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Abstract 

The present study introduces electromagnetic articulography, the measurement of the position of tongue and lips 

during speech, as a promising method for the study of dialect variation. By using generalized additive modeling 

to analyze the articulatory trajectories, we are able to reliably detect aggregate group differences, while 

simultaneously taking into account the individual variation of dozens of speakers. Our results show that two 

Dutch dialects show clear differences in their articulatory settings, with generally a more anterior tongue position 

in the dialect from Ubbergen in the southern half of the Netherlands than in the dialect of Ter Apel in the 

northern half of the Netherlands. This clearly demonstrates that articulography is able to reveal interesting 

structural differences between dialects which are not visible when only focusing on the acoustic signal.  
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Introduction 

At present, most studies in dialectology and sociolinguistics investigating pronunciation variation 

focus on the acoustic properties of vowels (e.g., Clopper & Pisoni, 2004; Labov, 1980; Leinonen, 

2010; Recasens & Espinosa, 2005; Adank et al., 2007; Van der Harst, Van Velde & Van Hout, 2014). 

Since the seminal study of Peterson & Barney (1952), formant measurements have been the method of 

choice for measuring vowel quality. While the first and second formant are generally assumed to 

model height and frontness of the tongue body, this relationship is not perfect (Rosner and Pickering, 

1994).  

Labov, Yaeger and Steiner (1972) have spearheaded the formant-based approach in 

sociolinguistics by studying English formant-based vowel variation for a large number of speakers 

from various areas in the United States of America. Since then many other studies assessing dialect 

variation have used formant-based methods, for example Adank et al. (2007) investigating regional 

Dutch dialect variation, and Clopper and Paolillo (2006) and Labov, Ash and Boberg (2005) who 

studied American English regional variation. While formant-based measures provide a convenient 

quantification of the acoustic signal, the approach is not without its problems. First, since the shape of 

the vocal tract influences the formant frequencies (e.g., women generally have higher formant 

frequencies than men), some kind of normalization is required (see Adank et al., 2004 for an overview 

of various approaches) and choosing one method over another introduces a degree of subjectivity into 

the analysis. Furthermore, automatic formant detection is far from perfect and requires manual 

correction in about 17-25% of the cases (Adank et al., 2004; Eklund & Traunmüller, 1997; Van der 

Harst et al., 2014). Especially when using multiple formant measurement points per vowel (which is 

arguably better than using only the mid-point of the vowel; see Van der Harst et al., 2014), this 

becomes very time-consuming. For this reason whole-spectrum methods (obtained by band-pass 

filtering the complete acoustic signal) have also been used in language variation research. In her 

dissertation, Leinonen (2010) studied Swedish dialect variation based on the automatic whole-

spectrum analysis of Swedish vowel pronunciations. A drawback of this type of analysis, however, is 

that it is highly sensitive to the amount of noise in the acoustic recordings (Leinonen, 2010, p. 152). 

Furthermore, both formant-based and whole-spectrum-based methods are not suitable for investigating 

variation in the pronunciation of consonants.  

 Another approach to investigating pronunciation variation is to use the transcriptions of the 

underlying speech signal. By using transcriptions, an abstraction of the acoustic signal is obtained 

which can be used to assess pronunciation differences between groups of speakers. Even though 



“[t]ranscription is a messy thing” (Kerswill & Wright, 1990, p. 273), transcriptions are frequently used 

in dialectometry where aggregate analyses based on a large set of linguistic items are instrumental for 

obtaining an objective view of dialectal variation and its social, geographical and lexical determinants 

(see Wieling and Nerbonne, 2015 for an overview). Obviously, a clear drawback of using 

transcriptions is that the speech signal is segmented into discrete units, which means that co-

articulation effects are generally ignored.   

  Instead of focusing on transcriptions based on the acoustic signal, it is also possible to 

examine the articulatory gestures underlying speech (i.e. the movement of lips and tongue, etc. 

involved in its production; Browman and Goldstein, 1992). Given that ease of articulation is one of the 

known factors driving linguistic change (Sweet, 1888), this also makes sense from a diachronic 

perspective. Only a limited number of studies have investigated dialect and sociolinguistic variation by 

focusing on the movement of the speech articulators. Most of these studies have employed either 

electropalatography (EPG) or ultrasound tongue imaging. With EPG, the contact between the tongue 

and the hard palate is monitored with a custom-made speaker-specific artificial palate containing 

several electrodes. Corneau (2000) applied this method to compare the palatalization gestures in the 

production of /t/ and /d/ between Belgium French and Québec French, and Recasens and Espinosa 

(2007) used it to investigate differences in the pronunciation of fricatives and affricates in two variants 

of Catalan. While EPG only contains information about the tongue’s position when it is touching the 

palate, ultrasound tongue imaging is able to track most of the tongue surface as it moves during the 

whole utterance. The sociolinguistic relevance of tracking the shape of the tongue was clearly shown 

by Lawson, Scobbie and Stuart-Smith (2011), who demonstrated that /r/ pronunciation in Scottish 

English was socially stratified, with middle-class speakers generally using bunched articulations, 

while working-class speakers more frequently used tongue-tip raised variants. Consequently, Lawson 

et al. (2011, p.257) suggest that “articulatory data are an essential component in an integrated account 

of socially-stratified variation.”   

Unfortunately, there are several drawbacks associated with the two articulatory observational 

methods described above. The clear drawback of EPG is that it is very costly, as a custom-made 

artificial palate needs to be constructed for each participant. In addition, EPG does not yield 

information about the tongue position when it is not touching the palate. While ultrasound tongue 

imaging does provide this information, it is not always complete as interposed sublingual air pockets 

are introduced when the tongue is raised or extended, and shadowing from the mandible and hyoid 

bones may cause the tongue tip and the tongue root to become invisible (Tabain, 2013). Furthermore, 

analysis of resulting tongue shapes can be impressionistic, as tracking a single flesh point on the 

tongue is not possible (Lawson et al., 2011; but see Davidson, 2006).  Moreover, unless otherwise 

corrected (cf. Whalen et al. 2005), the imaged tongue shape is relative to the position of the probe and 

jaw, not to palatal hard structure, and thus evaluation of tongue height across vowels is problematic. 

Electromagnetic articulography (EMA; Hoole and Nguyen, 1999; Perkell et al., 1992; Schönle 

et al., 1987) is a tracking approach which avoids many of these problems. An EMA device tracks as a 

function of time small sensors attached with dental adhesive to various flesh points within a speaker’s 

vocal tract (e.g., tongue, lips, maxilla, jaw). Radio-frequency transmitters induce voltages in the sensor 

coils positioned within the field of the device, and sensor position and orientation are subsequently 

reconstructed by comparing these voltages to known reference values. As a point-tracking technique, it 

is excellently suited for quantitative analysis. Of course, a clear drawback of the EMA approach is that 

the tongue cannot be tracked completely. For example, tongue sensors cannot be placed too far back, 

to prevent triggering the gag reflex of the speaker. Until recently, EMA studies have been conducted 

with a relatively small number of speakers (e.g., Recasens and Espinosa, 2009: 3 speakers). Because 

there is much speaker-related variation in articulatory trajectories (Yunusova et al., 2012), it is 

fortunate that including a larger number of participants is becoming increasingly common (e.g., 

Yunusova et al., 2012: 19 speakers; Koos et al., 2013: 25 speakers). In our study, we continue this 

development by including a total of 40 speakers. To our knowledge, this is the largest sample size 

used in an articulography study to date. 

In this study, we focus on Dutch pronunciation variation from an aggregate articulatory 

perspective. Only a single published study has investigated variation in the Dutch language from an 



articulatory perspective.
1
 In their study, Scobbie and Sebregts (2010) focused on a single feature, 

namely allophonic Dutch variation in the pronunciation of /r/ using ultrasound recordings. 

Unfortunately, due to the low number of speakers (5) and the ultrasound approach, the description of 

the results remained rather impressionistic.  

Of course, many studies have investigated pronunciation variation in Dutch dialects from 

various other perspectives. For example, as mentioned above, Adank et al. (2007) investigated the 

acoustic properties of vowels in several regional varieties of Dutch spoken in the Netherlands and 

Flanders. They observed clear regional variation in the formant-based measurements. Another type of 

study focusing on Dutch dialects is exemplified by Goeman (1999), who investigated a specific 

feature in Dutch dialects, namely the loss of [t] in final word pronunciation (i.e. t-deletion). He 

identified several (geographical constrained) groups within the Netherlands exhibiting specific t-

deletion patterns. Following Nerbonne et al. (1996), Heeringa (2004) took an aggregate dialectometric 

perspective and quantified pronunciation differences by focusing on the transcriptions and comparing 

those using the edit distance measure. On the basis of comparing hundreds of words between hundreds 

of locations in the Dutch-speaking language area, he was able to identify the major dialect areas of the 

Netherlands. In his dissertation (Figure 9.7, p. 234), he identified the four main dialect areas as the 

Frisian dialect area (in the northwest of the Netherlands), the Limburg dialect area (in the southeast of 

the Netherlands), the Low-Saxon dialect area (in the northeast of the Netherlands) and the Central 

Dutch dialect area. Similarly, Wieling et al. (2007, 2011) identified relatively comparable dialect areas 

using a different dataset of Dutch dialects.  

As articulatory data is not readily available for Dutch dialects, we collected dialect (and 

standard Dutch) pronunciations at two different sites. To ensure the dialects were not too similar, we 

collected our data at one site in the Low-Saxon dialect area (i.e. the village of Ter Apel), and at 

another site in the Central Dutch dialect area (i.e. the village of Ubbergen). Given that the goal of this 

study is to assess articulatory (dialect) pronunciation differences from an aggregate perspective, we 

include many participants and items. In addition, we propose a flexible statistical approach, 

generalized additive modeling (GAM; Hastie and Tibshirani, 1990; Wood, 2006) for analyzing 

articulography data. The advantage of using this approach (explained in more detail below) is that it is 

able to model the nonlinear trajectories of the tongue sensors in multiple dimensions over time, while 

also taking into account individual variation. As generalized additive modeling is a regression 

approach, it is excellently suited to assess the influence of the predictors of interest (in our case the 

contrast between the two groups) on the articulatory trajectories.  

While we expect articulatory differences between the two groups of speakers, due to their 

different dialect background, we do not have a clear hypothesis about the specific characteristics of 

these differences. In that sense, our study is exploratory. In the following, we will discuss the methods 

and results obtained in this study.  

  

Articulatory data collection 

Our study was conducted on-site in 2013 at two high schools in the Netherlands. The first school 

“RSG Ter Apel” was located in Ter Apel (in the northern half of the Netherlands, i.e. in the Low 

Saxon dialect area), while the second school “HAVO Notre Dame des Anges” was located in 

Ubbergen (in the southern half of the Netherlands, at a distance of about 150 kilometers from Ter 

Apel, i.e. in the Central Dutch dialect area). At each school data were collected onsite during a single 

week by two researchers of the University of Tübingen (MW and DA in Ter Apel and MW and FT in 

Ubbergen). In Ter Apel, 23 speakers participated, but the data of 2 speakers was excluded as it 

contained tracking inconsistencies due to a malfunction of the reference sensor. Of the remaining 21 

speakers (12 male, 9 female), 15 were high school students born between 1994 and 2000. The other 6 

participants were adults born between 1939 and 1967. In Ubbergen, 25 high school students 

                                                           
1
There is one conference proceedings paper investigating Dutch pronunciation variation from an aggregate 

articulatory perspective (Wieling et al., 2015). However, the present study is an extended version of that study, 

and offers a more detailed report of the methods and results presented by Wieling et al. (2015). In addition, this 

study does not only focus on dialect variation, but also on variation in standard Dutch. Note that the results 

presented here are slightly different from those discussed by Wieling et al. (2015), as in the present study the 

data was reanalyzed using an improved version of the generalized additive modeling software. 



participated, but the data of 6 speakers was excluded (5 speakers did not speak the regional dialect, 

and the reference sensor malfunctioned for 1 speaker). The remaining 19 participants (17 male, 2 

female) were born between 1994 and 2000. Before participating, participants were informed about the 

nature of the experiment and required to sign the informed consent form. Each data collection session 

lasted a total of 50 minutes for which the participants were compensated with €10.  

 The articulography data were collected with a portable 16-channel EMA device (WAVE, 

Northern Digital) at a sampling rate of 100 Hz, and automatically synchronized to the audio signal 

(recorded at 22.05 kHz using an Oktava MK012 microphone) by the controlling software (WaveFront, 

Northern Digital). This software also corrected for head movement using a 6DOF reference sensor 

attached to each participant’s forehead. The microphone and EMA device were connected to the 

controlling laptop via a Roland Quad-Capture USB Audio interface.  

We attached a total of three sensors to the midline of each participant’s tongue using PeriAcryl 

90 HV dental glue. One sensor was positioned as far backward as possible without causing discomfort 

for the speaker. Another sensor was positioned about 0.5 cm behind the tongue tip. The final sensor 

was positioned approximately midway between the other two sensors.
2
 Attaching all sensors took 

about 20 minutes. Whenever sensors came off during the course of the experiment, they were 

reattached at their original location. To align the positional data to axes comparable between speakers, 

a separate biteplate recording (containing 3 sensors, see Figure 1) was used during processing to rotate 

the data of each speaker relative to the occlusal plane (Hoole & Zierdt, 2010; Yunusova et al., 2009) 

and to translate to a common origin on the biteplate (‘X’ in Figure 1; note that this origin does not 

influence the normalized sensor positions, due to our preprocessing steps outlined below). 

 

 
Figure 1. Schematic representation of the biteplate. Circles mark the sensor positions. The ‘X’ marks the origin. 

 
 

Figure 2. Visualization using VisArtico (Ouni, 2012) of the type of data collected. The top-right inset shows a frontal view 

of the mouth on the basis of two lip sensors. The top part shows a schematic representation of 2 lip sensors, 3 tongue sensors 

and 1 jaw sensor. An approximation of the palate of the speaker is also shown. The bottom part shows the trajectories in the 

inferior-superior dimension for the three tongue sensors. Below those trajectories, the spectral plot is shown for the 

pronunciation of the standard Dutch CVC sequence [tat].  

                                                           
2
Besides the three tongue sensors, we also glued three sensors to the lips and attached two sensors to the jaw. For 

the purpose of this study, however, we only focus on data from the three tongue sensors. 



 The experiment was divided into two parts. In the first part, participants had to name 70 

images (e.g., the image of a ball) in their own dialect (repeated twice, in random order), presented on a 

computer screen. To familiarize the participants with the images and to make sure they knew what 

each image depicted, they were asked to name each image in their local dialect once before the sensors 

were attached. In case the participant failed to use the correct word, he or she was corrected by the 

experimenter. In the second part, participants had to read 27 CVC sequences out loud (C: /t,k,p/, V: 

/a,i,o/, e.g., [tap]) in standard Dutch (this was emphasized during the explanation of this part). Again, 

each item was pronounced twice and in randomized order. By including both standard Dutch 

pronunciations and dialect words, we are able to evaluate if common tongue movement trajectories 

can be observed in both types of speech. A visual impression of the obtained data can be seen in 

Figure 2. 

 

Articulatory data preprocessing 

After collecting all articulatory data, the data for each speaker were manually segmented (acoustically) 

at the phone level. Tongue movement data which were not associated with a pronunciation of one of 

the words included in our study were discarded. The duration of each word’s pronunciation was time-

normalized between 0 (start of the word) and 1 (end of the word) for each speaker. As the tongue 

sensors were attached to the midline of the tongue, we only included the position in the inferior-

superior direction (i.e. tongue height) and the anterior-posterior direction (i.e. posterior position of the 

tongue) in our analysis. To enable an appropriate comparison between speakers, the positional 

information was normalized in such a way that 0 in the inferior-superior direction indicated the lowest 

(i.e. most inferior) point of the three tongue sensors and 1 the highest point (i.e. most superior). 

Similarly, 0 in the anterior-posterior direction indicated the most anterior position of the three tongue 

sensors, while 1 in this direction indicated the most posterior position.   

 

Formant extraction 

We automatically extracted the first (F1) and second formant (F2) frequencies of the acoustic 

recording of the vowels in our dataset using the findformants function of the phonTools R package 

(Barreda, 2015). This function extracts formants on the basis of the formulas provided in Snell (1993).  

We extracted the formants for time slices of 10 milliseconds, centered at the time points for which we 

had articulatory data. As a rough correction of the automatically extracted formants frequencies, we 

discarded F1 measurements outside of the range 200 – 1000 Hz, and did the same for F2 

measurements outside of the range 500 – 3000 Hz. After this step, we normalized the formant 

frequencies using Lobanov’s (1971) z-transformation, as this normalization method was reported by 

Adank et al. (2004) to be an adequate normalization procedure retaining sociolinguistic variation. Note 

that no manual verification of the extracted formants was conducted, so the extracted formants will 

contain some noise. 

 

Data analysis: generalized additive modeling 

Since the articulatory trajectories of the individual tongue sensors are clearly nonlinear, we use 

generalized additive modeling to analyze the data (Hastie & Tibshirani, 1990; Wood, 2006; see 

Baayen, 2013 for a non-technical introduction). Generalized additive modeling is a flexible regression 

approach which not only supports linear relationships between the dependent variable and the 

independent variables, but also nonlinear dependencies and interactions. In this case our dependent 

variable is the normalized position of the sensor, which we model as a smooth (i.e. nonlinear) function 

(SF) over normalized time. The smooth function is represented using a thin plate regression spline 

(Wood, 2003) which models the nonlinearity as a combination of several low level functions (such as 

a logarithmic function, a linear function, a quadratic function, etc.). There are other types of splines 

possible, such as cubic regression splines (consisting of a series of third degree polynomials), but thin 

plate regression splines have better performance and are computationally efficient (Wood, 2003). To 

prevent overfitting of the data by the SF, generalized cross-validation is used to determine appropriate 

parameters of the thin plate regression spline during the model-fitting process (Wood, 2006).  

As there is clearly much variation in tongue movement associated with speakers and words, 

any adequate analysis will need to take this into account. Fortunately, the generalized additive 

modeling procedure implemented in the R package mgcv (version 1.8.7) allows for the inclusion of 



factor smooths to represent full random effects. These factor smooths (for an example, see Figure 3) 

are a nonlinear alternative to random intercepts and random slopes in a mixed-effects regression 

model. Just as random intercepts and slopes (which are required in a model where multiple 

observations are present per speaker and/or words; Baayen et al., 2008), factor smooths are essential 

for taking the structural variability associated with individual speakers and words into account and 

thereby prevent overconfident (i.e. too low) p-values.  

As in a common (Gaussian) regression model, the residuals (i.e. the difference between the 

observed and the estimated values) of a generalized additive model (GAM) have to be independent 

and normally distributed. However, when analyzing time series which are relatively smooth and slow 

moving (such as the movement of the tongue over time), the residuals will generally be autocorrelated. 

This means that the residuals at time t will be correlated with the residuals at time t + 1 (see Figure 4, 

left). In our case, the autocorrelation present in the residuals is very high at about 0.97 at lag 1. If this 

autocorrelation is not brought into the model, the  p-values of the model will be too small. Fortunately, 

the function bam of the mgcv package we use to create the GAMs is able to take into account the 

autocorrelation of the residuals (see Figure 4, right, where the autocorrelation at lag 1 has been 

reduced to below 0.1), thereby enabling a more reliable assessment of the model fit and the associated 

p-values. Another important benefit of the bam function is that it is able to work with large datasets 

(Wood et al., 2014), such as the data included in this study (about 1.5 million positions for the dialect 

data: 40 speakers, 3 sensors, 2 axes, 70 words repeated twice, and a duration of about 0.45 seconds, 45 

measurement points, per word; the CVC dataset with 27 words contains about 0.5 million positions).  
 

 
Figure 3. Individual adjustments to the general tongue movement trajectories. As the average of these adjustments is 

approximately 0 (i.e. centered), both positive and negative adjustments are possible.  

 

Figure 4. Autocorrelation in the residuals. Left: without correction, right: after correction. 



Generalized additive modeling has been used in articulography before (Tomaschek et al., 

2013, 2014; Wieling et al., 2015). Furthermore, the method has been applied to language variation 

research (Wieling et al., 2011 and Wieling et al., 2014), and to model nonlinear patterns across time of 

brain signals (e.g., Tremblay & Baayen, 2010; Meulman et al., submitted) or gaze data (Van Rij et al., 

forthcoming).  

 

Reproducibility 

To facilitate reproducibility and the use of the methods illustrated in this study, the data, methods and 

results are available as a paper package stored at the Mind Research Repository 

(http://openscience.uni-leipzig.de) and the first author’s website.    

 

Results 

As an illustration of the generalized additive modeling approach, Figure 5 shows the tongue 

movement trajectories in the oral cavity as measured by the three tongue sensors during the 

pronunciation of two dialect words:  taarten, ‘cakes’ (generally pronounced [tʊːtn] in Ter Apel and 

[tœʀtə] in Ubbergen), and boor, ‘drill’ (generally pronounced [bʊːr] in Ter Apel and [bʊːʀ] in 

Ubbergen), as well as two CVC sequences in standard Dutch, taat, [tat] and poop, [pop]. The red and 

blue dots in the graph indicate the measured tongue positions of both groups. The red (dark) curves 

indicate the fitted tongue trajectories of the speakers in Ubbergen for word-specific models, whereas 

the (lighter) blue curves are linked to the speakers in Ter Apel. The relative lightness of each curve 

visualizes the time course from the beginning of the word (darkest) to the end of the word (lightest). 

Clearly the articulations for taarten are markedly different for the two groups, whereas the 

articulations for boor are much more similar. In addition, the pronunciations for taat show a greater 

distinction between the two speaker groups than the pronunciations for poop. A general pattern across 

all four graphs, however, is that the speakers from Ubbergen appear to have more anterior tongue 

positions than those from Ter Apel.   

The fitted trajectories were obtained by creating a single GAM for each of the four words for 

each of the three sensors. In the GAM specification, a different SF was fitted for each group. The 

command to fit such a model for a single word (simplified: only for a single sensor in a single 

dimension) using the function bam of the mgcv package is: 

 
model = bam(Position ~ s(Time,by=Group) + Group +  

                       s(Time,Speaker,bs=’fs’,m=1), rho=0.97) 

 

The interpretation of this GAM specification is that the sensor position is predicted on the basis of a 

nonlinear pattern across (normalized) time per group (Ter Apel vs. Ubbergen: 

s(Time,by=Group)), while simultaneously taking into account the speaker-related variation via a 

factor smooth (the bs=’fs’ block; m=1 limits the wigglyness of the curve per speaker, which is 

suitable for these nonlinear random effects). The rho value (in these example specifications fixed at 

0.97) indicates the amount of autocorrelation in the residuals which needs to be taken into account (see 

explanation, above). The linear contrast between the two groups (Group) is added to the model as the 

smooth functions are centered and thus unable to model a constant difference between the two groups.  

 To see at which points the trajectories differ significantly from each other, confidence 

intervals are needed. These can readily be extracted from the fitted GAM. Figure 6, visualizing the 

resulting trajectories and differences for the word taarten, shows that the differences in both 

dimensions are significant across a large part of the time course. While this visualization suggests that 

the distinction between the two groups is necessary, this should be assessed more formally. There are 

two approaches for this. The first is fitting a simpler model without the group distinction, and 

comparing this simpler model to the more complex model having the group distinction to see if the 

additional complexity is warranted (e.g., by comparing the difference in maximum likelihood scores 

while taking into account the difference in model complexity). For this we can use the function 

compareML of the R pacakage itsadug (version 1.0.1; van Rij et al., 2015). The second approach is to 

respecify the model in such a way that it does not fit the SFs for the two groups separately, but rather 

for a single group (i.e. the reference level) and a second smooth function representing the difference 

between the two groups (i.e. the SF which needs to be added to the SF of the first group to yield the SF 



of the second group). The associated p-value obtained from the model summary will then indicate if 

the difference SF is necessary or not. The command to fit this type of model (for a single word) is:   
 

diff.model = bam(Position ~ s(Time) + s(Time,by=IsTerApel) +  

                            s(Time,Speaker,bs=’fs’,m=1), rho=0.97) 

 

In this case IsTerApel is a binary predictor variable equal to 1 for the speakers from Ter Apel and 0 

for those from Ubbergen. The SF containing this predictor,  s(Time,by=IsTerApel), will be 

equal to 0 when the binary variable equals 0. This implies that the first smoothing function, s(Time), 

will be the articulatory trajectory for the Ubbergen group. As the first SF, s(Time), is never equal to 

0, this also implies that the SF, s(Time,by=IsTerApel), must be equal to the difference between 

the Ter Apel and Ubbergen speakers. Since this type of difference SF is not centered as the normal 

SFs are, no additional contrast between the two groups is necessary. For the visualization in Figure 6, 

both difference SFs were significant (p < 0.001).  

 

 
Figure 5. Fitted tongue trajectories (including individual points) of three tongue sensor for the two groups of speakers in two 

dimensions (posterior position on the x-axis, height on the y-axis) for two dialect words (up) and two CVC sequences 

pronounced in Dutch (down). The darkness of the line indicates the time course of the trajectories (dark: start of the 

pronunciation, light: end of the pronunciation). 



 While it is certainly insightful to focus on the differences in the pronunciation of individual 

words, an aggregate analysis is able to provide a more objective view of tongue trajectory differences. 

In our aggregate models, we simultaneously analyzed the three tongue sensors and two axes for a large 

set of words. Rather than using a single s(Time)for the reference level (Ubbergen) in the simple 

example above, we now need separate patterns over time for each tongue sensor and axis: i.e. sensor 

T1 for the inferior-superior axis (i.e. height), sensor T1 for the anterior-posterior axis, sensor T2 for 

both axes, and sensor T3 for both axes. This can be accomplished by adding a by-parameter 

distinguishing these six levels (i.e. the interaction between sensor and axis, stored in the variable 

SensorAxis). Similarly, rather than a single SF representing the difference between Ter Apel and 

Ubbergen (via the use of a binary by-variable), six difference SFs are needed, one for each 

combination of sensor and axis. Consequently, six binary predictors are created which are equal to 1 

for the group of Ter Apel for a specific sensor and axis. For example, the predictor IsTA.T1.H 

equals 1 for the T1 sensor for the inferior-superior axis of the Ter Apel group, while IsTA.T3.P is 

equal to 1 for the T3 sensor for the anterior-posterior axis of the Ter Apel group. Similarly as for the 

other predictors, the speaker-related variability must also be allowed to vary for each of the six 

combinations of sensors and axes. This can be achieved by creating a new predictor 

SpeakerSensorAxis representing the interaction between the three predictors Speaker, 

Sensor, Axis and using this predictor in the factor smooth. Given that we are now aggregating over 

a large set of words, we also need to take into account the variability per word (per sensor and axis 

separately) via a factor smooth. The specification of this model is as follows:  

 
model = bam(Position ~ s(Time,by=SensorAxis) + SensorAxis +  

                       s(Time,by=IsTA.T1.H) + s(Time,by=IsTA.T1.P) + 

                       s(Time,by=IsTA.T2.H) + s(Time,by=IsTA.T2.P) + 

                       s(Time,by=IsTA.T3.H) + s(Time,by=IsTA.T3.P) + 

                       s(Time,SpeakerSensorAxis,bs=’fs’,m=1) + 

                       s(Time,WordSensorAxis,bs=’fs’,m=1), rho=0.97) 

 

Following this model specification, we created two different large-scale GAMs. The first GAM 

assessed the tongue trajectories for the two groups of speakers for the 70 dialect words (about 1.5 

million positions, taking about 4 hours on a 36-core Intel Xeon E5-2699 v3), while the second GAM 

focused on the 27 CVC sequences pronounced in standard Dutch (about 500,000 positions, taking 

about 1 hour on the same server). We did not include the data of both the standard language and the 

dialects in a single GAM, as the items in both sets are not adequately comparable. The standard Dutch 

pronunciations always consist of a CVC sequence, whereas this is not the case for the dialect words.  

The results of the model for the dialect words are shown in Tables 1 and 2. The explained 

variance of the model is equal to 86.1%, due mainly to the inclusion of the factor smooths per speaker 

and word. The parametric part of the model shown in Table 1 simply compares the posterior position 

of the T3 sensor to the height of the T3 sensor and the height and posterior position of the other 

sensors. While the comparison between height and posterior position is not informative as such, these 

comparisons are required as the model includes both dimensions simultaneously. As expected, Table 1 

shows that the position of the T2 (middle) sensor is more anterior (i.e. negative) than the T3 sensor, 

while the T1 sensor is more anterior than the T3 and T2 sensor. Table 2 gives some information about 

the SFs used and shows (in lines 7 to 12) that the difference SFs between the two groups are 

significant with the exception of the posterior position difference for the T3 sensor (p = 0.219), and the 

posterior position difference for the T1 sensor (p = 0.051). However, to be able to interpret these SFs, 

visualization is essential.  

Figures 7 and 8 visualize the results with respect to the posterior position and height and 

clearly show that during the pronunciation of the dialect words the tongue of the speakers in Ter Apel 

is generally positioned more posterior than the tongue of the speakers in Ubbergen (non-significantly 

so for the T1 and T3 sensor).  

 



 
Figure 6. T1sensor and sensor difference trajectories for the word taarten in the anterior-posterior dimension (left) and the 

height dimension (right) for both groups. The upper graphs show the trajectories per group including 95% confidence bands 

together with the individual points. The lower graphs show the difference between the two groups including confidence 

bands extracted from the fitted GAM (which took the individual variation and autocorrelation in the residuals into account). 

 

 Estimate Std. Error t-value p-value 

Intercept (T3 posterior position) 0.696 0.014 48.4 < 0.001 

T2 posterior position vs. T3 posterior position -0.241 0.020 -11.8 < 0.001 

T1 posterior position vs. T3 posterior position -0.470 0.020 -23.0 < 0.001 

T3 height vs. T3 posterior position 0.003 0.020 0.1 0.900 

T2 height vs. T3 posterior position -0.121 0.020 -5.9 < 0.001 

T1 height vs. T3 posterior position -0.278 0.021 -13.5 < 0.001 
Table 1. Parametric coefficients of the model on the basis of all dialect words, all tongue sensors (T1: front, T2: middle, T3: 

back) and both axes (posterior position and height). 

 

 



Smooth Functions (SFs) edf F-value p-value 

s(Time) : T3 posterior position 4.1 1.7 0.130 

s(Time) : T2 posterior position 7.9 4.3 < 0.001 

s(Time) : T1 posterior position 10.9 6.4 < 0.001 

s(Time) : T3 height 8.9 7.7 < 0.001 

s(Time) : T2 height 11.5 14.1 < 0.001 

s(Time) : T1 height 16.2 14.5 < 0.001 

s(Time) : T1 posterior position difference SF 5.7 2.0 0.051 

s(Time) : T1 height difference SF 17.1 9.9 < 0.001 

s(Time) : T2 posterior position difference SF 4.1 2.9 0.013 

s(Time) : T2 height difference SF 13.8 3.5 < 0.001 

s(Time) : T3 posterior position difference SF 2.0 1.5 0.219 

s(Time) : T3 height difference SF 10.1 2.5 0.003 

s(Time, Speaker) [factor smooth] 1949.5 39.4 < 0.001 

s(Time, Word) [factor smooth] 3722.4 121.9 < 0.001 

Table 2. SF terms of the model on the basis of all dialect words, all tongue sensors (T1: front, T2: middle, T3: back) and both 

axes (posterior position and height). The first 6 lines show the SFs for the reference level (Ubbergen), whereas lines 7 to 12 

represent difference SFs (comparing Ter Apel to Ubbergen). The edf column indicates the estimated degrees of freedom, 

which is a measure to reflect SF complexity. The maximum allowed SF complexity was 19 edf (enforced by setting the k-

parameter of each SF to 20), and this seems to be sufficiently high as none of the SFs have an edf close to 19. The p-value 

assesses if the SF is significantly different from 0. The final two lines show the factor smooths per speaker and word. 

 

Figure 7. Aggregate fitted tongue trajectories of three tongue sensors (T1: front, T2: middle, T3: back) for the two groups of 

speakers in two dimensions (posterior position on the x-axis, height on the y-axis) for all 70 dialect words. The darkness of 

the lines indicates the time course of the trajectories (dark: start of the pronunciation, light: end of the pronunciation). The 

difference in anterior-posterior position is significant for T2 , while the height differences are significant for all sensors (see 

Table 2).  



 

Figure 8. Graphs in row 1: tongue sensor trajectories aggregated over all 70 dialect words in the anterior-posterior dimension 

for both groups. Graphs in row 2: differences between tongue sensor trajectories in the anterior-posterior dimension. The 

difference is significant (p < 0.05) for the middle tongue sensor (T2), but not for the frontal tongue sensor (T1; p = 0.051), or 

the back tongue sensor (T3; p = 0.219, see Table 2). Graphs in row 3 and 4 show the corresponding results for height. All of 

the height differences are significant (p < 0.01). 



 

Similar to the dialect words, Table 3 and 4 show the results for the model on the basis of the standard 

Dutch CVC sequences (explaining 92.2% of the variance). Interestingly, Figures 9 and 10 show a 

similar pattern with respect to the posterior position compared to Figures 7 and 8, with speakers from 

Ter Apel having their tongue more posterior than the speakers from Ubbergen. Even though the target 

pronunciation (standard Dutch) is the same in this case, the tongue differences in this dimension are 

comparable to those observed on the basis of dialectal speech. 

  

 Estimate Std. Error t-value p-value 

Intercept (T3 posterior position) 0.666 0.018 37.3 < 0.001 

T2 posterior position vs. T3 posterior position -0.237 0.025 -9.4 < 0.001 

T1 posterior position vs. T3 posterior position -0.452 0.025 -17.9 < 0.001 

T3 height vs. T3 posterior position 0.079 0.025 3.2 0.002 

T2 height vs. T3 posterior position -0.088 0.025 -3.5  < 0.001 

T1 height vs. T3 posterior position -0.283 0.025 -11.2 < 0.001 
Table 3. Parametric coefficients of the model on the basis of all Dutch CVC sequences, all tongue sensors (T1: front, T2: 

middle, T3: back) and both axes (posterior position and height). 

 

Smooth Functions (SFs) edf F-value p-value 

s(Time) : T3 posterior position 13.9 4.0 < 0.001 

s(Time) : T2 posterior position 14.1 4.7 < 0.001 

s(Time) : T1 posterior position 15.1 6.0 < 0.001 

s(Time) : T3 height 15.3 12.0 < 0.001 

s(Time) : T2 height 16.5 24.1 < 0.001 

s(Time) : T1 height 17.2 22.3 < 0.001 

s(Time) : T1 posterior position difference SF 13.4 3.8 < 0.001 

s(Time) : T1 height difference SF 13.8 2.8 < 0.001 

s(Time) : T2 posterior position difference SF 11.2 3.5 < 0.001 

s(Time) : T2 height difference SF 11.8 3.8 < 0.001 

s(Time) : T3 posterior position difference SF 10.0 2.6 0.002 

s(Time) : T3 height difference SF 2.0 0.9 0.396 

s(Time, Speaker) 1910.9 28.2 < 0.001 

s(Time, Word) 1408.8 144.7 < 0.001 

Table 4. Smooth terms of the model on the basis of all Dutch CVC sequences, all tongue sensors (T1: front, T2: middle, T3: 

back) and both axes (posterior position and height). The first 6 lines show the smooths for the reference level (Ubbergen), 

whereas lines 7 to 12 represent the difference SFs (comparing Ter Apel to Ubbergen). The edf column indicates the estimated 

degrees of freedom, which is a measure reflecting the SF complexity. The maximum allowed SF complexity was 19 edf 

(enforced by setting the k-parameter of each SF to 20), and this seems to be sufficiently high as none of the SFs have an edf 

close to 19.  The p-value assesses if the SF is significantly different from 0.  The final two lines show the factor smooths per 

speaker and word. 

 



 

Figure 9. Aggregate fitted tongue trajectories of three tongue sensors (T1: front, T2: middle, T3: back) for the two groups of 

speakers in two dimensions (posterior position on the x-axis, height on the y-axis) for all 27 standard Dutch CVC sequences. 

The darkness of the lines indicates the time course of the trajectories (dark: start of the pronunciation, light: end of the 

pronunciation). The differences in posterior position and height are all significant (p < 0.01), except for the T3 height 

difference (see Table 4).  

Comparison to linear discriminant analysis 

Since generalized additive modeling is a relatively new technique, especially when applied to 

articulatory data (see Tomaschek et al., 2013 and 2014), we have also analyzed the data using another 

technique, namely linear discriminant analysis (LDA).
3
 In LDA an item’s class (in our case the group 

of the speaker) is predicted on the basis of a set of numerical predictors (in our case the normalized 

height and posterior position for the three tongue sensors). For both the dialect data and the CVC data, 

we created five different LDAs using segment-specific positions (i.e. for /a/, /i/, /o/,  /k/ and /t/). All 

ten LDAs showed significant group mean differences (all p’s < 0.001) generally in line with the global 

position differences shown in Figures 8 and 10. Thus, for both datasets the sensor positions were more 

posterior and lower for the speakers from Ter Apel than for the speakers from Ubbergen. The 

probability of correctly classifying the group of the speaker on the basis of the tongue position (on the 

basis of the three sensors) at a certain time point ranged between 67% and 83% (see Table 5). In sum, 

the LDA analysis showed that the tongue position (in terms of the height and posterior position of the 

three tongue sensors) during the pronunciation of a single segment is useful for predicting from which 

dialect region a speaker originates. These results are in line with the results on the basis of the 

generalized additive modeling approach, which also showed clear differences between the groups.  

                                                           
3
 Note that LDA is not entirely appropriate for data with repeated measures (Lix and Sajobi, 2010). In addition, 

LDA requires observations to be independent, which assumption is violated in this dataset where each individual 

speaker contributes many tongue positions. Consequently, the LDA approach may be anti-conservative when 

applied to this dataset. A repeated-measures LDA approach would be more appropriate, but to our knowledge no 

such procedure is implemented in R.  



 

Figure 10. Graphs in row 1: tongue sensor trajectories aggregated over all 27 standard Dutch CVC sequences in the anterior-

posterior dimension for both groups. Graphs in row 2: differences between tongue sensor trajectories. All difference SFs are 

significant (p < 0.01). Graphs in row 3 and 4 show the corresponding results for height. All difference SFs are significant     

(p < 0.01), except for the T3 height difference (p = 0.396). Significance indicates that the probability of the difference over 

time being equal to 0 across the whole time span is smaller than 0.05. Consequently, the nonlinear difference is necessary to 

improve the model fit, even though the difference at each single time point may be not significantly different from 0.  



Dataset /a/ /i/ /o/ /k/ /t/ 

Dialect words 68% 71% 73% 73% 83% 

CVC sequences 71% 71% 67% 69% 81% 

Table 5. Speaker group classification accuracy on the basis of the height and posterior position of the three tongue sensors.  

Comparison with formant-based patterns 

It is generally assumed that tongue height correlates with F1, and posterior tongue position with F2 

(Stevens, 1998). In line with this, the average correlation between the normalized height of the tongue 

sensors and the normalized F1 frequency for the dialect words was r = -0.27 (all p’s < 0.001), for the 

CVC sequences (containing only three different vowels) the correlation increased to r = -0.49 (all p’s 

< 0.001). The correlations are negative as a higher F1 is related to a lower tongue position. When 

looking at the normalized posterior position of the tongue sensors, the average correlation with the 

normalized F2 frequency was r = -0.51 (all p’s < 0.001) for the dialect words and r = -0.67 (all p’s < 

0.001) for the CVC sequences. Again, the correlations are negative as a higher F2 is related to a less 

posterior tongue position. Figures 11 and 12 visualize the scatter plots between the formants and the 

tongue sensor positions for the dialect words and the CVC sequences, respectively.  

 In the previous section, we observed a more posterior tongue position for both the dialect 

words as well as the CVC sequences for the speakers from Ter Apel versus those from Ubbergen. 

Furthermore, for the dialect words, the speakers from Ter Apel had lower tongue height than those 

from Ubbergen. Consequently, we would expect lower F2 values for the speakers from Ter Apel 

compared to those from Ubbergen, and higher F1 values, but only for the dialect words. However, this 

is not what we observe. The normalized F1 values were higher for the speakers from Ter Apel for the 

CVC words, but lower for the dialect words (all |t|’s > 5 in mixed-effects regression models including 

speaker as a random-effect factor). Similarly, the normalized F2 values were higher for the speakers 

from Ter Apel for the CVC words, but lower for the dialect words. Thus, only the F2 difference for the 

dialect words is in line with what we would expect on the basis of the articulatory results. 

 

 
 

Figure 11. The three graphs in row 1 visualize the relation for the dialect words between normalized height and normalized 

F1 for the three tongue sensors. Those in row 2 show the same for normalized posterior position and normalized F2.   

 



 

 
 

Figure 12. The three graphs in row 1 visualize the relation for the CVC sequences between normalized height and 

normalized F1 for the three tongue sensors. Those in row 2 show the same for normalized posterior position and normalized 

F2.   

Discussion 

In this study we have illustrated the use of articulatory data for the purpose of studying dialect 

variation. We identified a structural difference in the position of the tongue between the two groups of 

speakers, with more anterior positions of the tongue for the speakers from Ubbergen in the southern 

half of the Netherlands compared to the speakers from Ter Apel in the northern half of the 

Netherlands. This result contrasts with previous findings on Dutch dialects of Adank et al. (2007) who 

did not find a difference in F2 for two (corresponding) groups using only a single formant 

measurement for monophthongs. However, Van der Harst et al. (2014) show that a dynamic approach 

using acoustic vowel information (F1 and F2) measured across multiple time points does help in 

uncovering regional differences. While we also discovered regional differences on the basis of 

formants measured at multiple time points, these did not line up with the articulatory results in line 

with our expectations. While this may have been caused by noise in the automatically obtained 

formant frequencies or the (unobserved) parasagittal position of the tongue, there is also no one-to-one 

correspondence between F1/F2 and height/posterior position of the tongue (despite these values being 

frequently interpreted as such since Bell, 1867). The clear discrepancy between the patterns observed 

on the basis of articulatory data versus those on the basis of acoustic data, emphasizes the need and 

use for articulatory data in studies investigating language variation.  

 Our findings are well interpretable in the context of articulatory settings (Honikman, 1964; 

Laver, 1978). Honikman (1964, p. 73) defined the articulatory setting as “the overall arrangement and 

manoeuvring of the speech organs necessary for the facile accomplishment of natural utterance”. 

Given that the speakers from Ter Apel showed a tongue position which was more posterior than the 

speakers from Ubbergen, both when pronouncing words in their own dialect and even more so in 

standard Dutch, this suggests that there are distinct articulatory settings for the two dialects, causing 

distinguishable accents when pronouncing standard Dutch. Whereas distinct articulatory settings have 

been identified for individual languages, such as English and French (Honikman, 1964; Gick et al., 

2004), no articulatory differences have been previously reported at the dialectal level.   



The generalized additive modeling approach proposed here results in a model of tongue 

movement over time, while taking into account individual and word-related variability, as well as 

autocorrelation in the residuals. While we have not used this here, the generalized additive model may 

also be used to determine speed and acceleration of the fitted trajectories. The approach complements 

other approaches used to analyze articulatory data over time, such as dynamic time warping (Sakoe & 

Chiba, 1978), functional data analysis (e.g., Lucero, Munhall, Gracco & Ramsay, 1997), or cross-

recurrence analysis (Lancia, Fuchs and Tiede, 2014). These methods generally separate amplitude 

variability from phase variability when comparing articulatory trajectories. The method we propose, 

however, is particularly suitable when articulatory trajectories need to be compared at a higher level of 

aggregation for a large number of speakers. Furthermore, our approach is able to take into account 

individual variation, and correct for autocorrelation in the residuals.  

We have shown that the results using generalized additive modeling are in line with those 

using linear discriminant analysis. However, there are clear benefits of generalized additive modeling 

over linear discriminant analysis. First, it is not necessary to create separate analyses for each 

individual segment, and second, the GAM analysis takes into account individual variation by treating 

speaker as a random-effect factor.   

Whereas the two dialects studied here show clear pronunciation differences which can usefully 

be studied from an acoustic or transcription-based dialectometric perspective, the aggregate 

articulatory perspective put forward in this study revealed interesting results, which were markedly 

different when taking an acoustic perspective. This further shows that articulatory data is not only an 

essential component in an integrated account of socially-stratified variation (Lawson et al., 2011), but 

also for regionally-stratified variation.  

 

Acknowledgements 

This work is part of the research program Investigating language variation physically, which is 

(partly) financed by the Netherlands Organisation for Scientific Research (NWO) via a Rubicon grant 

awarded to Martijn Wieling. Furthermore, this work has benefitted from funding of the Alexander von 

Humboldt Professorship awarded to R. Harald Baayen. We thank Dankmar Enke, Matthias Villing, 

Lea Hofmaier, and Amber Nota for help in segmenting the acoustic data. 

 

References 

Adank, P., Smits, R., & Van Hout, R. (2004). A comparison of vowel normalization procedures for 

language variation research. The Journal of the Acoustical Society of America, 116(5), 3099-3107. 

Adank, P., van Hout, R., & Van de Velde, H. (2007). An acoustic description of the vowels of 

northern and southern standard Dutch II: Regional varieties. The Journal of the Acoustical Society 

of America, 121(2), 1130-1141. 

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random 

effects for subjects and items. Journal of memory and language, 59(4), 390-412. 

Baayen, R. H. (2013). Multivariate Statistics.  In Podesva, R. and D. Sharma, D. (eds.), Research 

Methods in Linguistics, pp. 337-372. Cambridge: Cambridge University Press. 

Barreda, S. (2015). phonTools: Functions for phonetics in R. R package version 0.2-2.1.  

Bell, A. M. (1867). Visible Speech: The Science of Universal Alphabetics Or, Self-interpreting 

Physiological Letters, for the Writing of All Languages in One Alphabet. Simpkin, Marshall & 

Company. 

Browman, C. P., & Goldstein, L. (1992). Articulatory phonology: An overview. Phonetica, 49(3-4), 

155-180. 

Clopper, C. G., & Pisoni, D. B. (2004). Some acoustic cues for the perceptual categorization of 

American English regional dialects. Journal of Phonetics, 32(1), 111-140. 

Clopper, C. G., & Paolillo, J. C. (2006). North American English vowels: A factor-analytic 

perspective. Literary and linguistic computing, 21(4), 445-462. 

Corneau, C. (2000). An EPG study of palatalization in French: Cross-dialect and inter-subject 

variation. Language Variation and Change, 12(1), 25-49. 

Davidson, L. (2006). Comparing tongue shapes from ultrasound imaging using smoothing spline 

analysis of variancea). The Journal of the Acoustical Society of America, 120(1), 407-415. 



Eklund, I., & Traunmüller, H. (1997). Comparative study of male and female whispered and phonated 

versions of the long vowels of Swedish. Phonetica, 54(1), 1-21. 

Gick, B., Wilson, I., Koch, K., & Cook, C. (2005). Language-specific articulatory settings: Evidence 

from inter-utterance rest position. Phonetica, 61(4), 220-233.  

Goeman, A. (1999). T-deletie in Nederlandse dialecten. Kwantitatieve analyse van structurele, 

ruimtelijke en temporele variatie. Holland Academic Graphics. 

Hastie, T. J., & Tibshirani, R. J. (1990). Generalized additive models. CRC Press. 

Heeringa, W. (2004). Measuring Dialect Pronunciation Differences using Levenshtein Distance. PhD 

thesis, University of Groningen. 

Honikman, B. (1964). Articulatory Settings. In D. Abercrombie, D.B. Fry, P.A.D. MacCarthy, N.C. 

Scott, & J.L.M. Trim (Eds.), In Honour of Daniel Jones: Papers contributed on the occasion of 

his eightieth birthday 12 September 1961, pp. 73-84. London: Longmans, Green & Co. Ltd. 

Hoole, P., & Zierdt, A. (2010). Five-dimensional articulography. Speech motor control: New 

developments in basic and applied research, 331-349.  

Hoole, P., & Nguyen, N. (1999). Electromagnetic articulography. Coarticulation–Theory, Data and 

Techniques, Cambridge Studies in Speech Science and Communication, 260-269. 

Kerswill, P., & Wright, S. (1990). The validity of phonetic transcription: Limitations of a 

sociolinguistic research tool. Language Variation and Change, 2(03), 255-275. 

Koos, B., Horn, H., Schaupp, E., Axmann, D., & Berneburg, M. (2013). Lip and tongue movements 

during phonetic sequences: analysis and definition of normal values. The European Journal of 

Orthodontics, 35(1), 51-58. 

Labov, William. (1980). The social origins of sound change. In Labov, William (ed.), Locating 

language in time and space. New York: Academic Press. 

Labov, W., Ash, S., & Boberg, C. (2005). The atlas of North American English: Phonetics, phonology 

and sound change. Walter de Gruyter.Labov, W., Yaeger, M., & Steiner, R. (1972). A quantitative 

study of sound change in progress (Vol. 1). US Regional Survey. 

Lancia, L., Fuchs, S., & Tiede, M. (2014). Application of Concepts From Cross-Recurrence Analysis 

in Speech Production: An Overview and Comparison With Other Nonlinear Methods. Journal of 

Speech, Language, and Hearing Research, 1-16. 

Laver, J. (1978). The concept of articulatory settings: an historical survey.Historiographia 

Linguistica, 5(1-2), 1-14. 

Lawson, E., Scobbie, J. M., & Stuart‐Smith, J. (2011). The social stratification of tongue shape for 

postvocalic/r/in Scottish English. Journal of Sociolinguistics, 15(2), 256-268. 

Leinonen, T. N. (2010). An acoustic analysis of vowel pronunciation in Swedish dialects. PhD thesis, 

Rijksuniversiteit Groningen. 

Lix, L. M., & Sajobi, T. T. (2010). Discriminant analysis for repeated measures data: a 

review. Frontiers in psychology, 1. 

Lobanov, B. M. (1971). Classification of Russian vowels spoken by different speakers. The Journal of 

the Acoustical Society of America, 49, 606–608. 

Lucero, J. C., Munhall, K. G., Gracco, V. L., & Ramsay, J. O. (1997). On the registration of time and 

the patterning of speech movements. Journal of Speech, Language, and Hearing Research, 40(5), 

1111-1117. 

Meulman, N., Wieling, M., Sprenger, S.A., Stowe, L.A., & Schmid, M.S. (submitted). Age effects in 

L2 grammar processing as revealed by ERPs and how (not) to study them. 

Nerbonne, J., Heeringa, W., Van den Hout, E., Van de Kooi, P., Otten, S., & Van de Vis, W. (1996). 

Phonetic distance between Dutch dialects. In: Durieux, G., Daelemans, W., & Gillis, S. (eds.), 

CLIN VI: Proceedings of the Sixth CLIN Meeting, Antwerp, pp. 185–202. 

Ouni, S., Mangeonjean, L., & Steiner, I. (2012), VisArtico: a visualization tool for articulatory data, 

Proceedings of Interspeech 2012, September 9-13, 2012, Portland, OR, USA. 

Perkell, J. S., Cohen, M. H., Svirsky, M. A., Matthies, M. L., Garabieta, I., & Jackson, M. T. (1992). 

Electromagnetic midsagittal articulometer systems for transducing speech articulatory movements. 

The Journal of the Acoustical Society of America, 92(6), 3078-3096. 

Peterson, G. E., & Barney, H. L. (1952). Control methods used in a study of the vowels. The Journal 

of the Acoustical Society of America, 24(2), 175-184. 



Recasens, D., & Espinosa, A. (2005). Articulatory, positional and coarticulatory characteristics for 

clear/l/and dark/l: evidence from two Catalan dialects. Journal of the International Phonetic 

Association, 35(01), 1-25. 

Recasens, D., & Espinosa, A. (2007). An electropalatographic and acoustic study of affricates and 

fricatives in two Catalan dialects. Journal of the International Phonetic Association, 37(02), 143-

172. 

Recasens, D., & Espinosa, A. (2009). An articulatory investigation of lingual coarticulatory resistance 

and aggressiveness for consonants and vowels in Catalan. The Journal of the Acoustical Society of 

America, 125(4), 2288-2298. 

Rosner, B. S., & Pickering, J. B. (1994). Vowel perception and production. Oxford University Press. 

Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm optimization for spoken word 

recognition. Acoustics, Speech and Signal Processing, IEEE Transactions on, 26(1), 43-49. 

Schönle, P. W., Gräbe, K., Wenig, P., Höhne, J., Schrader, J., & Conrad, B. (1987). Electromagnetic 

articulography: Use of alternating magnetic fields for tracking movements of multiple points 

inside and outside the vocal tract. Brain and Language, 31(1), 26-35. 

Scobbie, J.M. & K. Sebregts (2010). Acoustic, articulatory and phonological perspectives on 

allophonic variation of /r/ in Dutch. In: Folli, R. & C. Ulbrich (eds.), Interfaces in Linguistics: 

New Research Perspectives. Oxford: Oxford University Press. 

Stevens, K. N. 1998. Acoustic phonetics. Cambridge, MA: MIT Press. 

Sweet, H. (1888). A history of English sounds from the earliest period: with full word-lists. Clarendon 

Press. 

Tabain, M. (2013). Research methods in speech production. In: Jones, M. & Knight, R.-A. (eds) 

Bloomsbury Companion to Phonetics, London: Bloomsbury, pp. 39-56. 

Tomaschek, F., Tucker, B. V., Wieling, M., & Baayen, R. H. (2014). Vowel articulation affected by 

word frequency. Proceedings of the 10th ISSP, Cologne, pp. 429-432. 

Tomaschek, F., Wieling, M., Arnold, D., & Baayen, R. H. (2013). Word frequency, vowel length and 

vowel quality in speech production: An EMA study of the importance of experience. Proceedings 

of the 14th Interspeech, Lyon, pp. 1302-1306. 

Tremblay, A., & Baayen, R. H. (2010). Holistic processing of regular four-word sequences: A 

behavioral and ERP study of the effects of structure, frequency, and probability on immediate free 

recall. Perspectives on formulaic language: Acquisition and communication, 151-173. 

Van Rij, J., Wieling, M., Baayen, R.H., van Rijn, H. (2015). itsadug: Interpreting Time Series and 

Autocorrelated Data Using GAMMs. R package, version 1.0.1. 

Van Rij, J., Hollebrandse, B., & Hendriks, P. (forthcoming). Children's eye gaze reveals their use of 

discourse context in object pronoun resolution. In: Holler, A., Goeb, C., & Suckow, K. (eds.) 

Experimental Perspectives on Anaphora Resolution. Information Structural Evidence in the Race 

for Salience. 

Van der Harst, S., Van de Velde, H., & Van Hout, R. (2014). Variation in Standard Dutch vowels: The 

impact of formant measurement methods on identifying the speaker's regional origin. Language 

Variation and Change, 26(2), 247-272. 

Whalen, D. H., Iskarous, K., Tiede, M. K., Ostry, D. J., Lehnert-Lehouillier, H., Vatikiotis-Bateson. 

E., & Hailey, D. S. (2005). The Haskins optically corrected ultrasound system (HOCUS). Journal 

of Speech Language and Hearing Research, 48, 543-553. 

Wieling, M., Heeringa, W., & Nerbonne, J. (2007). An aggregate analysis of pronunciation in the 

Goeman-Taeldeman-Van Reenen-Project data. Taal en Tongval, 59, 84–116. 

Wieling, M., Montemagni, S., Nerbonne, J., & Baayen, R.H. (2014). Lexical differences between 

Tuscan dialects and standard Italian: Accounting for geographic and socio-demographic variation 

using generalized additive mixed modeling. Language, 90(3), 669-692.  

Wieling, M., & Nerbonne, J. (2011). Bipartite spectral graph partitioning for clustering dialect 

varieties and detecting their linguistic features. Computer Speech and Language, 25(3), 700-715. 

Wieling, M., & Nerbonne, J. (2015). Advances in Dialectometry. Annual Review of Linguistics, 1(1). 

Wieling, M., Nerbonne, J., & Baayen, R. H. (2011). Quantitative social dialectology: Explaining 

linguistic variation geographically and socially. PLOS ONE, 6(9), e23613. 

Wieling, M., Tomaschek, F., Arnold, D., Tiede, M., & Baayen, R. H.. Investigating dialectal 

differences using articulography. Proceedings of ICPhS 2015, Glasgow. 



Wood, S. N. (2003). Thin plate regression splines. Journal of the Royal Statistical Society: Series B 

(Statistical Methodology), 65(1), 95-114. 

Wood, S. (2006). Generalized additive models: an introduction with R. CRC press. 

Wood, S. N., Goude, Y., & Shaw, S. (2014). Generalized additive models for large data sets. Journal 

of the Royal Statistical Society: Series C (Applied Statistics). 

Yunusova, Y., Green, J. R., Greenwood, L., Wang, J., Pattee, G. L., & Zinman, L. (2012). Tongue 

movements and their acoustic consequences in amyotrophic lateral sclerosis. Folia Phoniatrica et 

Logopaedica, 64(2), 94-102. 

Yunusova, Y., Green, J. R., & Mefferd, A. (2009). Accuracy assessment for AG500, Electromagnetic 

Articulograph. Journal of Speech Language and Hearing Research, 52, 547-555. 


