacements, yult 

Using the same format as for ultimate soil pressures, Figure 8a, b and c show the variation 

of normalized displacements, yult/yult,inf with normalized trench width, x/xmax. It is 

reminded that yult is defined (Figure 4a) as the lateral displacement at p=pult when a bi-linear 

elastic-perfectly plastic relation is used to fit the p-y response of the soil springs. It is 

observed that, the qualitative trends identified for pult in the previous section, apply here as 

well. Namely, there is a considerable increase of ultimate displacements with decreasing 

trench width, while boundary effects may be effectively ignored beyond a critical trench 

width. In this case also, for a given trench width ratio x/xmax, the increase in ultimate pipe 

displacements is more pronounced for shallow embedment depth ratios H/D (Figure 8a) 

and can be ignored at large depths (Figure 8c).  

Based on these similarities, the effect of trench width on ultimate displacements can be 

expressed in the same form as Eq. 9, i.e.: 

yb

ult

ult ,inf max

y x
1.0

y x



 
  

  
 (12) 

Best-fit by values were obtained for the whole set of numerical data and subsequently related 

to the embedment depth ratio H/D (Figure 9). Different symbols are used for loose and 

medium backfill sand, as well as for D=0.10 and 0.70m pipe diameters. It is again observed 

that scale effects are efficiently removed by normalizing embedment depth against the pipe 

diameter D. In addition, it is shown that by approaches zero for embedment depth ratios 

above H/D ≈ 8-10, indicating that the effect of lateral trench boundaries becomes gradually 

insignificant at these depths. These trends are analytically expressed as:  

 

 
y

0.55 0.55 tanh 0.42 H / D 4.2 , for loosebackfillsand
b

for mediumbackfillsand0.70 0.70 tanh 0.35 H / D 5.5 ,
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Figure 10a provides an (one-to-one) comparison between analytical and numerical 

predictions of yult/ yult,inf, while Figure 10b shows the associated relative error. In this case 

also, the agreement between the two sets of predictions is a fairly consistent, with less than 

20% relative error for 92% of the data points. 

4. Effect of trench depth 

To evaluate the effects of trench depth (distance d in Figure 1), a total of 200 analyses were 

performed for both loose and medium sand backfills, pipe diameters D=0.10 and 0.70m, as 

well as embedment depth ratios ranging from H/D=1.5 to 16. In each case, the normalized 

trench depth varied from d/D=0.15 to a maximum value d/D=3.0 which corresponds to the 

“infinite-trench” response.   

Interpretation of the numerical predictions revealed that the effect of trench depth is 

substantially less significant relative to that of the trench width. To show this, Figure 11a to 

11c summarize the computed variation with d/D of normalized ultimate soil pressures 

pult/pult,inf and displacements yult/yult,inf, for three embedment depth ratios (H/D=1.5, 6.5 and 

11.5), corresponding to Type I, II and III failure modes in Figure 3. The presentation format 

is the same as for the effect of trench width in Figures 5 and 8. Moreover, the same scale is 

retained in the vertical axes in order to highlight the large difference from the corresponding 

effects of trench width,  

Observe that the effect of trench depth becomes substantial only for large H/D values (Type 

III failure), where both ultimate soil pressures and ultimate displacements increase by 

approximately 20-30%. In addition, any effects practically cease beyond a critical depth ratio 

d/D≈1.0. In view of the above observations, it was not considered necessary to develop 

detailed multi-variable analytical relationships for the effect of trench depth, and it is 



alternatively proposed to use the constant correction factors for ultimate loads and 

displacements summarized in Table 1.  

Table 1: Effect of trench depth on ultimate soil pressures and displacements 

Backfill sand density Embedment depth, H/D* pult/pult,inf** yult/yult,inf** 

Loose 
<9.5 1.1 ± 0.1 1.0 

≥9.5 1.2 ± 0.2 1.2 

Medium 
<9.5 1.0 ± 0.1 0.8 

≥9.5 1.2 ± 0.2 1.2 
 *H: Embedment depth measured from the center of the pipe, D: Pipe diameter   
 ** pult/pult,inf= yult/yult,inf=1.0 for normalized depths d/D≥1 (d measured from the bottom of the pipe) 

 

5. Effect of trench wall inclination 

The present section addresses potential boundary effects for the case where the walls of the 

trench are inclined, i.e. they are rotated by an angle θ < 90o relative to the horizontal, as 

shown in Figure 12. Although not common in practice, this trapezoidal trench geometry is 

more consistent with the shape of the failure surface for shallow and intermediate 

embedment depth ratios in Figures 3a and 3b, and may thus reduce the effects for vertical 

trench walls presented previously. Two scenarios were subsequently examined with regard 

to trench wall inclination, one for θ=tan-1(1/1)=45ο and the other for θ=tan-1(2/1)=63.4ο.  For 

each scenario both loose and medium sand backfill materials were considered, as well as 

embedment depth ratios H/D=1.5, 4.0, 6.5, 8.0 and 11.5. The normalized (semi-) width x 

varied from x/D=0.75 to 16, thus leading to a total of 120 additional numerical analyses. All 

analyses were performed for D=0.10m, whereas the normalized trench depth below the 

pipeline was d/D=3.0 so that so that the corresponding effects on ultimate pressures and 

displacements can be overlooked.  

Figures 13a to 13c illustrate the effect of trench inclination on the variation with trench 

width ratio x/xmax of the normalized ultimate soil pressures, pult/pult,inf, for H/D=1.5, 6.5 and 

11.5. In each figure, the results for loose and medium backfill sand are shown separately, 



while different symbols are used for the three different inclinations that were considered: 

θ=45, 63.4 and 90ο. As expected, the reduction of soil pressures with increasing side wall 

inclination is more pronounced for the shallow embedment depth ratio H/D=1.5, i.e. for 

Type I general failure mechanisms, where the pult/pult,inf ratio can decrease by up to 2.5 times 

on average. This beneficial effect diminishes gradually with depth and becomes practically 

negligible for the large embedment depth ratio H/D=11.5, i.e. for Type III local failure 

mechanism. An additional important observation is that the largest part of the observed 

reduction is due to the inclination change from θ=90o to θ=63.4o, while the additional benefit 

for further change to θ=45o is marginal. This is explained by the fact that the inclination of 

the failure surface for Type I general failure mode ranges between 45 to 65o [eq. (7)], and 

consequently a reduction of the trench wall inclination to θ=63.4o is sufficient to remove a 

major part of the lateral boundary constraint and the associated effects on ultimate soil 

pressures.   

In view of the similar shape of pult/pult, inf variation for the various trench wall inclinations, 

Eq. 9 may be modified to: 
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where the exponent bp,θ is a function of the trench wall inclination 

,

, 
p

p

p

b
I

b



  (15) 

where exponent bp corresponds to vertical trench wall (θ=90ο).  

The variation of correction factor Iθ,p with inclination angle θ is shown in Figure 14 for 

various embedment depth ratios. Different symbols are used for loose and medium dense 

backfill sand. Consistent with the trends regarding the effects of trench wall inclination 



discussed previously, Iθ,p approaches unity (no effect) as H/D increases, while the decrease 

of Iθ,p is much more significant when changing from the inclination angle from θ=90o to 63.4o 

rather than from θ=63.4o to 45o. Furthermore, the effect of backfill density is rather minor.  

In analytical terms, correction factor Iθ,p can be expressed with the following analytical 

expression, drawn with black continuous line in Figure 16: 

  , 1 0.35 1 tanh 0.32 / 6.3 cos        pI H D 
 (16)   

The effect of trench wall inclination on ultimate displacements is approximately the same 

with that on ultimate pressures. This is demonstrated in Figure 15 which shows the 

variation of normalized initial stiffness of the load-displacement curve (i.e. K=pult/yult) for 

the inclined trench against the corresponding value for the vertical trench, i.e. Kθ/Κθ=90. The 

numerical data are presented separately for the three different failure modes, namely for 

backfill thickness ratios H/D=1.5, 6.5 and 11.5, while different symbols are used for different 

sand densities and trench wall inclinations. It is observed that all data points in Figure 15 are 

scattered around Ku/Ku,90 = 1.0, implying that any change in ultimate pressures is directly 

reflected upon ultimate displacements. Hence, it may be readily assumed that, for 

trapezoidal wall sections with θ < 63.4ο: 

ult ult

ult ,inf ult ,inf

y p

y p
    (17) 

Εq. 17 implies that the effects of trench wall inclination on exponent by may be analytically 

expressed with the following correction factor: 

y,

,y ,1 ( 1)    
p

p

y y

b b
I I

b b



           (18) 

where exponents bp and by correspond to vertical trench wall (θ=90ο). 



6. Conclusions 

A set of analytical relations is proposed for the computation of trench size and shape effects 

on backfill soil pressures applied during lateral displacement of pipelines embedded in stiff 

soils and rocks. Results from a large number (about 480) of elasto-plastic numerical analyses 

were used for this purpose, following calibration and verification against relevant small 

scale experiments. The detailed derivation of the analytical relations is described in previous 

chapters, while an application oriented summary is provided in the Appendix.  

In conclusion, attention is drawn to the following main points: 

(a)  The proposed relations provide essentially correction factors for the characteristics (pult, 

yult) of elastic-perfectly plastic Winkler soil springs for the analysis of pipelines embedded in 

trenches filled with sand. Hence, they can be combined with any rational method for the 

computation of theses springs in the case of pipelines embedded in sand deposits with large 

("infinite") lateral and vertical extend. 

(b) The numerical analyses were performed for trenches excavated within "rigid" natural 

geological formations. In practice, this condition is met only in the case of geological 

formations generally categorized as rocks, where the strength and stiffness is at least one 

order of magnitude larger than that of the sand backfill. For softer geological formations, the 

trench-induced increase in soil pressures will become more mild and consequently use of 

the proposed relations will lead to conservative pipeline design. 

(c) There is a minimum horizontal (xcr=a∙xmax), between the displaced pipeline axis and the 

trench wall in the direction of lateral displacement, above which the trench size and shape 

will not affect the backfill pressures on the pipeline. In addition, there is no need for the 

proposed correction factors when computed pressures for the natural soil are less than those 

for "infinitely" extending back fill sand. 



(d) Except from the cases described in (c) above, the correction factors of this study may help 

to optimize the trench size and shape so that pipeline strains due to permanent horizontal 

ground displacements (e.g from active fault rupture or landslides) are reduced to acceptable 

limits in a cost-efficient way.    
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APPENDIX: Step-by-step computation of trench size and shape effects for pipeline 

design 

The analytical relations developed in this paper are summarized below in a step-by-step 

application sequence. All symbols are explained in the main text.  

(a)  Compute the ultimate soil pressure and displacement for natural ground conditions     

 gr gr
ult ultp and y  and for the backfill sand without trench effects  bf bf

ult ,inf ult ,infp and y . In case 

that 
gr bf
ult ult ,infp p  skip the following steps, adopt the natural soil properties for the 

computation of the soil springs and proceed to the analysis of the lateral pipeline 

response. 

(b)  Compute the minimum required horizontal (xcr) and vertical (dcr) distance of the 

displaced pipeline from the trench boundaries so that trench effects can be ignored: 

 dcr = D  (b.1) 

 xcr = α xmax (b.2) 

 where  

 
 

 

2.7 1.8 tanh 0.6 H / D 8.5 , for loosebackfillsand

for mediumbackfillsand1.5 0.6 tanh 0.6 H / D 8.5 ,
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for H / D A3.0 0.10 (H / D)

x / D 13.1 1.2 (H/ D)

for H / D Bc

  


  
 

 (b.5) 

 where c1, c2, A and B according to Table b.1 



Table b.1: Estimation of constants c1, c2, A and B 

Sand γdry (kN/m3) c1 c2 A B 

Loose 14.8 1.9 1.1 6.0 10.0 

Medium 16.4 2.40 1.70 4.8 9.5 

 

(c)  For limited trench depth, i.e. when d<dcr, compute correction factors Id,p and Id,y from 
Table c.1. Otherwise, use Id,p=Id,y=1.0. 

Table c.1: Estimation of correction factors Id,p and Id,y 

Sand H/D Id,p Id,y 

Loose 
<9.5 1.1 ± 0.1 1.0 

≥9.5 1.2 ± 0.2 1.2 

Medium 
<9.5 1.0 ± 0.1 0.8 

≥9.5 1.2 ± 0.2 1.2 

 
(d)  For limited trench width, i.e. when x < xcr, compute correction factors Iw,p and Iw,y from 

the following analytical relations. Otherwise, use Iw,p=Iw,y=1.0. 

 

,p pI b

w,p

cr

x
I 1.0

x



 
  
 

 (d.1) 

 where  

  pb 1.1 0.6 tanh 0.32 H / D 3.2        (d.2) 

 and 

   ,pI 1 0.35 1 tanh 0.32 H / D 6.3 cos            (d.3) 
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0.55 0.55 tanh 0.42 H / D 4.2 , for loosebackfillsand
b

for mediumbackfillsand0.70 0.70 tanh 0.35 H / D 5.5 ,
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   (d.6) 



(e)  Compute the ultimate soil pressure and displacement for the backfill sand including 

trench effects, as: 

 bf bf
ult dp wp ult ,infp I I p    (e.1) 

 and 

 bf bf
ult dy wy ult ,infy I I y    (e.2) 

(f)  Finally, perform the pipeline analysis with the minimum ultimate pressure for natural 

soil ( gr
ultp ) and backfill sand ( bf

ultp ) and the associated ultimate displacement yult.  

 

Figure Captions 

Figure 1: Typical layout of the numerical model for "narrow" trench analysis: (a) before and (b) 

after application of lateral pipeline displacement y=ymax  

Figure 2: Comparison of numerical results and experimental data for loose and medium dense 

sand and various embedment ratios 

Figure 3: Failure modes during lateral pipeline displacement  

Figure 4: Ηyperbolic and a bilinear fitting on the numerical load-deformation (p-y) curve 

Figure 5: Effect of trench width on ultimate soil pressures 

Figure 6: Interpretation of numerical results for the development of an analytical expression for 

the effect of trench width on the ultimate backfill soil pressures 

Figure 7: Evaluation of proposed relationships for the ultimate soil pressure: (a) One-to-one 

comparison between numerical and analytical data (b) Relative error 

Figure 8: Effect of trench width on ultimate displacements 

Figure 9: Interpretation of numerical results for the development of an analytical expression for 

the effect of trench width on the ultimate pipeline displacement 

Figure 10: Evaluation of proposed relationships for the ultimate displacement: (a) One-to-one 

comparison between numerical and analytical data (b) Relative error 

Figure 11: Effect of trench depth on ultimate soil pressures and ultimate displacements. 

Figure 12: Configuration of the trapezoidal trench geometry 

Figure 13: Effect of trench inclination on ultimate soil pressures for embedment depth (a) H/D=1.5, 

(b) H/D=6.5 and (c) H/D=11.5  

Figure 14: Correction factor for exponent bp in terms of trench wall inclination and embedment 

depth ratio 

Figure 15: Effect of trench wall inclination on initial stiffness of load-displacement curve 


