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Photomorphogenesis: Plants feel blue in the shade 

Keara A. Franklin 

Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ 

Plants integrate multiple environmental signals to detect and avoid shading from 

neighbouring vegetation. Two new studies highlight the importance of blue light in the 

regulation of stem elongation and bending during shade escape.  

Shading within canopies is major threat to the survival of plants in natural environments. 

Many species have therefore evolved escape responses, termed shade avoidance. These 

include the rapid elongation of stems, in an attempt to overtop neighbours, and elevation of 

leaves towards canopy gaps [1]. Plants detect the presence and density of competing 

vegetation primarily through alterations in light quality. Green tissue absorbs red and blue 

wavelengths for photosynthesis while reflecting green and far-red wavelengths [1]. Plants 

growing within dense canopies therefore perceive reductions in the ratio of both red to far 

red light (R:FR) and blue to green light (B:G). In addition to light signals, plants can detect 

neighbours through the physical touching of leaf tips [2] and accumulation of volatiles, such 

as the gaseous hormone, ethylene [3]. Plants perceive light signals using specialised 

photoreceptors, which include the red and far-red light-absorbing phytochromes and the blue 

light-absorbing cryptochromes and phototropins. The role of phytochromes in regulating 

shade avoidance in response to low R:FR is well established [1]. Although low blue light 

signals, mediated by cryptochromes, are known to contribute to shade avoidance responses, 

they have previously been studied in isolation and not in conjunction with low R:FR [4]. In 

addition to elongation growth, shaded plant stems display enhanced bending towards 

sunlight. Termed phototropism, this process is mediated by the blue light-absorbing 

phototropin photoreceptors [5]. The molecular mechanisms controlling shade/phototropism 

interaction have, until now, remained elusive. Two studies published in this issue of Current 

Biology highlight the importance of blue light signals in plant shade escape. de Wit et al. show 

that reduced blue light potentiates low R:FR-mediated stem elongation [6], while Goyal et al. 

explain why shaded plant stems display enhanced phototropic curvature [7].  

Shade avoidance is characterised in the model species, Arabidopsis thaliana, by elongation of 

embryonic stems (hypocotyls) and leaf stems (petioles) [1]. These responses are primarily 

driven by biosynthesis of the plant growth hormone auxin, via a tryptophan –dependent 

pathway requiring TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1 (TAA1) and YUCCA 

enzymes [8-9].  This process requires three key transcription factors, PHYTOCHROME 

INTERACTING FACTOR 4 (PIF4), PIF5 and PIF7 [10-11]. In sunlight, phytochrome 

photoreceptors are converted to an active form which binds to PIFs, reducing their abundance 

and activity. This reduces auxin synthesis. Plant stems remain short and resources are 

directed towards leaf growth for photosynthesis. Plants growing near neighbouring 

vegetation perceive reflected FR light (and therefore a reduction in R:FR) prior to canopy 

closure. This acts as an early warning signal, promoting escape responses before shading 

occurs [12].  Low R:FR inactivates phytochromes, stabilising and activating PIFs. PIF4, PIF5 and 

PIF7 act collectively to promote auxin biosynthesis and stem elongation [10-11]. In true shade, 



plants additionally experience reduced levels of blue light. Although low R:FR and low blue 

light-mediated effects on plants have been investigated independently, few studies have 

examined the effect of both concomitantly, as would be found in vegetational shade.  

de Wit et al. show that a low blue light stimulus exaggerates low R:FR-mediated shade 

avoidance in both hypocotyls and petioles. Low blue light enhances PIF5 abundance and 

reduces levels of the transcription factor, LONG HYPOCOTYL IN FAR-RED 1 (HFR1). HFR1 can 

bind to PIFs, forming non-functional heterodimers [13]. In low R:FR, HFR1 levels increase and 

inhibit PIF function [13]. This negative feedback loop prevents excessive stem elongation 

which could reduce plant stability and compromise survival. HFR1 is degraded following 

binding to the protein complex, CONSTITUTIVELY PHOTOMORPHOGENIC1-SUPPRESSOR OF 

PHYA-105 (COP1-SPA) [14].  In sunlight, COP1 activity is inhibited by activated phytochrome 

and cryptochromes [15]. The combination of low R:FR and low B in vegetational shade 

inactivates these photoreceptors, resulting in enhanced COP-SPA-mediated degradation of 

HFR1. Reduced HFR1 levels enhance PIF function, auxin synthesis and hypocotyl elongation. 

In this way, low blue light signals enable plants to distinguish between true shade (low blue 

and low R:FR) and the threat of shade (low R:FR). True shade represents a serious threat to 

plant survival and therefore elicits the strongest escape response. Importantly plant 

responses to a combined treatment of low R:FR and low blue light mimicked those observed 

under a green filter, suggesting that these two signals are the dominant signalling 

components of vegetatational shade [6].  

In a parallel study, Goyal et al. demonstrate that blue light-mediated phototropism is directly 

influenced by R:FR [7]. Put more simply, the greater the degree of vegetational shading plants 

experience, the more they bend towards the light. Phototropism is an asymmetric growth 

response requiring auxin. Lateral blue light promotes auxin accumulation on the shaded side 

of plant stems. Cells on this side then elongate more than cells on the illuminated side, 

resulting in stem curvature [16]. Although phototropism of green seedlings has been 

observed in patchy canopies [5], the mechanistic basis of this response has not been 

identified. Goyal et al. show that PIF-mediated auxin production in low R:FR enhances 

phototropic curvature. R:FR was inversely correlated with the transcript abundance of auxin 

biosynthesis enzymes and the magnitude of stem curvature. Phytochrome B was shown to 

inhibit phototropism in high R:FR.  Laboratory experiments are supported by field studies, 

providing environmental context to the study. Here, seedlings displayed enhanced 

phototropism in response to unilateral shading from tall grasses. Intriguingly, mutants 

deficient in phytochrome B (and therefore largely insensitive to changes in R:FR) displayed a 

residual enhancement of phototropism to true shade in the field. The authors show that 

cryptochrome photoreceptors work with phytochromes to supress phototropism in sunlight. 

Collectively, these data suggest that plants in natural canopies would bend more strongly 

away from true shade than from the threat of shade. 

Together, these elegant studies provide compelling evidence that blue light photoreceptors 

are key components of a core signalling hub controlling plant shade escape in dense canopies. 

Moreover, phototropism can now been added to the suite of developmental responses 

comprising the plant ‘shade avoidance syndrome’ [1]. An important take home message from 



both papers is that plant photoreceptors do not operate in isolation. A major future objective 

for plant photobiologists will be to understand how different photoreceptors communicate 

not only with each other, but with other abiotic and biotic signalling pathways in the plant.  

 

Figure 1. Blue light signals regulate plant shade escape responses. 

Plants grown in dense vegetation perceive a reduction in the ratio of red to far-red light (low 

R:FR)  and low levels of blue light (low Blue). Together, these factors strongly promote 

hypocotyl elongation and phototropic curvature to facilitate shade escape. Plants growing in 

close proximity to neighbouring vegetation experience low R:FR before canopy closure. The 

combination of low R:FR and high blue light levels signals the threat of shade. This results in 

some elongation and phototropic curvature of hypocotyls. Plants grown in sunlight 

experience high R:FR and high blue light levels. These plants remain short with vertically-

orientated hypocotyls and promote leaf expansion for photosynthesis. 
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